

Text Processing on the Web

Week 5 Link Analysis Ranking

The material for these slides are borrowed heavily from the precursor of this course by Tat-Seng Chua as well as slides from the accompanying recommended texts Baldi et al. and Manning et al.

Min-Yen Kan / National University of Singapore

Recap

- Synonymy and Polysemy affect all standard IR models not just limited to VSM
- We want to instead model latent topics
 - SVD factors the term-document matrix into orthogonal eigenvectors ("topics"), automatically ranked by salience ("eigenvalue magnitude").
 - LSA does SVD and then drops low order topics to create approximation
 - pLSA does this by taking the unigram LM and injecting a latent variable, k (for k topics)

Outline

- The classics:
 - Page Rank
 - Hubs and Authorities
- Adaptations to the Models
 - Topic Sensitive PageRank
 - SALSA

Citation Networks

- Pioneered by Garfield 1972 to answer questions on impact
- Introduced Impact Factor
 - -C = citations to articles in a journal
 - N = total number of articles in a journal
 - Impact Factor = C/N
 - (Normalized in-degree of a journal)

Query-independent ordering

- How does this translate to the web?
 - Have a graph, not a DAG
 - Using link counts as simple measures of prestige
 - number of inlinks (3)

1.

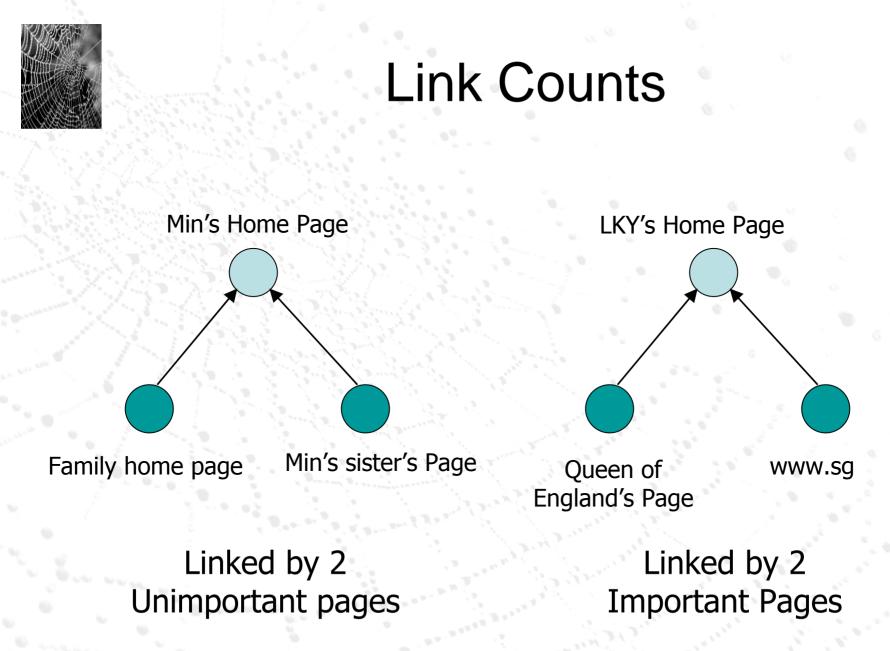
Algorithm

Retrieve all pages meeting the text query (say venture capital), perhaps by using Boolean model

2. Order these by link popularity

Exercise: How do you spam each of the following heuristics so your page gets a high score?

• score = # in-links



Min-Yen Kan / National University of Singapore

Definition of PageRank

• The importance of a page is given by the importance of the pages that link to it.

 $j \in B$

importance of page i

importance of page j

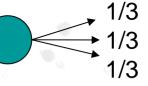
pages j that link to page i

number of outlinks from page j

Min-Yen Kan / National University of Singapore

Pagerank scoring

- Imagine a browser doing a random walk on web pages:
 - Start at a random page

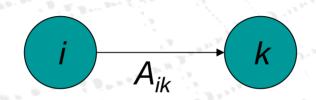


- At each step, follow one of the *n* links on that page, each with 1/*n* probability
- Do this repeatedly. Use the "long-term visit rate" as the page's score

Markov chains

A Markov chain consists of n states, plus an $n \times n$ transition probability matrix A.

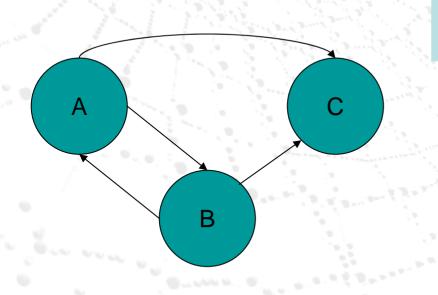
- At each step, we are in exactly one of the states.
- For $1 \le i,k \le n$, the matrix entry A_{ik} tells us the probability of k being the next state, given we are currently in state *i*.
- Memorylessness property: The next state depends only at the current state (first order MC)



Min-Yen Kan / National University of Singapore

Markov chains

- Clearly, for all i, $\sum_{k=1}^{n} A_{ik} = 1$.
- Markov chains are abstractions of random walks



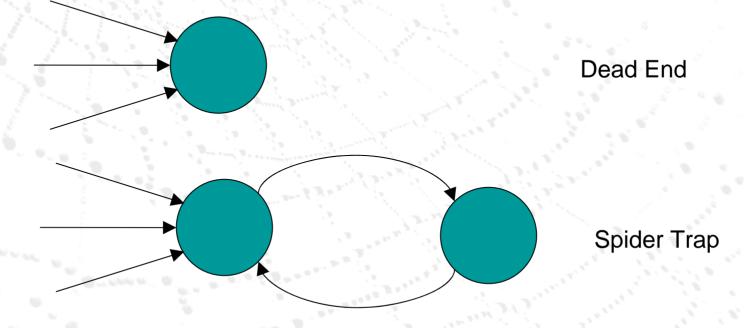
Try this: Calculate the matrix A_{ik} using 1/n possibility



Not quite enough

• The web is full of dead ends.

- What sites have dead ends?
- Our random walk can get stuck.



Teleporting

- At each step, with probability 10%, teleport to a random web page
 - With remaining probability (90%), follow a random link on the page
 - If a dead-end, stay put in this case

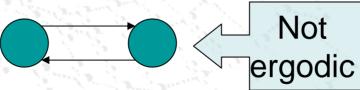
Follow!

$$\vec{rank} = (1-a)A \times \vec{rank} + \alpha \left[\frac{1}{N}\right]N \times 1$$

Teleport!

Ergodic Markov chains

- A Markov chain is ergodic if
 - you have a path from any state to any other
 - you can be in any state at every time step, with nonzero probability



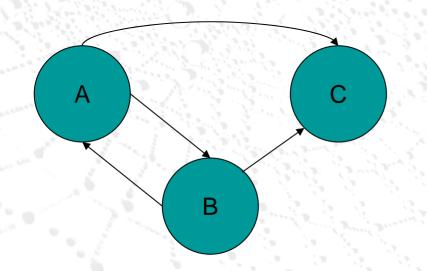
- With teleportation, our Markov chain is ergodic

Markov chains (2nd Try)

A_{ik:}

A B

С



Try this: Calculate the matrix A_{ik} using a 10% chance of teleportation

R

Probability vectors

• A probability (row) vector $\mathbf{x} = (x_1, \dots, x_n)$ tells us where the walk is at any point

E.g., (000...1...000) means we're in state *i*.

More generally, the vector $\mathbf{x} = (x_1, \dots, x_n)$ means the walk is in state *i* with probability x_i .

$$\sum_{i=1}^n x_i = 1.$$

Change in probability vector

- If the probability vector is $\mathbf{x} = (x_1, \dots, x_n)$ at this step, what is it at the next step?
- Recall that row *i* of the transition prob. Matrix A tells us where we go next from state *i*.
- So from **x**, our next state is distributed as **xA**.

Pagerank algorithm

- Regardless of where we start, we eventually reach the steady state a
 - Start with any distribution (say x=(10...0))
 - After one step, we're at xA
 - After two steps at xA2, then xA3 and so on.
 - "Eventually" means for "large" k, xAk = a
- Algorithm: multiply x by increasing powers of A until the product looks stable

Steady State

- For any ergodic Markov chain, there is a unique long-term visit rate for each state
 - Over a long period, we'll visit each state in proportion to this rate
 - It doesn't matter where we start

Eigenvector formulation

The flow equations can be written

r = Ar

- So the rank vector is an eigenvector of the adjacency matrix
 - In fact, it's the first or principal eigenvector, with corresponding eigenvalue 1

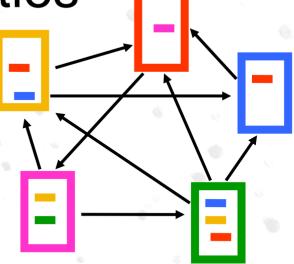
Pagerank summary

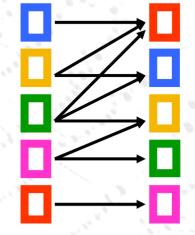
Pre-processing:

- Given graph of links, build matrix A
- From it compute a
- The pagerank a_i is a scaled number between 0 and 1
- Query processing:
 - Retrieve pages meeting query
 - Rank them by their pagerank
 - Order is query-independent

Hubs and Authorities

- Authority is not necessarily transferred directly between authorities
- Pages have double identity
 - hub identity
 - authority identity
- Good hubs point to good authorities
- Good authorities are pointed by good hubs





hubs

authorities

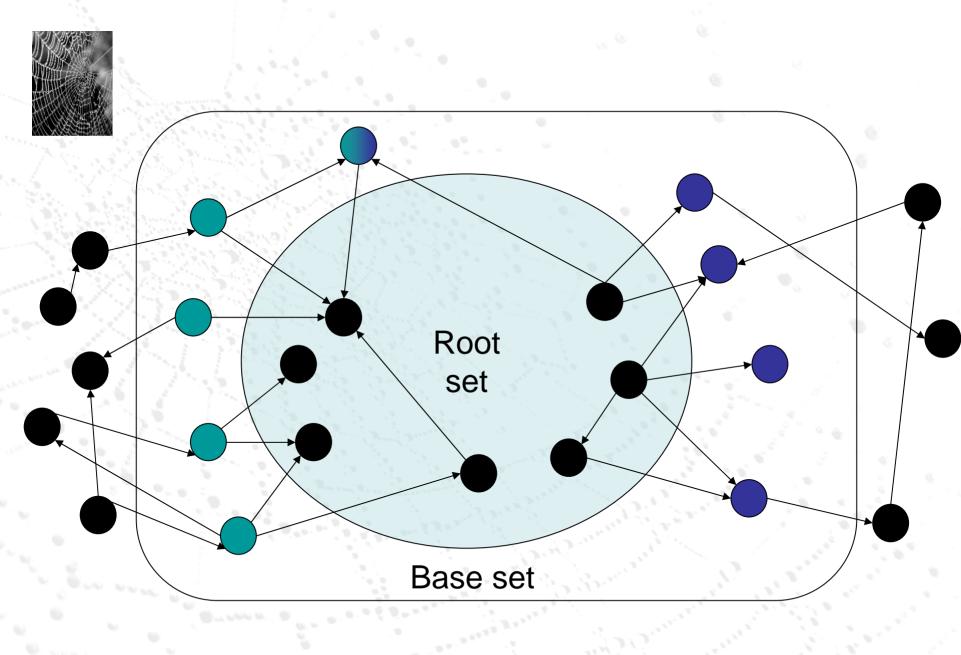
High-level scheme

- Extract from the web a <u>base set</u> of pages that could be good hubs or authorities.
 - From these, identify a small set of top hub and authority pages
 - \rightarrow iterative algorithm

Base set

1. Given text query (say **university**), use a text index to get all pages containing **university**.

- Call this the <u>root set</u> of pages
- 2. Add in any page that either:
 - points to a page in the root set, or
 - is pointed to by a page in the root set
- 3. Call this the base set



Min-Yen Kan / National University of Singapore

Assembling the base set

- Root set typically 200-1000 nodes.
- Base set may have up to 5000 nodes.
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages.
 - Get in-links (and out-links) from a connectivity server.

Distilling hubs and authorities

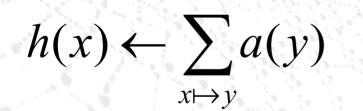
- 1. Compute, for each page x in the base set, a <u>hub score</u> h(x) and an <u>authority score</u> a(x).
- 2. Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- 3. Iteratively update all h(x), a(x);
- 4. After iterations:
 - highest h() scores are hubs
 - highest a() scores are authorities

Iterative update

X

X

Repeat the following updates, for all x:



$$a(x) \leftarrow \sum h(y)$$

 $y \mapsto x$

Min-Yen Kan / National University of Singapore

 $h_t = Aa_{t-1}$

 $a_t = A^T h_{t-1}$

HITS and eigenvectors

- The HITS algorithm is a power-method eigenvector computation
 - in vector terms $a_t = A^T h_{t-1}$ and $h_t = A a_{t-1}$
 - so $a_t = A^T A a_{t-1}$ and $h_t = A A^T h_{t-1}$
 - The authority weight vector a is the eigenvector of A^TA and the hub weight vector h is the eigenvector of AA^T
 - Why do we need normalization?
 - The vectors a and h are singular vectors of the matrix A

Singular Value Decomposition

$\mathbf{A} = \mathbf{U} \quad \mathbf{\Sigma} \quad \mathbf{V}^{\mathsf{T}} = \begin{bmatrix} \vec{\mathbf{u}}_1 & \vec{\mathbf{u}}_2 & \cdots & \vec{\mathbf{u}}_r \end{bmatrix}$

 $[n \times r] [r \times r] [r \times n]$

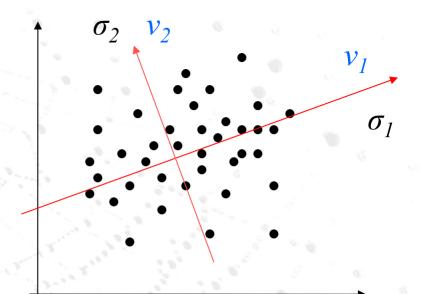
- **r** : rank of matrix A
- $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r$: singular values (square roots of eigenvalues AA^T, A^TA)
- $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r$: left singular vectors (eigenvectors of AA^T)
- $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r$ right singular vectors (eigenvectors of A^TA) • $A = \sigma_1 \vec{u}_1 \vec{v}_1^T + \sigma_2 \vec{u}_2 \vec{v}_2^T + \dots + \sigma_r \vec{u}_r \vec{v}_r^T$

 \vec{v}_1 \vec{v}_2

 σ_2

Singular Value Decomposition

- Linear trend v in matrix A:
 - the tendency of the row vectors of A to align with vector v
 - strength of the linear trend: Av
- SVD discovers the linear trends in the data
- u_i, v_i: the i-th strongest linear trends
- σ_{i} : the strength of the i-th strongest linear trend



HITS discovers the strongest linear trend in the authority space

How many iterations?

- Relative values of scores will converge after a few iterations
- We only require the <u>relative order</u> of the h() and a() scores - not their absolute values
- In practice, ~5 iterations needed

Things to think about

- Use only link analysis <u>after</u> base set assembled
 - iterative scoring is query-independent
- Iterative computation <u>after</u> text index retrieval significant overhead

Things to think about

- A pagerank score is a global score. Can there be a fusion between H&A (which are query sensitive) and pagerank?
- How does the selection of the base set influence computation of H & As?
- Can we embed the computation of H & A during the standard VS retrieval algorithm?
- How can you update PageRank without recomputing the whole thing from scratch?
- What's the eigenvector relationship between HITS' authority and PageRank?

Advanced link structure methods

Min-Yen Kan / National University of Singapore

Topic-Sensitive PageRank

• Basic idea:

 Identify topic that might be interesting for the user (e.g. via classification of the query, eval. of context, ...)
Use pre-calculated, topic-sensitive PageRank

- Topic specific PageRank rank_{id}:
- Now: Topics c₁, ..., c_n,
 - They used 16 top-level categories from the ODP
- Topic dependent weighting (1/|T_i|)
- Advantage: Can be calculated in advance

Offline PageRank Vector Computation

Play around with Teleportation Rate

$$\vec{rank} = (1-a)A \times \vec{rank} + \alpha \left| \frac{1}{N} \right| N \times 1$$

Don't jump to a random page; jump to a topic page!

$$v_{ij} = \begin{cases} 1 & i \in T_j \\ |T_j| & T_j = \text{set of pages relevant} \\ 0 & i \notin T_j \end{cases}$$

Run-time TSPageRank (cont.)

- Question: Which one to select during run time?
- Idea: Classification of query q given by the user
- Extension: Consider context q' of query q
 - e.g. surrounding text if query was entered via highlighting
- Calculation using a unigram language model:

$$P(c_j|q') = \frac{P(c_j) \cdot P(q'|c_j)}{P(q')} \propto P(c_j) \cdot \prod_i P(q'_i|c_j)$$

Topic-Sensitive PageRank

- Weighted summation of all topic specific PageRanks for one document
 - Weights: Dependent on probability of a particular topic being relevant given the query q
 Definition: Query-Sensitive Importance Score s_{ad}

$$s_{qd} = \sum_{j} P(c_j | q') \cdot rank_{jd}$$

- Disadvantages:
 - Fixed set of topics
 - Depends on training set

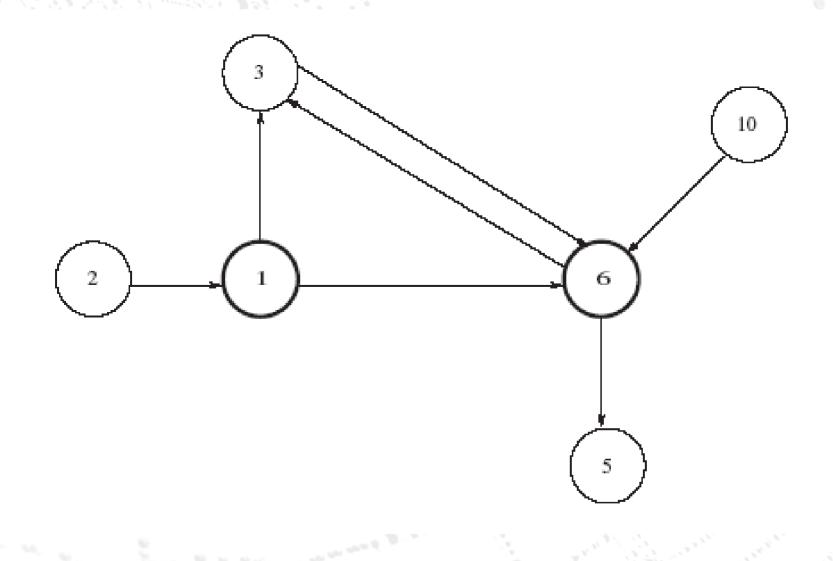
Similarities

- uses authority and hub score
- creates a neighborhood graph using authority and hub pages and links

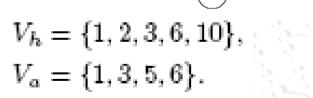
Differences

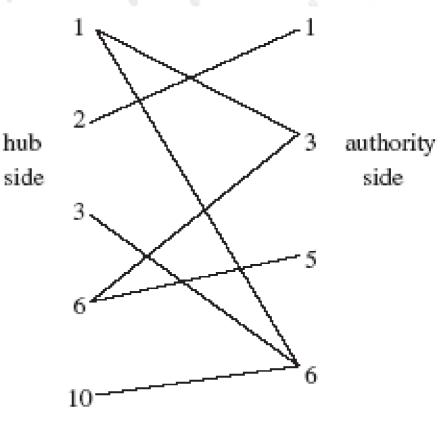
- creates bipartite graph of the authority and hub pages in the neighborhood graph.
 - Each page may be located in both sets

Neighborhood Graph N



Bipartite Graph G of Neighborhood Graph N





Min-Yen Kan / National University of Singapore

Markov Chains

- Two matrices formed from bipartite graph G
- A hub Markov chain with matrix H'
 - Follow forward link, then backward

$$h_{uv} = \sum_{w:(u,w)\in E, (v,w)\in E} \frac{1}{\deg(u_h)} \frac{1}{\deg(w_a)}$$

- An authority Markov chain with matrix A'
 - Follow backward link, then forward

$$a_{uv} = \sum_{w:(w,u)\in E, (w,v)\in E} \frac{1}{\deg(v_a)} \frac{1}{\deg(w_h)}$$

Steps end up on same side of the bipartite graph

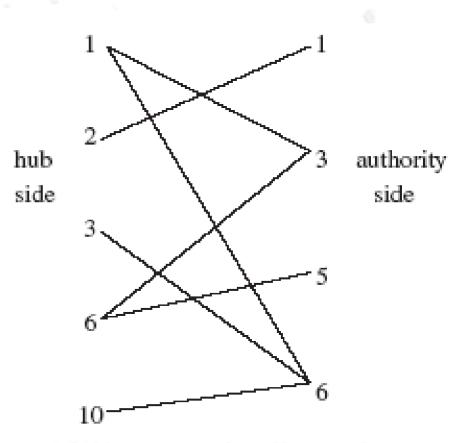
Completing SALSA

- Use same power method as in previous methods to compute principal eigenvector
 - Caveat: have to deal with disconnected components!

{1},{2}

 $\{1,3,6,10\},\{3,5,6\}$

 Link them together in some way



Where does SALSA fit in?

 Matrices H' and A' can be derived from the adjacency matrix used in both methods

> Why do we say this?

- HITS used unweighted matrix
- PageRank uses a row weighted version of matrix A
- SALSA uses both row and column weighting

Strengths and Weaknesses

- Not affected as much by topic drift like HITS
- Handles Tightly knit communities better (spammers)
- It gives authority and hub scores.
- Query dependence

Summary

- Ranking needs to account for the graph structure
- Directed structure of the web leads to dichotomy in treatment (giving/receiving ends)
- Global models (propagation) and local models (at run time)
- Linear Algebra strikes again: SVD and Eigenvectors

Still more work to do here:

 Not yet convincingly coupled with standard retrieval models; "content" not really factored in

References

- S. Brin, L. Page, The anatomy of a large scale search engine, WWW 1998
- J. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998.
- G. Pinski, F. Narin. Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing and Management, 12(1976), pp. 297--312.
- L. Katz. A new status index derived from sociometric analysis. Psychometrika 18(1953).
- R. Motwani, P. Raghavan, Randomized Algorithms
- S. Kamvar, T. Haveliwala, C. Manning, G. Golub, Extrapolation methods for Accelerating PageRank Computation, WWW2003
- A. Langville, C. Meyer, Deeper Inside PageRank, Internet Mathematics