

Text Processing on the Web

Week 7 Question Answering

The material for these slides are borrowed heavily from the precursor of this course taught by Tat-Seng Chua as well as slides from the accompanying recommended texts Baldi et al. and Manning et al.

Recap: Passage Retrieval and External Resources

- Tuning the performance of IR systems using
 - Query expansion
 - External resources
- Passage Retrieval
 - Can use simple document methods
 - Are a good platform for trying more substantial processing
 - Emphasizing precision; relegate document retrieval to high recall

Three-week Outline

Last Time

Today

- External Resources
 - Thesaurii
 - Wikipedia
 - Domain specific Sites
- Query Expansion
 - Query logs to suggest
- Ranking
 - Density Based
 - Dependency Based

- What is Question Answering? – TREC
 - Def, List, Factoid
 - Closed vs. Open Domain
- **Question Analysis**
 - Question Typologies
- Structural use of terms in QA

Question Answering

- Open Domain
 - Find answers to natural language questions by searching and locating answers in a free (or semi structured) text collection
 - Typically non-interactive
 - A focus of TREC
- Closed Domain
 - QA in a closed domain (e.g., intranet of company)
 - Might simply do routing (classify to closest FAQ)
 - May use ontological knowledge

Text REtrieval Conference

- Annual bakeoff competition of IR systems
- Helped to do large scale testing in a rigorous way
 - + Standard corpus and standard answers
 - + Technology transfer and visibility
 - All systems start to look the same after a while; less room for innovation
- Structured like our HWs with query relevance assessed by participants or paid volunteers

TREC Tracks

http://trec.nist.gov/tracks.html

- Question Answering
- Blog
- Enterprise a bit like closed domain
- Genomics data, but also documentation

Past tracks

- Terabyte over large datasets
- Novelty finding interesting new results
- Cross Language retrieving documents in other languages
- Interactive user in the loop
- Video not just text anymore

Question Types in the QA Track

- Factoid exact answer to a factual question
 How long is the coastline of England?
 - List listing of items to answer a question
 - Which countries import rice?
- Definition give a NL definition to a topic
 - Who is Aaron Copeland?

 Topic-Based – Culmination of all three on a particular topic

Example Topic Questions

In 2004 TREC switched to topic style questions

- Topic: Hale Bopp Comet
 - FACTOID: When was the comet discovered
 - FACTOID: How often does it approach the earth?
 - LIST: In what countries was the comet visible on its last return?
 - OTHER: (other relevant info not explicitly asked)
- Topic: James Dean
 - FACTOID: When was James Dean born
 - FACTOID: When did James Dean die
 - FACTOID: How did James Dean die?
 - LIST: What movies did he appear in?
 - FACTOID: Which was the first movie that he was in?
 - OTHER

How are definition questions related to these question types?

Answering Questions

In TREC QA, answers to factoids need to be exact

- Q: Which river is the longest river in the US?
 A. At 2,348 miles the Mississippi River is the longest river in the U.S.
- A: Mississippi
- A: Mississippi River

Evaluating QA

Get the correct answer: precision Get succinct answers: recall P = # of matching words # of words in answer key

R = # of matching words # of words in system response

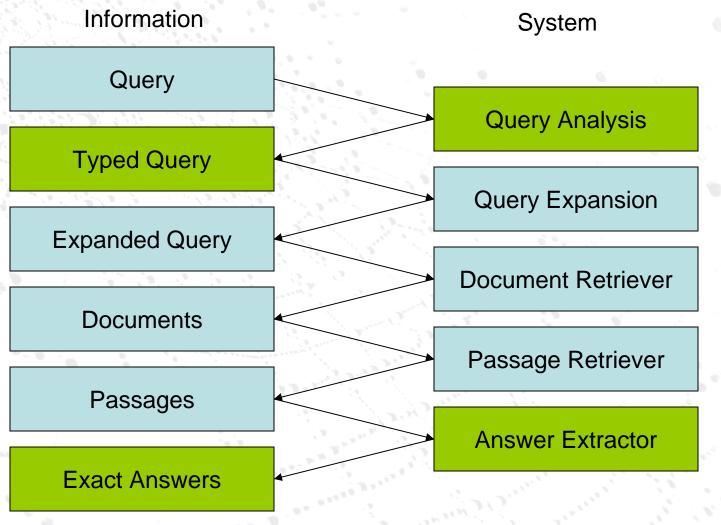
Factoid / List

- DeepRead: only count content words
- Later: TREC 2002 modified this for getting ranking answers

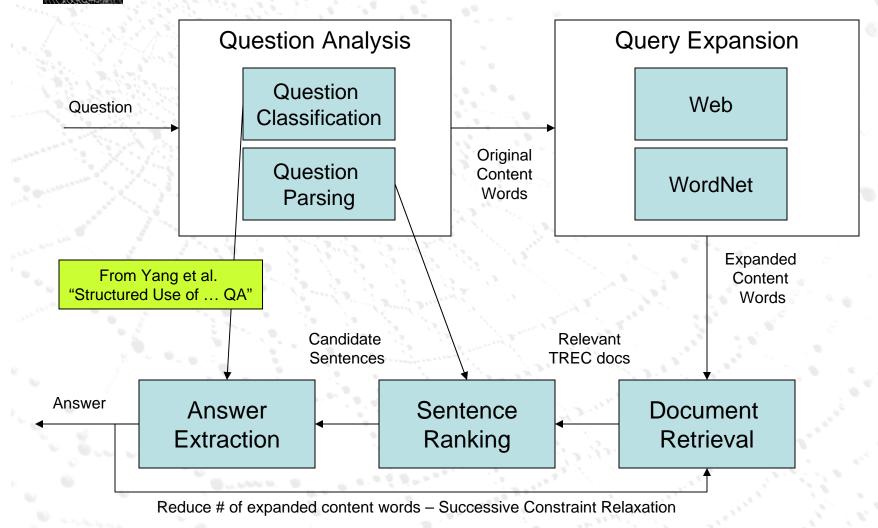
Definition / Other

- Nugget precision/recall/F
 - What's a nugget?
 - Used F_5 : recall worth 5x vs. precision (also F_3)
- Vital versus OK nuggets
 - Leads to two different scores

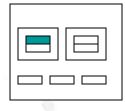
QA Architecture



Typical QA Implementation



Question Classification



- Based on question focus and answer type
- Divide into main classes
 - HUMan, LOCation, TiME, NUMber, OBJect, DEScription, UNKnown
- Subdivide into detailed classes

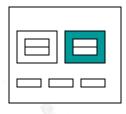
E.g., under LOC LOC_PLANET LOC_CITY LOC_CITY LOC_CONTINENT LOC_COUNTRY LOC_COUNTRY LOC_COUNTY LOC_COUNTY LOC_OCEAN LOC_ISLAND LOC_PROVINCE

Need to ensure accuracy is good. Fortunately, it is very high (> 90%, at least for certain classes)

Question Parsing

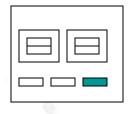
- Aim: To extract essential terms in question
 - To extract answer target and content words
 - E.g., for question "What mythical Scottish town appears for one day every 100 years?"
 - $\underline{q}_0 =$ (mythical, Scottish, town, appears, one, day, 100, years)
 - Answer target = LOC_TOWN
 - Basic Noun Phrases <u>n</u>= "mythical Scottish town"
 - Sub-heading words <u>h</u>= "town"
 - Quotation words <u>u</u>
 - Present in some questions with titles of works, e.g., What was the original name of the song "The Star Spangled Banner"?

Query Expansion



- Aims to: bring in context to bridge gap between the query and documents
 - Many terms used in queries do not appear in documents or are phrased differently
- For automated Open Domain QA:
 - Make use of external resources to find context
 - Use the Web to extract highly correlated terms with query terms using MI or other co-occurrence metrics
 - Use WordNet to find terms that are lexically related to query using the structure and synsets <u>S_q</u> and gloss <u>G_q</u>
 - Combine these three sources to get final ranked list of terms \underline{I}_{q}
 - Use \underline{I}_q for query expansion $q_1 = q_0 + \{ \text{ top m terms from } \underline{I}_q \}$
 - Linear query expansion by varying m to adjust precision of query

Document Retrieval



- Use Lucene to perform Boolean Retrieval
- Retrieve top n = 50 documents using conjunctive syntax
 - If q₁ does not return sufficient documents, remove some extra terms and repeat search
 - This is the successive constraint relaxation, which we will use again later

Passage Retrieval

- Identify sentences from top n = 50 documents
- Density based match to find relevant sentences
- Recall query processing got us <u>q</u>₀, <u>q</u>₁, <u>n</u>, <u>h</u>, <u>u</u>
 Score all sentences in top n S_i are scored by
 - +1 if match quotation words <u>u</u>
 - +1 if match noun phrases n
 - +1 if match sub heading words \underline{h}
 - +[0-1] % of terms overlapping between q_0 and S_i
 - +[0-1] % of terms matching expanded $(q_1 q_0)$ query terms
 - + based on other criteria (dependency relation score)
- Select top k sentences based on scores of S_i

Answer Extraction

- Perform NE tagging from top k sentences
 - NE tagging task reviewed later in the course
- For each sentence, extract string matching question target

"What mythical Scottish town appears for one day every 100 years?"

Answer target: LOC_TOWN

Top ranked sentence "Isolated in the rugged heartland of the <LOC_MOUNTAIN Green Mountains>, <LOC_MOUNTAIN Plymouth Notch> has been called <LOC_STATE Vermont>'s <LOC_TOWN Brigadoon>, after the imaginary <LOC_COUNTRY Scottish> village that appears and vanishes in the mists."

The extracted answer is Brigadoon

"Who is Tom Cruise married to?"

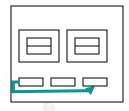
Answer target: HUM_BASIC

Top ranked Candidate Sentence: "Actor <HUM_PERSON Tom

Cruise> and his wife <HUM_PERSON Nicole Kidman> accepted "substantial" libel damages on <TME_DATE Thursday> from a <LOC_COUNTRY British> newspaper that reported he was gay and that their marriage was a sham to cover it up."

The extracted answer is Nicole Kidman

If no answers... try again



- Perform successive constrain relaxation (SCR):
 - We reduce the number of expanded query terms in q₁ and repeat the document/sentence retrieval and answer extraction
 - Try up to m=5 iterations (afterwards, conclude really no answer *nil*)
- This strategy increases recall
- Question: What does it do to precision?

Further Readings

- The Voorhees paper gives an overview of the TREC QA tasks.
- Read the Hirschman et al. article to get an understanding of a complete, early QA system
- Then read the Yang et al. paper to see how it works in a more modern system.
- (Supplemental) the Moldovan and Novischi article describes a more principled way to use WordNet (definitions + ontology data) to relate to synonymous words together

Leveraging structure in QA

Two parts

Looking at the structure of terms to boost QA

- Structured Queries (from Yang et al. 2002)
 - In query expansion
 - No linguistic knowledge
 - Distance between terms
 - Soft Patterns (from Cui et al. 2004)
 - For filtering in passage retrieval
 - Part of speech tagging
 - Order between terms

Could be applied elsewhere (e.g., NLP, IE, IR), not just QA

Structured Queries

Goal: know which terms in (expanded) query belong together Such semantic groups should correspond to set of elements in a QA event

Given any two distinct terms t_i and t_i, we compute 3 correlations

- Lexical:
 - Use WordNet (gloss and hierarchy)
 - Give bonus if t_i and t_i related (e.g., in same synset)
- Co-occurrence
 - Find mutual information between t_i and t_i
 - Give bonus if $MI(t_i,t_j)$ greater than average
- Distance:
 - Density based methods (i.e., find how close in the snippets or documents t_i and t_j occur)
 - Give bonus proportional to reciprocal of avg. distance between t_i and t_j

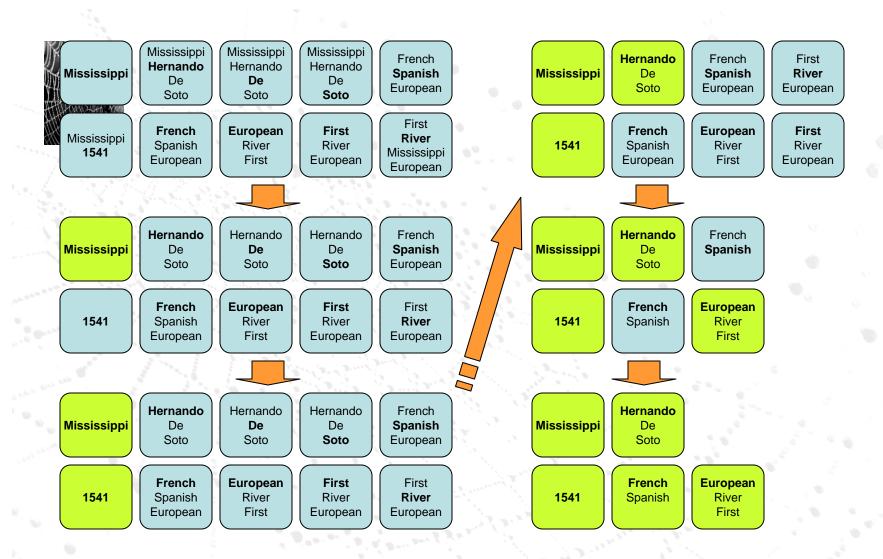
Note: Co-occurrence and distance correlations overlap (not independent)

Calculating semantic groups

- Initially, soft cluster terms in (expanded) query by their distance
 - Use fixed thresholds in some number of initial clusters G.
 - Each cluster in G represented by highest IDF word, called main(G_i)
- Then iterate to obtain hard clusters
 - Select cluster G_s to be added to final cluster set E based on having highest weighted main(G_i)
 - Remove any overlapping words in other G_k that overlap with words in G_s
- For each final cluster in E, decide its group cohesiveness based on the correlations.
 - If cluster is tight, use an AND syntax (words are part of the same concept)
 - If cluster is loose, use an OR syntax to connect words (words are synonymous)

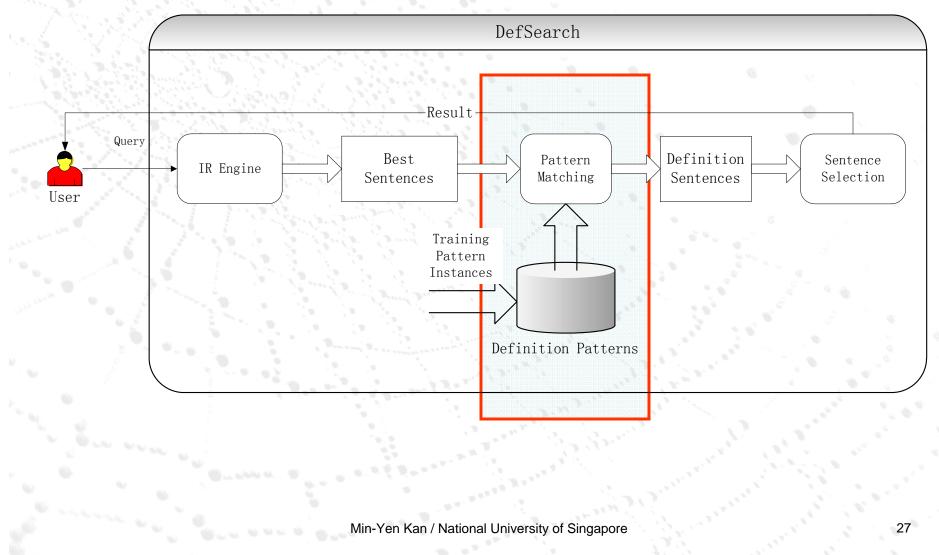
Example

- For question: "What Spanish explorer discovered the Mississippi River?"
- Expanded Query= {Mississippi, Hernando, Soto, De, Spanish, 1541, French, European, First, river}
- Initial clusters (main word bolded)



 Final Boolean query is: Mississippi & 1541 & (Hernando & De & Soto) & (first | European | River) & (French | Spanish)

Definition QA architecture



How Do Current Systems Identify Definitions?

- Current systems use hand-crafted patterns
 - Appositive
 - e.g. Gunter Blobel, a cellular and molecular biologist,...
 - Copulas
 - e.g. Battery is a kind of electronic device .
 - Predicates (relations)
 - e.g. TB is usually caused by ...

Weaknesses of Current Pattern Matching Methods

Lack of Flexibility – Hard Matching
 – Patterr <
 SCH_TERM> , also known as

TB (also known as Tuberculosis)...

TB, also known as Tuberculosis, ...

- Variations make hard matching fail
- Introduce Soft Patterns with greater flexibility

Manual labor

 Introduce unsupervised learning by Group Pseudo-Relevance Feedback (GPRF).

What are Soft Patterns?

Soft patterns allow partial matching TB (also known as Tuberculosis)... P((|Slot1) = 0.001, P(also|Slot2) = 0.21, P(known|Slot3) = 0.33, P(as|Slot4) = 0.13

P(Matching) = 0.23 : still better than non-definition sentences.

- How does it work?
 - Training accumulating pattern instances in a vector.
 - Derive pattern instances from labeled definition sentences.
 - Matching with a probabilistic model, not regular expressions.
 - Using statistical information from all pattern instances, not generalized rules.
 - Instance-based learning.

Preparing Pattern Instances

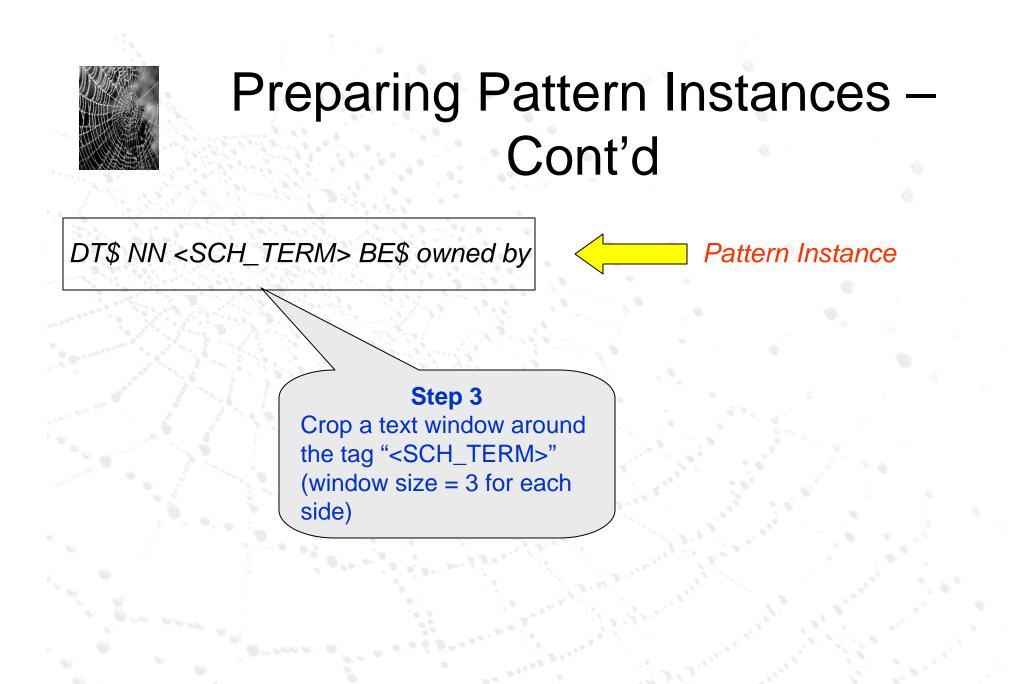
The channel **Iqra** is owned by the Arab Radio and Television company and is the brainch Step 1 POS tagging and noun phrase chunking.

The_DT channel_NN Iqra_NNP is_VBZ owned_VBN by_IN NNP company_NN and_CC is_VBZ the_DT brainchild_NN of_IN NNP.

Step 2

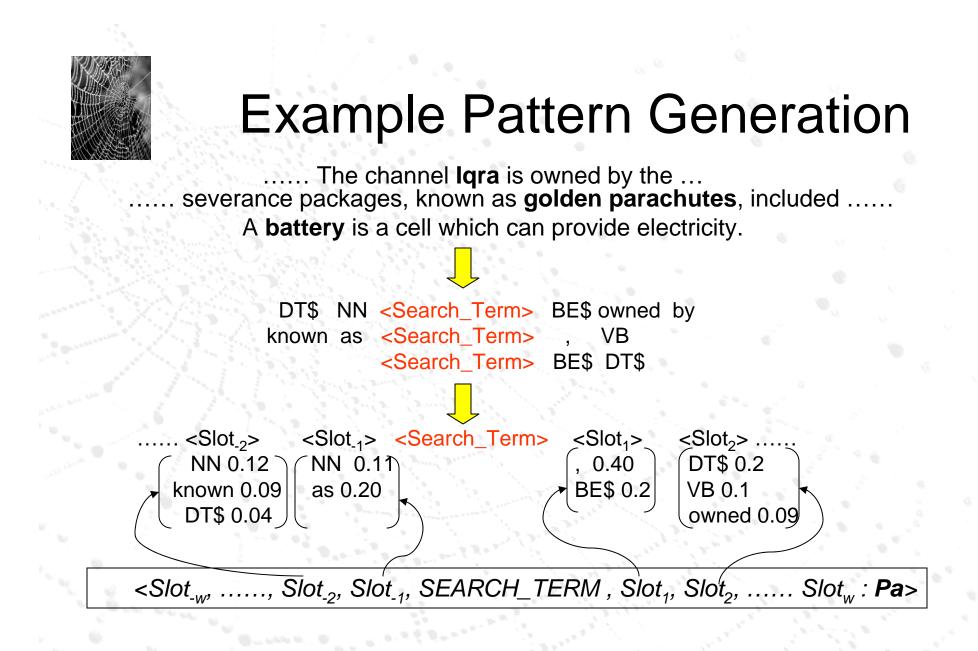
Selective substitution – replace those specific words with more general tags. Other tokens remain unchanged.

DT\$ NN <SEARCH_TERM> BE\$ owned by DT\$ NNP and BE\$ DT\$ NN of NNP.



Min-Yen Kan / National University of Singapore

32



Min-Yen Kan / National University of Singapore

33

Matching Soft Patterns

 Test sentences are reduced to a vector S using the same strategy.

<token_{-w}, ..., token_{-l}, SEARCH_TERM, token_l, ..., token_w : S>

- Matching Soft Patterns similarity between the pattern vector *Pa* and the test vector *S*.
 - Independent slot content similarity.
 - Slot sequence fidelity.

Probabilistic Matching Degree

- Individual slot similarity independent assumption $Pa_weight_{Slots} = \Pr(S | Pa) = \prod_{i=1}^{w} \Pr(token_i | Slot_i)$
- Sequence fidelity bigram model

 $Pr(right_seq) = Pr(token_1, token_2 \cdots token_w | Pa)$

 $= P(token_1)P(token_2 \mid token_1) \cdots P(token_w \mid token_{w-1})$

 $Pa_weight_{seq} = (1-\alpha) \cdot \Pr(left_seq | Pa)$

 $+ \alpha \cdot \Pr(right _ seq | Pa)$

Combined to get the matching degree

 $Pattern_weight = \frac{Pa_weight_{Slots} \times Pa_weight_{Seq}}{fragment_length}$

Unsupervised Labeling of Definition Sentences using GPRF

- Pattern instances obtained from labeled definition sentences.
 - Manual labeling is too expensive.
- Pseudo-relevance Feedback in document retrieval
 - Take the top n ranked documents as relevant.
- Employ Group pseudo-relevance feedback (GPRF)
 - Statistical ranking centroid based method.
 - Perform PRF over a group of questions (top 10 sentences for each question).
 - Generate soft patterns from all auto-labeled sentences for all questions.

Analysis of GPRF

- Assumption 1 some definition sentences can be ranked high using statistical method.
 - Word co-occurrence metrics can well model descriptive sentences.
 - Over 33% of top ranked sentences are definitional.
 - Noise introduced in each question's top list is mitigated by our group strategy
- Assumption 2 definition patterns are general and can be used across questions.

Summary

- Question Answering as exact answer retrieval
 - Different types of QA
 - Definitional QA as summarization (keep this in mind next week)
- Less volume of information allows more intensive statistical NLP to be applied
 - Pre-process: question typing
 - Post-process: answer extraction
 - Successive Constraint Relaxation to expand queried to find less exact answers.
- Use structure
 - Associating terms into groups (keep in mind for clustering later)
 - Soft patterns for capturing context in an unsupervised way using PRF