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Abstract

This paper presents a Function Word cen-
tered, Syntax-based (FWS) solution to ad-
dress phrase ordering in the context of
statistical machine translation (SMT). Mo-
tivated by the observation that function
words often encode grammatical relation-
ship among phrases within a sentence, we
propose a probabilistic synchronous gram-
mar to model the ordering of function words
and their left and right arguments. We im-
prove phrase ordering performance by lexi-
calizing the resulting rules in a small number
of cases corresponding to function words.
The experiments show that the FWS ap-
proach consistently outperforms the base-
line system in ordering function words’ ar-
guments and improving translation quality
in both perfect and noisy word alignment
scenarios.

1 Introduction

The focus of this paper is on function words, a class
of words with little intrinsic meaning but is vital in
expressing grammatical relationships among words
within a sentence. Such encoded grammatical infor-
mation, often implicit, makes function words piv-
otal in modeling structural divergences, as project-
ing them in different languages often result in long-
range structural changes to the realized sentences.

Just as a foreign language learner often makes
mistakes in using function words, we observe that
current machine translation (MT) systems often per-
form poorly in ordering function words’ arguments;

lexically correct translations often end up reordered
incorrectly. Thus, we are interested in modeling
the structural divergence encoded by such function
words. A key finding of our work is that modeling
the ordering of the dependent arguments of function
words results in better translation quality.

Most current systems use statistical knowledge
obtained from corpora in favor of rich natural lan-
guage knowledge. Instead of using syntactic knowl-
edge to determine function words, we approximate
this by equating the most frequent words as func-
tion words. By explicitly modeling phrase ordering
around these frequent words, we aim to capture the
most important and prevalent ordering productions.

2 Related Work

A good translation should be both faithful with ade-
quate lexical choice to the source language and flu-
ent in its word ordering to the target language. In
pursuit of better translation, phrase-based models
(Och and Ney, 2004) have significantly improved the
quality over classical word-based models (Brown et
al., 1993). These multiword phrasal units contribute
to fluency by inherently capturing intra-phrase re-
ordering. However, despite this progress, inter-
phrase reordering (especially long distance ones)
still poses a great challenge to statistical machine
translation (SMT).

The basic phrase reordering model is a simple
unlexicalized, context-insensitive distortion penalty
model (Koehn et al., 2003). This model assumes
little or no structural divergence between language
pairs, preferring the original, translated order by pe-
nalizing reordering. This simple model works well
when properly coupled with a well-trained language



model, but is otherwise impoverished without any
lexical evidence to characterize the reordering.

To address this, lexicalized context-sensitive
models incorporate contextual evidence. The local
prediction model (Tillmann and Zhang, 2005) mod-
els structural divergence as the relative position be-
tween the translation of two neighboring phrases.
Other further generalizations of orientation include
the global prediction model (Nagata et al., 2006) and
distortion model (Al-Onaizan and Papineni, 2006).

However, these models are often fully lexicalized
and sensitive to individual phrases. As a result, they
are not robust to unseen phrases. A careful approx-
imation is vital to avoid data sparseness. Proposals
to alleviate this problem include utilizing bilingual
phrase cluster or words at the phrase boundary (Na-
gata et al., 2006) as the phrase identity.

The benefit of introducing lexical evidence with-
out being fully lexicalized has been demonstrated
by a recent state-of-the-art formally syntax-based
model1, Hiero (Chiang, 2005). Hiero performs
phrase ordering by using linked non-terminal sym-
bols in its synchronous CFG production rules cou-
pled with lexical evidence. However, since it is dif-
ficult to specify a well-defined rule, Hiero has to rely
on weak heuristics (i.e., length-based thresholds) to
extract rules. As a result, Hiero produces grammars
of enormous size. Watanabe et al. (2006) further
reduces the grammar’s size by enforcing all rules to
comply with Greibach Normal Form.

Taking the lexicalization an intuitive a step for-
ward, we propose a novel, finer-grained solution
which models the content and context information
encoded by function words - approximated by high
frequency words. Inspired by the success of syntax-
based approaches, we propose a synchronous gram-
mar that accommodates gapping production rules,
while focusing on the statistical modeling in rela-
tion to function words. We refer to our approach
as the Function Word-centered Syntax-based ap-
proach (FWS). Our FWS approach is different from
Hiero in two key aspects. First, we use only a
small set of high frequency lexical items to lexi-
calize non-terminals in the grammar. This results
in a much smaller set of rules compared to Hiero,

1Chiang (2005) used the term “formal” to indicate the use of
synchronous grammar but without linguistic commitment
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Figure 1: A Chinese-English sentence pair.

greatly reducing the computational overhead that
arises when moving from phrase-based to syntax-
based approach. Furthermore, by modeling only
high frequency words, we are able to obtain reliable
statistics even in small datasets. Second, as opposed
to Hiero, where phrase ordering is done implicitly
alongside phrase translation and lexical weighting,
we directly model the reordering process using ori-
entation statistics.

The FWS approach is also akin to (Xiong et al.,
2006) in using a synchronous grammar as a reorder-
ing constraint. Instead of using Inversion Transduc-
tion Grammar (ITG) (Wu, 1997) directly, we will
discuss an ITG extension to accommodate gapping.

3 Phrase Ordering around Function
Words

We use the following Chinese (c) to English (e)
translation in Fig.1 as an illustration to conduct an
inquiry to the problem. Note that the sentence trans-
lation requires some translations of English words
to be ordered far from their original position in Chi-
nese. Recovering the correct English ordering re-
quires the inversion of the Chinese postpositional
phrase, followed by the inversion of the first smaller
noun phrase, and finally the inversion of the sec-
ond larger noun phrase. Nevertheless, the correct
ordering can be recovered if the position and the se-
mantic roles of the arguments of the boxed function
words were known. Such a function word centered
approach also hinges on knowing the correct phrase
boundaries for the function words’ arguments and
which reorderings are given precedence, in case of
conflicts.

We propose modeling these sources of knowl-
edge using a statistical formalism. It includes 1) a
model to capture bilingual orientations of the left
and right arguments of these function words; 2) a
model to approximate correct reordering sequence;
and 3) a model for finding constituent boundaries of



the left and right arguments. Assuming that the most
frequent words in a language are function words,
we can apply orientation statistics associated with
these words to reorder their adjacent left and right
neighbors. We follow the notation in (Nagata et
al., 2006) and define the following bilingual ori-
entation values given two neighboring source (Chi-
nese) phrases: Monotone-Adjacent (MA); Reverse-
Adjacent (RA); Monotone-Gap (MG); and Reverse-
Gap (RG). The first clause (monotone, reverse) in-
dicates whether the target language translation order
follows the source order; the second (adjacent, gap)
indicates whether the source phrases are adjacent or
separated by an intervening phrase on the target side.

Table 1 shows the orientation statistics for several
function words. Note that we separate the statistics
for left and right arguments to account for differ-
ences in argument structures: some function words
take a single argument (e.g., prepositions), while
others take two or more (e.g., copulas). To han-
dle other reordering decisions not explicitly encoded
(i.e., lexicalized) in our FWS model, we introduce a
universal token U , to be used as a backoff statistic
when function words are absent.

For example, orientation statistics for 4 (to be)
overwhelmingly suggests that the English transla-
tion of its surrounding phrases is identical to its Chi-
nese ordering. This reflects the fact that the argu-
ments of copulas in both languages are realized in
the same order. The orientation statistics for post-
position Þ (on) suggests inversion which captures
the divergence between Chinese postposition to the
English preposition. Similarly, the dominant orien-
tation for particle { (of) suggests the noun-phrase
shift from modified-modifier to modifier-modified,
which is common when translating Chinese noun
phrases to English.

Taking all parts of the model, which we detail
later, together with the knowledge in Table 1, we
demonstrate the steps taken to translate the exam-
ple in Fig. 2. We highlight the function words with
boxed characters and encapsulate content words as
indexed symbols. As shown, orientation statistics
from function words alone are adequate to recover
the English ordering - in practice, content words also
influence the reordering through a language model.
One can think of the FWS approach as a foreign lan-
guage learner with limited knowledge about Chinese

grammar but fairly knowledgable about the role of
Chinese function words.
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Figure 2: In Step 1, function words (boxed char-
acters) and content words (indexed symbols) are
identified. Step 2 reorders phrases according to
knowledge embedded in function words. A new in-
dexed symbol is introduced to indicate previously
reordered phrases for conciseness. Step 3 finally
maps Chinese phrases to their English translation.

4 The FWS Model

We first discuss the extension of standard ITG to
accommodate gapping and then detail the statistical
components of the model later.

4.1 Single Gap ITG (SG-ITG)
The FWS model employs a synchronous grammar
to describe the admissible orderings.

The utility of ITG as a reordering constraint for
most language pairs, is well-known both empirically
(Zens and Ney, 2003) and analytically (Wu, 1997),
however ITG’s straight (monotone) and inverted (re-
verse) rules exhibit strong cohesiveness, which is in-
adequate to express orientations that require gaps.
We propose SG-ITG that follows Wellington et al.
(2006)’s suggestion to model at most one gap.

We show the rules for SG-ITG below. Rules 1-
3 are identical to those defined in standard ITG, in
which monotone and reverse orderings are repre-
sented by square and angle brackets, respectively.



Rank Word unigram MAL RAL MGL RGL MAR RAR MGR RGR

1 { 0.0580 0.45 0.52 0.01 0.02 0.44 0.52 0.01 0.03
2 Ç 0.0507 0.85 0.12 0.02 0.01 0.84 0.12 0.02 0.02
3 � 0.0550 0.99 0.01 0.00 0.00 0.92 0.08 0.00 0.00
4 � 0.0155 0.87 0.10 0.02 0.00 0.82 0.12 0.05 0.02
5 � 0.0153 0.84 0.11 0.01 0.04 0.88 0.11 0.01 0.01
6 Z 0.0138 0.95 0.02 0.01 0.01 0.97 0.02 0.01 0.00
7 �Ö 0.0123 0.73 0.12 0.10 0.04 0.51 0.14 0.14 0.20
8 ,1 0.0114 0.78 0.12 0.03 0.07 0.86 0.05 0.08 0.01
9 Ý 0.0099 0.95 0.02 0.02 0.01 0.96 0.01 0.02 0.01
10 R 0.0091 0.87 0.10 0.01 0.02 0.88 0.10 0.01 0.00
21 4 0.0056 0.85 0.11 0.02 0.02 0.85 0.04 0.09 0.02
37 Þ 0.0035 0.33 0.65 0.02 0.01 0.31 0.63 0.03 0.03
- U 0.0002 0.76 0.14 0.06 0.05 0.74 0.13 0.07 0.06

Table 1: Orientation statistics and unigram probability of selected frequent Chinese words in the HIT corpus.
Subscripts L/R refers to lexical unit’s orientation with respect to its left/right neighbor. U is the universal
token used in back-off for N = 128. Dominant orientations of each word are in bold.

(1) X → c/e
(2) X → [XX] (3) X → 〈XX〉
(4) X�→ [X � X] (5) X�→ 〈X � X〉
(6) X → [X ∗ X] (7) X → 〈X ∗ X〉

SG-ITG introduces two new sets of rules: gap-
ping (Rules 4-5) and dovetailing (Rules 6-7) that
deal specifically with gaps. On the RHS of the gap-
ping rules, a diamond symbol (�) indicates a gap,
while on the LHS, it emits a superscripted symbol
X� to indicate a gapped phrase (plain Xs without
superscripts are thus contiguous phrases). Gaps in
X� are eventually filled by actual phrases via dove-
tailing (marked with an ∗ on the RHS).

Fig.3 illustrates gapping and dovetailing rules
using an example where two Chinese adjectival
phrases are translated into a single English subordi-
nate clause. SG-ITG can generate the correct order-
ing by employing gapping followed by dovetailing,
as shown in the following simplified trace:

X�
1 → 〈 1997{��Ç, V.1 � 1997 〉

X�
2 → 〈 1998{��Ç, V.2 � 1998 〉

X3 → [X1 ∗ X2]

→ [ 1997{��Ç Z 1998{��Ç,
V.1 � 1997 ∗ V.2 � 1998 ]

→ 1997{��ÇZ1998{��Ç,
V.1 and V.2 that were released in 1997 and 1998

where X�
1 and X�

2 each generate the translation of
their respective Chinese noun phrase using gapping
and X3 generates the English subclause by dovetail-
ing the two gapped phrases together.

Thus far, the grammar is unlexicalized, and does

1997#�q{ ��Ç Z 1998#�q{��Ç

V.1 and V.2 that were released in 1997 and 1998.
!!!!!!

(((((((((((((

hhhhhhhhhhhhh

PPPPPPP

Figure 3: An example of an alignment that can be
generated only by allowing gaps.

not incorporate any lexical evidence. Now we mod-
ify the grammar to introduce lexicalized function
words to SG-ITG. In practice, we introduce a new
set of lexicalized non-terminal symbols Yi, i ∈
{1...N}, to represent the top N most-frequent words
in the vocabulary; the existing unlexicalized X is
now reserved for content words. This difference
does not inherently affect the structure of the gram-
mar, but rather lexicalizes the statistical model.

In this way, although different Yis follow the same
production rules, they are associated with different
statistics. This is reflected in Rules 8-9. Rule 8 emits
the function word; Rule 9 reorders the arguments
around the function word, resembling our orienta-
tion model (see Section 4.2) where a function word
influences the orientation of its left and right argu-
ments. For clarity, we omit notation that denotes
which rules have been applied (monotone, reverse;
gapping, dovetailing).

(8) Yi→ c/e (9) X→ XYiX

In practice, we replace Rule 9 with its equivalent
2-normal form set of rules (Rules 10-13). Finally,
we introduce rules to handle back-off (Rules 14-16)
and upgrade (Rule 17). These allow SG-ITG to re-



vert function words to normal words and vice versa.
(10) R→ YiX (11) L → XYi

(12) X→ LX (13) X→ XR
(14) Yi→ X (15) R→ X
(16) L → X (17) X→ YU

Back-off rules are needed when the grammar has
to reorder two adjacent function words, where one
set of orientation statistics must take precedence
over the other. The example in Fig.1 illustrates such
a case where the orientation of Þ (on) and { (of)
compete for influence. In this case, the grammar
chooses to use{ (of) and reverts the function word
Þ (on) to the unlexicalized form.

The upgrade rule is used for cases where there are
two adjacent phrases, both of which are not function
words. Upgrading allows either phrase to act as a
function word, making use of the universal word’s
orientation statistics to reorder its neighbor.

4.2 Statistical model
We now formulate the FWS model as a statistical
framework. We replace the deterministic rules in our
SG-ITG grammar with probabilistic ones, elevating
it to a stochastic grammar. In particular, we develop
the three sub models (see Section 3) which influence
the choice of production rules for ordering decision.
These models operate on the 2-norm rules, where the
RHS contains one function word and its argument
(except in the case of the phrase boundary model).
We provide the intuition for these models next, but
their actual form will be discussed in the next section
on training.

1) Orientation Model ori(o|H,Yi): This model
captures the preference of a function word Yi to a
particular orientation o ∈ {MA, RA,MG,RG} in
reordering its H ∈ {left, right} argument X . The
parameter H determines which set of Yi’s statistics
to use (left or right); the model consults Yi’s left ori-
entation statistic for Rules 11 and 13 where X pre-
cedes Yi, otherwise Yi’s right orientation statistic is
used for Rules 10 and 12.

2) Preference Model pref(Yi): This model ar-
bitrates reordering in the cases where two function
words are adjacent and the backoff rules have to de-
cide which function word takes precedence, revert-
ing the other to the unlexicalized X form. This
model prefers the function word with higher uni-
gram probability to take the precedence.

3) Phrase Boundary Model pb(X): This model is
a penalty-based model, favoring the resulting align-
ment that conforms to the source constituent bound-
ary. It penalizes Rule 1 if the terminal rule X
emits a Chinese phrase that violates the boundary
(pb = e−1), otherwise it is inactive (pb = 1).

These three sub models act as features alongside
seven other standard SMT features in a log-linear
model, resulting in the following set of features
{f1, . . . , f10}: f1) orientation ori(o|H,Yi); f2)
preference pref(Yi); f3) phrase boundary pb(X);
f4) language model lm(e); f5 − f6) phrase trans-
lation score φ(e|c) and its inverse φ(c|e); f7 − f8)
lexical weight lex(e|c) and its inverse lex(c|e); f9)
word penalty wp; and f10) phrase penalty pp.

The translation is then obtained from the most
probable derivation of the stochastic SG-ITG. The
formula for a single derivation is shown in Eq. (18),
where X1, X2, ..., XL is a sequence of rules with
w(Xl) being the weight of each particular rule Xl.
w(Xl) is estimated through a log-linear model, as
in Eq. (19), with all the abovementioned features
where λj reflects the contribution of each feature fj .

P (X1, ..., XL) =
∏L

l=1
w(Xl)(18)

w(Xl) =
∏10

j=1
fj(Xl)λj(19)

5 Training

We train the orientation and preference models from
statistics of a training corpus. To this end, we first
derive the event counts and then compute the rela-
tive frequency of each event. The remaining phrase
boundary model can be modeled by the output of a
standard text chunker, as in practice it is simply a
constituent boundary detection mechanism together
with a penalty scheme.

The events of interest to the orientation model are
(Yi, o) tuples, where o ∈ {MA, RA,MG,RG} is
an orientation value of a particular function word
Yi. Note that these tuples are not directly observable
from training data. Hence, we need an algorithm to
derive (Yi, o) tuples from a parallel corpus. Since
both left and right statistics share identical training
steps, thus we omit references to them.

The algorithm to derive (Yi, o) involves several
steps. First, we estimate the bi-directional alignment



by running GIZA++ and applying the “grow-diag-
final” heuristic. Then, the algorithm enumerates all
Yi and determines its orientation o with respect to
its argument X to derive (Yi, o). To determine o,
the algorithm inspects the monotonicity (monotone
or reverse) and adjacency (adjacent or gap) between
Yi’s and X’s alignments.

Monotonicity can be determined by looking at the
Yi’s alignment with respect to the most fine-grained
level of X (i.e., word level alignment). However,
such a heuristic may inaccurately suggest gap ori-
entation. Figure 1 illustrates this problem when de-
riving the orientation for the second{ (of). Look-
ing only at the word alignment of its left argument
 (fields) incorrectly suggests a gapped orientation,
where the alignment of jâQ� (data entry) in-
tervened. It is desirable to look at the alignment of
jâQ� (data entry fields) at the phrase level,
which suggests the correct adjacent orientation in-
stead.

To address this issue, the algorithm uses gap-
ping conservatively by utilizing the consistency con-
straint (Och and Ney, 2004) to suggest phrase level
alignment of X . The algorithm exhaustively grows
consistent blocks containing the most fine-grained
level of X not including Yi. Subsequently, it merges
each hypothetical argument with the Yi’s alignment.
The algorithm decides that Yi has a gapped orienta-
tion only if all merged blocks violate the consistency
constraint, concluding an adjacent orientation other-
wise.

With the event counts C(Yi, o) of tuple (Yi, o), we
estimate the orientation model for Yi and U using
Eqs. (20) and (21). We also estimate the prefer-
ence model with word unigram counts C(Yi) using
Eqs. (22) and (23), where V indicates the vocabu-
lary size.

ori(o|Yi) = C(Yi, o)/C(Yi, ·), i 6 N(20)

ori(o|U) =
∑
i>N

C(Yi, o)/
∑
i>N

C(Yi, ·)(21)

pref(Yi) = C(Yi)/C(·), i 6 N(22)

pref(U) = 1/(V − N)
∑
i>N

C(Yi)/C(·)(23)

Samples of these statistics are found in Table 1
and have been used in the running examples. For
instance, the statistic ori(RAL|{) = 0.52, which

is the dominant one, suggests that the grammar in-
versely order {(of)’s left argument; while in our
illustration of backoff rules in Fig.1, the grammar
chooses{(of) to take precedence since pref({) >
pref(Þ).

6 Decoding

We employ a bottom-up CKY parser with a beam
to find the derivation of a Chinese sentence which
maximizes Eq. (18). The English translation is then
obtained by post-processing the best parse.

We set the beam size to 30 in our experiment and
further constrain reordering to occur within a win-
dow of 10 words. Our decoder also prunes entries
that violate the following constraints: 1) each entry
contains at most one gap; 2) any gapped entries must
be dovetailed at the next level higher; 3) an entry
spanning the whole sentence must not contain gaps.

The score of each newly-created entry is derived
from the scores of its parts accordingly. When scor-
ing entries, we treat gapped entries as contiguous
phrases by ignoring the gap symbol and rely on the
orientation model to penalize such entries. This al-
lows a fair score comparison between gapped and
contiguous entries.

7 Experiments

We would like to study how the FWS model affects
1) the ordering of phrases around function words; 2)
the overall translation quality. We achieve this by
evaluating the FWS model against a baseline system
using two metrics, namely, orientation accuracy and
BLEU respectively.

We define the orientation accuracy of a (function)
word as the accuracy of assigning correct orientation
values to both its left and right arguments. We report
the aggregate for the top 1024 most frequent words;
these words cover 90% of the test set.

We devise a series of experiments and run it in two
scenarios - manual and automatic alignment - to as-
sess the effects of using perfect or real-world input.
We utilize the HIT bilingual computer manual cor-
pus, which has been manually aligned, to perform
Chinese-to-English translation (see Table 2). Man-
ual alignment is essential as we need to measure ori-
entation accuracy with respect to a gold standard.



Chinese English
train words 145,731 135,032

(7K sentences) vocabulary 5,267 8,064
dev words 13,986 14,638

(1K sentences) untranslatable 486 (3.47%)
test words 27,732 28,490

(2K sentences) untranslatable 935 (3.37%)

Table 2: Statistics for the HIT corpus.

A language model is trained using the SRILM-
Toolkit, and a text chunker (Chen et al., 2006) is ap-
plied to the Chinese sentences in the test and dev
sets to extract the constituent boundaries necessary
for the phrase boundary model. We run minimum er-
ror rate training on dev set using Chiang’s toolkit to
find a set of parameters that optimizes BLEU score.

7.1 Perfect Lexical Choice

Here, the task is simplified to recovering the correct
order of the English sentence from the scrambled
Chinese order. We trained the orientation model us-
ing manual alignment as input. The aforementioned
decoder is used with phrase translation, lexical map-
ping and penalty features turned off.

Table 4 compares orientation accuracy and BLEU
between our FWS model and the baseline. The
baseline (lm+d) employs a language model and
distortion penalty features, emulating the standard
Pharaoh model. We study the behavior of the
FWS model with different numbers of lexicalized
items N . We start with the language model alone
(N=0) and incrementally add the orientation (+ori),
preference (+ori+pref) and phrase boundary models
(+ori+pref+pb).

As shown, the language model alone is rela-
tively weak, assigning the correct orientation in only
62.28% of the cases. A closer inspection reveals that
the lm component aggressively promotes reverse re-
orderings. Including a distortion penalty model (the
baseline) improves the accuracy to 72.55%. This
trend is also apparent for the BLEU score.

When we incorporate the FSW model, including
just the most frequent word (Y1={), we see im-
provement. This model promotes non-monotone re-
ordering conservatively around Y1 (where the dom-
inant statistic suggests reverse ordering). Increasing
the value of N leads to greater improvement. The
most effective improvement is obtained by increas-

pharaoh (dl=5) 22.44 ± 0.94
+ori 23.80 ± 0.98

+ori+pref 23.85 ± 1.00
+ori+pref+pb 23.86 ± 1.08

Table 3: BLEU score with the 95% confidence in-
tervals based on (Zhang and Vogel, 2004). All im-
provement over the baseline (row 1) are statistically
significant under paired bootstrap resampling.

ing N to 128. Additional (marginal) improvement
is obtained at the expense of modeling an additional
900+ lexical items. We see these results as validat-
ing our claim that modeling the top few most fre-
quent words captures most important and prevalent
ordering productions.

Lastly, we study the effect of the pref and pb fea-
tures. The inclusion of both sub models has little af-
fect on orientation accuracy, but it improves BLEU
consistently (although not significantly). This sug-
gests that both models correct the mistakes made by
the ori model while preserving the gain. They are
not as effective as the addition of the basic orienta-
tion model as they only play a role when two lexi-
calized entries are adjacent.

7.2 Full SMT experiments

Here, all knowledge is automatically trained on the
train set, and as a result, the input word alignment
is noisy. As a baseline, we use the state-of-the-art
phrase-based Pharaoh decoder. For a fair compari-
son, we run minimum error rate training for different
distortion limits from 0 to 10 and report the best pa-
rameter (dl=5) as the baseline.

We use the phrase translation table from the base-
line and perform an identical set of experiments as
the perfect lexical choice scenario, except that we
only report the result for N=128, due to space con-
straint. Table 3 reports the resulting BLEU scores.

As shown, the FWS model improves BLEU score
significantly over the baseline. We observe the same
trend as the one in perfect lexical choice scenario
where top 128 most frequent words provides the ma-
jority of improvement. However, the pb features
yields no noticeable improvement unlike in prefect
lexical choice scenario; this is similar to the findings
in (Koehn et al., 2003).



N=0 N=1 N=4 N=16 N=64 N=128 N=256 N=1024
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lm+d 72.55
+ori 62.28 76.52 76.58 77.38 77.54 78.17 77.76 78.38

+ori+pref 76.66 76.82 77.57 77.74 78.13 77.94 78.54
+ori+pref+pb 76.70 76.85 77.58 77.70 78.20 77.94 78.56

B
L

E
U

lm+d 75.13
+ori 66.54 77.54 77.57 78.22 78.48 78.76 78.58 79.20

+ori+pref 77.60 77.70 78.29 78.65 78.77 78.70 79.30
+ori+pref+pb 77.69 77.80 78.34 78.65 78.93 78.79 79.30

Table 4: Results using perfect aligned input. Here, (lm+d) is the baseline; (+ori), (+ori+pref) and
(+ori+pref+pb) are different FWS configurations. The results of the model (where N is varied) that fea-
tures the largest gain are bold, whereas the highest score is italicized.

8 Conclusion

In this paper, we present a statistical model to cap-
ture the grammatical information encoded in func-
tion words. Formally, we develop the Function Word
Syntax-based (FWS) model, a probabilistic syn-
chronous grammar, to encode the orientation statis-
tics of arguments to function words. Our experimen-
tal results shows that the FWS model significantly
improves the state-of-the-art phrase-based model.

We have touched only the surface benefits of mod-
eling function words. In particular, our proposal is
limited to modeling function words in the source
language. We believe that conditioning on both
source and target pair would result in more fine-
grained, accurate orientation statistics.

From our error analysis, we observe that 1) re-
ordering may span several levels and the preference
model does not handle this phenomena well; 2) cor-
rectly reordered phrases with incorrect boundaries
severely affects BLEU score and the phrase bound-
ary model is inadequate to correct the boundaries es-
pecially for cases of long phrase. In future, we hope
to address these issues while maintaining the bene-
fits offered by modeling function words.
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