

Linking Organizational Social Network Profiles

Jerome Cheng, Kazunari Sugiyama, and Min-Yen Kan ierome@ayulin.net

{sugiyama, kanmy}@comp.nus.edu.sg

1. Introduction

Social Network Entity Linking

(1) Individual Users

Most of existing works address "individual user profile" across social media

[lofciu et al., ICWSM-11]

[Zafarani and Liu, KDD'13]

Flickr Delicious

StumbleUpon

 In both works, longest common subsequence between query (user name) and candidate works well.

(2) Organizations

 Search engines of most of SNSs do not distinguish between individual user profiles and organizational ones.

 Google requires organizations to include specific markup in their Web page.

Boeing Avand manufacturing company The Boeing Company is an American multirational consociation that standardists. It is a provides leasing and product support services. Profiles

Our Goal

- To identify an organizational social network profiles on a specific network.
- We define the following three categories, and then adopt supervised learning:

Official

e.g.) @Microsoft on

Affiliate

e.g.) @MicrosoftDesign on
@MicrosoftAsia on

Unrelated

Classifiers

- Bernoulli naïve Bayes
- Gaussian naïve Bayes
- Decision tree (DT)
- Logistic regression (LR)
- Random forest (RF)
- Support vector machines (SVM)
- Maximum entropy (ME)

Dataset

SNS	Organizations	Official	Affiliate	Unrelated			
Twitter	228	232	675	2,474			
Facebook	216	145	491	2,767			
(We have released our dataset at http://wing.comp.nus.edu.sg/downloads/corpsearch/OrgSocialNetworkData.html)							

2. Features for Classifiers

Baseline Features (BL)

Normalized edit distance between

- the query (organization's name) and handle name*
- query and display name*
- * e.g.) "General Motors" -

handle name: "GM"
display name: "General Motors"

Name-based Features (N)

Length of

(Aff

- the query, - target handle name, and - target display name

Description-based Features (D)

We get organization's description from DuckDuckGo, a search engine that provides the results from Wikipedia.

- Cosine similarity between the target profile's description and the query
- Number of occurrences of the query in the target profile's description
- Cosine similarity between the target profile's description and DuckDuckGo description.

Content-based Features (C)

Probability that the query appears in bigram models constructed from "official/affiliate/unrelated"

- description and - posted content

3. Experimental Results (Selected)

vitter		RF	SVM	ME
filiate)	Baseline (BL)	0.740	0.828	0.878
	BL+N	0.931	0.835	0.872
	BL+D	0.935	0.798	0.846
	BL+C	0.944	0.878	0.914
	BL+N+D	0.932	0.805	0.870
	BL+N+C	0.949	0.963	0.933
	BL+D+C	0.937	0.848	0.898
	ALL (BL+N+D+C)	0.973*	0.967*	0.947*
	lofciu et al.	<u>0.931</u>	<u>0.824</u>	0.873
	Zafarani and Liu	0.926	0.815	0.865

SVM ME **Facebook** RF Baseline (BL) 0.836 0.790 0.903 (Affiliate) 0.911 BL+D 0.847 0.750 0.858 BI +C 0.962 0.796 0.942 BL+N+D 0.952 0.743 0.910 BI +N+C 0.966 0.927 0.953 BL+D+C 0.932 0.898 0.949 ALL (BL+N+D+C) 0.977* 0.964° 0.968

0.762

Improvement Rate

lofciu et al.

Zafarani and Liu

	Twitter (Official)	Twitter (Affiliate)	Facebook (Official)	Facebook (Affiliate)
N	6.56%	15.02%	6.72%	7.61%
D	2.39%	7.57%	0.46%	4.54%
С	9.56%	16.49%	7.49%	22.88%

0.806

0.874

0.869