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Abstract

Current scientific fact-checking benchmarks ex-
hibit several shortcomings, such as biases aris-
ing from crowd-sourced claims and an over-
reliance on text-based evidence. We present
SCITAB, a challenging evaluation dataset con-
sisting of 1.2K expert-verified scientific claims
that 1) originate from authentic scientific publi-
cations and 2) require compositional reason-
ing for verification. The claims are paired
with evidence-containing scientific tables an-
notated with labels. Through extensive evalu-
ations, we demonstrate that SCITAB poses a
significant challenge to state-of-the-art models,
including table-based pretraining models and
large language models. All models except GPT-
4 achieved performance barely above random
guessing. Popular prompting techniques, such
as Chain-of-Thought, do not achieve much
performance gains on SCITAB. Our analy-
sis uncovers several unique challenges posed
by SCITAB, including table grounding, claim
ambiguity, and compositional reasoning. Our
codes and data are publicly available at https:
//github.com/XinyuanLu00/SciTab.

1 Introduction

Scientific fact-checking is a crucial process that in-
volves validating the accuracy of scientific claims
by cross-referencing them with established scien-
tific literature, research, or data (Guo et al., 2022).
This process is crucial for preserving the integrity
of scientific information, preventing the spread of
misinformation, and fostering public trust in re-
search findings. However, the sheer volume of
scientific data and claims can be overwhelming for
manual fact-checking, making automated scientific
fact-checking an imperative research area of NLP.

Scientific fact-checking has advanced signifi-
cantly with benchmarks including Sci-Fact (Wad-
den et al., 2020), Sci-Fact Open (Wadden et al.,
2022), and COVID-Fact (Saakyan et al., 2021).

∗Equal Contribution.

However, these datasets still exhibit several limi-
tations. First, the claims are crowd-sourced rather
than collected from real scientific papers. This
leads to problems such as bias in human annotation,
a lack of diversity, and shallow claims that do not
reflect the complexity of scientific reasoning. For
example, most claims in Sci-Fact can be validated
by a single sentence in a paper’s abstract, which
oversimplifies the scientific discourse. Second, the
claims in the existing benchmarks are solely vali-
dated against text-based evidence, primarily paper
abstracts. However, in many scientific processes,
claims are intrinsically tied to quantitative experi-
mental data, commonly presented in tables and fig-
ures. This disparity highlights a significant gap be-
tween the existing benchmarks and real-world sci-
entific fact-checking needs. To bridge these gaps,
a dataset that 1) compiles real-world claims from
scientific papers, and 2) includes original scientific
data such as tables and figures, is needed.

In this paper, we propose a novel dataset SC-
ITAB, which fulfills these stated criteria. It contains
1,225 challenging scientific claims, each demand-
ing compositional reasoning for verification using
scientific tables. Our data is derived from the Sci-
Gen dataset (Moosavi et al., 2021), a resource that
includes scientific tables and claims crawled from
arXiv.org. We first manually filter out the check-
worthy scientific claims from the raw data. Follow-
ing this, we employ a strategy of human–model
collaboration, as depicted in Figure 2, to generate
claims that are either contradicted or unverifiable
based on the table’s content. Figure 1 shows a
claim from SCITAB and the corresponding reason-
ing process to verify it. Compared with existing
benchmarks, SCITAB is closer to real-world scien-
tific fact-checking in terms of more realistic claims
and table-based evidence. Through data analysis,
we further show that the claims in SCITAB neces-
sitate a more comprehensive and nuanced set of
reasoning skills for verification, e.g., numerical rea-
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Cue App. Prod. Cov.

in 47% 55.3% 9.40%

was 55% 61.8% 11.0%

to 82% 40.2% 16.4%

the 85% 38.8% 17.0%

a 106% 57.5% 21.2%
Table 2: Applicability (App.), Productivity (Prod.) and Coverage (Cov.) of the various 
words in the alternatives of the COPA dev set.

Supported Claim 

Refuted Claim

A’s productivity of 57.5% expresses that it appears in 7.5% more 
often than expected by random chance.

A’s productivity of 57.5% expresses that it appears in 9.5% more 
often than expected by random chance.

Paper: When Choosing Plausible Alternatives, Clever Hans can be Clever

Not Enough Info Claim
The low performance of “to” can be explained by the fact that it 
is responsible for only 4.6% of the inference in the training set.

Paper ID: 1911.00225v1
Claim: A’s productivity of 57.5% expresses that it appears in 7.5% 
more often than expected by random chance.

Productivity corresponds to Prod. column 

A’s productivity is 57.5%

The number of random chance is 50%

The subtraction result between 57.5% and 50% is 7.5%

Fact checker : Supported

Reasoning Graph

Subtraction

Commonsense 
knowledge

Simple lookup

Closed-domain knowledge: Table caption

Figure 1: An example of our SCITAB dataset (left) and its corresponding reasoning graph (right). Each data entry
contains paper name, paper id, table, one claim, and its corresponding label (Supported, Refuted, Not Enough Info).

soning and commonsense knowledge, etc.
We employ SCITAB as a diagnostic dataset for

benchmarking the zero-shot and in-context learn-
ing performance for a wide range of state-of-the-
art models, including table-based pretraining mod-
els, encoder–decoder models, open source lan-
guage models, and API-based language models.
We observe that all models, with the exception
of GPT-4, can only achieve marginally superior
F1 scores than random guessing, which under-
scores the challenging nature of SCITAB. Addi-
tionally, established prompting methods like Chain-
of-Thought (Wei et al., 2022) and Program-of-
Thought (Chen et al., 2022) which typically en-
hance performance across most reasoning tasks,
do not bring performance gain on SCITAB. Our
error analysis sheds light on several unique chal-
lenges in SCITAB that may lead to this, such as
table grounding, dealing with ambiguous claims,
and compositional reasoning. We make our dataset
fully accessible to the research community.

2 The SCITAB Dataset

We adopt a human–model collaboration strategy
to construct SCITAB, as shown in Figure 2. We
describe the steps involved in data preparation (Sec-
tion 2.1), automatic claim generation (Section 2.2),
and manual claim verification (Section 2.3).

2.1 Data Preparation

We use the publicly available SciGen (Moosavi
et al., 2021) dataset as our primary data source.

The dataset was created by crawling computer sci-
ence papers from arXiv. The tables and the texts
explaining the tables are extracted from the papers
to create (table, description) pairs for the task of
data-to-text generation. From all the table descrip-
tions of SciGen, we first filter the check-worthy
scientific claims following the criteria established
by Lee et al. (2009) for academic writing1. We
focus on the descriptions that serve the purpose
of “highlighting and commenting on key data”,
i.e., describing research findings based on the data
presented in scientific tables. Given the task’s ob-
jective nature and to save the cost of human labor,
we hire a graduate student majoring in computer
science to manually select scientific claims based
on the aforementioned criteria using the user inter-
face in Appendix A.2. This decision was based on
a pilot annotation which showed that a well-trained
annotator can achieve over 95% accuracy in filter-
ing scientific claims. To safeguard the quality, we
include an option to mark the claim as “Discard-It’s
not a claim, or it’s an incomplete, or not grammat-
ically correct sentence.” during the subsequent
claim verification process. Using this approach, we
filtered out 872 real-world scientific claims from
1,301 table descriptions in the SciGen dataset.

2.2 Automatic Claim Generation

False Claims. A fact-checking dataset requires
both true and false claims. However, acquir-
ing false claims that naturally occur within well-

1Detailed criteria are given in Appendix A.1



Texts

Claim with opposite meaning C’

Free-formed claim 

Claim extraction

Not Enough Info claim C’’ 

Original claim C Supported claim C 

Refuted claim C’ 
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Table

Human verifier

Human verifier

InstructGPT

Data Preparation

Automatic Claim Generation Manual Claim Verification

InstructGPT

Figure 2: The human–model collaboration construction process of SCITAB, which contains three steps: 1) data
preparation (including data preprocessing and claim extraction) 2) automatic claim generation (including refuted
and Not Enough Info claim generation) and 3) manual claim verification.

verified scientific publications is a challenging
task. Following SciFact (Wadden et al., 2020) and
COVID-Fact (Saakyan et al., 2021), we seek to
create false claims by generating counter-claims of
the original true claims. Unlike previous works
that purely rely on crowd-workers to compose
counter-claims — a process that is costly and prone
to annotation artifacts — we leverage the strong
instruction-following capabilities of large language
models (LLMs) to assist humans in generating can-
didate counter-claims. Specifically, we prompt
InstructGPT (Ouyang et al., 2022) with the orig-
inal claim and the instruction: Please modify the
original claims to convey the opposite meaning
with minimum edits. To foster a varied set of gen-
erated claims, we include five diverse in-context
examples and employ a high decoding tempera-
ture setting of 0.7. By mandating minimal edits,
we ensure that the counter-claims remain lexically
close to the original claims, which is crucial in
preventing fact-checking models from relying on
superficial lexical patterns for verification.

Unverifiable Claims. To construct a more chal-
lenging dataset, we also integrate claims that are
unverifiable with the table information (labeled as
Not Enough Info, NEI). We leverage InstructGPT
to generate candidate NEI claims by prompting the
model with the original table and the instruction:
Please generate 5 relevant scientific claims based
on the information in the table. This process yields
a diverse set of free-formed claims that enrich the
diversity of SCITAB. However, as LLMs tend to
generate content that might not always be grounded
in the provided data, many of the generated claims
turn out to be relevant but unverifiable with respect

to the table. We adopt manual verification (elabo-
rated in Section 2.3) to select them as NEI claims.

2.3 Manual Claim Verification

We subsequently employ a human verification pro-
cess for two purposes: first, to verify the quality of
the 872 false claims and 900 NEI claims that were
generated by InstructGPT; second, to critically re-
view the 872 real-world scientific claims obtained
in Section 2.1. This task involves selecting claims
that can be verified exclusively based on the infor-
mation presented in the table, without the need for
additional context from the associated paper.

For each pair of the true claim c and its corre-
sponding generated counter-claim c′, we ask the
annotator to choose one of the following three op-
tions: (A) c is not exclusively supported by the
table, (B) c is exclusively supported by the table,
but c′ is not refuted by the table, and (C) c is not
exclusively supported by the table, and c′ is not
refuted by the table. For each candidate NEI claim,
we ask the annotator to judge whether it is unverifi-
able with respect to the table.

Annotator Recruitment. Given that our data
source is from computer science papers, we recruit
university students majoring in computer science
with basic math and programming backgrounds
for annotation. We ask each annotator to fill in
a questionnaire, including their age, department,
maximum workload per week, etc. After that, we
provide a training session to ensure they understand
the task and can use the annotation interfaces (Ap-
pendix B.2 and B.3). We also give them three
samples to test their understanding. We recruit
twelve annotators that passed the training session.



Statistics TabFact FEVEROUS SEM-TAB-FACTS SCITAB

Domain Wiki Tables Wiki Tables Scientific Articles Scientific Articles
Annotator AMT AMT AMT Experts
Max. Reasoning Hops 7 2 1 11

Supported 54% 56% 58% 37%
Veracity Refuted 46% 39% 38% 34%

NEI — 5% 4% 29%
Total # of Claims 117,854 87,026 5,715 1,225
Avg. claims per table 7.11 0.07 5.27 6.16

Table 1: Comparison of SCITAB to three recent table fact verification datasets: TabFact (Chen et al., 2020),
FEVEROUS (Aly et al., 2021), and SEM-TAB-FACTS (Wang et al., 2021). The table presents statistics related
to the domain, annotator (AMT represents Amazon Mechanical Turk), maximum reasoning hops, veracity labels
percentage of each dataset, the total number of claims, and average claims per table.

In compliance with ethical guidelines, we ensure
fair compensation for the annotators. Each claim
annotation is reimbursed at a rate of 0.37 USD,
resulting in an hourly wage of 11.2 USD2.

Quality Control and Annotator Agreement. To
ensure the quality of the annotation, we apply strict
quality control procedures following the guide-
lines outlined in the Dataset Statement (Bender and
Friedman, 2018). We assign two different anno-
tators to perform a two-round annotation for each
claim, while two authors review and resolve any
identified errors or issues. To measure the inter-
annotator agreement, we use Cohen’s Kappa (Co-
hen, 1960). Our inter-annotator agreement is 0.630
for the false claim verification task (872 claims
in total) and 0.719 for the NEI claim verification
task (900 claims in total). Both values indicate
substantial agreement among the annotators.

3 Data Analysis

Table 1 shows the statistics of our SCITAB dataset
and the comparison with three existing table fact-
checking datasets: TabFact (Chen et al., 2020),
FEVEROUS (Aly et al., 2021), and SEM-TAB-
FACTS (Wang et al., 2021). Compared with these
datasets, SCITAB is 1) annotated by domain ex-
perts rather than crowd-sourced workers, 2) con-
tains more challenging claims that require up to
11 reasoning steps for verification, and 3) has a
more balanced distribution of veracity labels and
a higher percentage of NEI claims. We conduct a
more in-depth analysis of SCITAB as follows.

3.1 Reasoning Analysis

Reasoning Types. To study the nature of reason-
ing involved in fact-checking claims in SCITAB,

2The payment is fair and aligned with the guideline for
dataset creation (Bender and Friedman, 2018).

we adapt the set of table-based reasoning cate-
gories from INFOTABS (Gupta et al., 2020) to
define 14 atomic reasoning types, as shown in Ta-
ble 2. Among them, “closed-domain knowledge”
and “open-domain knowledge” are specially de-
signed for SCITAB. Closed-domain knowledge
refers to obtaining background information from
the table caption or title, e.g., knowing that “Prod.”
refers to “Productivity” from the table caption in
Figure 1. Open-domain knowledge refers to com-
monsense knowledge not presented in the table,
e.g., the relationship between precision and recall.
Given the designed reasoning types, we manually
analyze 100 samples in SCITAB, by annotating the
graph of reasoning steps for verifying each claim.
We identify 476 atomic reasoning steps from the
100 analyzed samples and show the proportion for
each reasoning type in Table 2. We observe that SC-
ITAB has a multifaceted complex range of reason-
ing types and a high proportion of claims requiring
different types of domain knowledge.

Reasoning Depth. We further measure the rea-
soning depth (the number of required reasoning
steps) for each claim and show the reasoning depth
distribution in Figure 3. We find that the analyzed
claims have an average depth of 4.76 and a max-
imum depth of 11. Moreover, 86% of the claims
requiring 3 or more reasoning steps, which demon-
strates the complexity of reasoning in SCITAB.

Reasoning Graph. We showcase the reasoning
graph for the example in Figure 1 on the right side
of the figure. Verifying this claim requires vari-
ous types of reasoning including: 1) background
knowledge from the table caption: “productivity”
corresponds to the “Prod.” column in the table; 2)
commonsense knowledge: “random chance” means
50% accuracy; 3) simple lookup: “A’s productiv-
ity” refers to the cell located at the last row and



Function Names Descriptions Prop. (%)

Simple lookup Retrieve the value for a specific cell. 20.6
Comparison Compare two numbers. 19.5
Closed-domain knowledge Extract information from context sentences in the table caption or article. 12.1
Open-domain knowledge Extract additional information required by domain experts. 5.3
Commonsense knowledge Extract commonsense knowledge necessary for claim verification. 5.3
Subtract Perform subtraction of two numbers. 5.3
Divide Perform division of two numbers. 5.3
Rank Determine the rank of a set of numbers. 5.3
Different / Same Determine if two numbers are different or the same. 5.3
Add Calculate the sum of two numbers. 4.0
Max / Min Retrieve the maximum or minimum number from a set of numbers. 3.1
Col / Rowname Retrieve the column or row name from the table. 3.1
Trend same/different Determine the trend for two columns or rows, whether they are the same or different. 2.9
Set check Verify if a value belongs to a set of numbers. 2.9

Table 2: The function names, descriptions, and their proportions in our SCITAB dataset.
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Figure 3: The distribution histogram of reasoning steps
in our SCITAB dataset. The x-axis is the reasoning steps
in each claim, and the y-axis is the frequency for each
reasoning step. The shallow claims (with 1–2 reasoning
steps) are highlighted in red, while the deep claims (with
3+ reasoning steps) are highlighted in blue.

the “Prod.” column; and 4) numerical reasoning:
the difference between 57.5% and 50% is 7.5%.
This case study provides further insights into the
complexity and variety of reasoning involved in
SCITAB, revealing the difficulty of the dataset.

3.2 Refuted and NEI Claims Analysis
One potential risk of model-generated claims is
that they may lack diversity and exhibit the same
pattern. For example, in the Sci-Fact (Wadden
et al., 2020) dataset where the refuted claims are
generated by flapping the meaning of the original
true claims, we found that out of 100 randomly
sampled refuted claims, 85 simply negated the orig-
inal claim by adding negation words such as “not”
(more details in Appendix C). To evaluate the diver-
sity of claims for our SCITAB dataset, we randomly
select 60 refuted claims and then manually anno-
tate their reasons for refutation. Results are shown
in Table 3 (top half). We find that SCITAB exhibits

a greater diversity in refuted claims compared to
Sci-Fact. Besides common error types such as “in-
correct calculation results” (41.7%), there are also
unique types of errors that are more reflective of the
complexities in real-world scientific claims. For
example, 33.33% of the refuted claims contain “in-
correct approximation words”, and 10.0% are cases
where “the claim is partially right”, consistent with
the fact that ambiguity and half-truths are common
phenomena in scientific discourse. Additional ex-
amples of refuted claims are in Appendix E.

The NEI claims (bottom half; Table 3) also ex-
hibit diverse reasoning patterns. The two most
common features for unverifiable claims are insuf-
ficient evidence in the table and the lack of back-
ground knowledge. The lack of closed-domain
knowledge is another reason for NEI, where ad-
ditional information in the paper is necessary to
verify the claim. Other reasons include the use of
vague pronouns (e.g., “it”, “this”) brings ambiguity
to the claim. These distinct refuted and NEI reason-
ing types highlight the unique features of SCITAB,
making it a more comprehensive and realistic rep-
resentation of the challenges faced in real-world
scientific fact-checking.

4 Experiment

We formally define the task of scientific table-based
fact-checking as follows. A scientific table T con-
sists of a table caption P and the table content
({Ti,j |i ≤ RT , j ≤ CT } with RT rows and CT

columns, where Ti,j is the content in the (i, j)th
cell. Given a claim C describing a fact to be ver-
ified against the table T , a table fact-checking
model F predicts a label Y to verify whether C
is supported, refuted, or can not be verified by the



Refuted Reasons Prop. (%)
The calculation result is wrong. 41.7
The approximation word is wrong. 33.3
The claim is partially right. 10.0
The values in the claim do not match. 8.3
The operation type is wrong. 6.7

NEI Reasons Prop. (%)

The claim does not have enough matching evidence. 33.3
The claim lacks open-domain knowledge. 25.0
The claim lacks closed-domain knowledge. 15.0
The claim refers to another table. 11.7
The claim contains vague pronouns. 8.3
The claim omits specific information. 6.7

Table 3: Refuted and NEI reasons and their estimated
proportions (Prop.) in SCITAB.

information in T .
Considering the real-world situation that large-

scale training data is either not available or expen-
sive to collect, we focus on the zero-shot/in-context
evaluation where the model can only access ze-
ro/few in-domain data from SCITAB. To this end,
we randomly hold out 5 tables with 25 claims as
model-accessible data and use the rest of the data
as the unseen test set. This also prevents the model
from learning spurious features that lead to over-
estimated performance (Schuster et al., 2019).

4.1 Models

We conduct a comprehensive evaluation of SCITAB

for various models, including table-based pretrain-
ing models, encoder–decoder models, open source
LLMs, and closed source LLMs. We also study the
human performance to analyze the upper bounds
on SCITAB.

Table-based LLMs. These are pre-trained trans-
former models fine-tuned on tabular data. We
choose three different models: 1) TAPAS (Herzig
et al., 2020), a BERT-based model fine-tuned on
millions of tables from English Wikipedia and cor-
responding texts, 2) TAPEX (Liu et al., 2022b), a
model that fine-tunes BART (Lewis et al., 2020) on
a large-scale synthetic dataset generated by synthe-
sizing executable SQL queries and their execution
outputs, and 3) TAPEX-Zero (Liu et al., 2023b), an
enlarged version of TAPEX. For TAPAS and TAPEX,
we use their fine-tuned version on TabFact (Chen
et al., 2020) for table fact-checking.

Encoder–Decoder LLMs. We also use en-
coder–decoder models where both the input and
output are sequences of tokens. To adapt the model
to take the table as input, we flatten the table as
a sequence following Chen et al. (2020). The in-

put is then formulated as [T̃ ;P ;C;Q], where T̃ is
the linearized table, and Q is a question template
“Based on the information in the table, is the above
claim true? A) True B) False C) Unknown?”. We
choose FLAN-T5 (Chung et al., 2022), an improved
T5 model (Raffel et al., 2020) pre-trained on more
than 1.8K tasks with instruction tuning, which has
achieved strong zero-shot/in-context performance
on other fact-checking benchmarks.

Open Source LLMs. We also evaluate the per-
formance of state-of-the-art open source LLMs,
including 1) LLaMA (Touvron et al., 2023), the first
open-source model by Meta AI; 2) Alpaca (Taori
et al., 2023), an instruction-following language
model fine-tuned on LLaMA; and 3) Vicuna (Chi-
ang et al., 2023), the arguably best-performed open-
source LLMs that claimed to achieve 90% quality
compared to OpenAI ChatGPT. We use the same
input format as in the encoder-decoder model.

Closed Source LLMs. These are closed-source
LLMs that require API calls for inference, includ-
ing InstructGPT (text-davinci-003) (Ouyang
et al., 2022) and GPT-4 (OpenAI, 2023). We
evaluate the setting that directly predicts the la-
bel and the Chain-of-Thought (CoT) (Wei et al.,
2022) setting, which generates explanations be-
fore predicting the final label. We also include the
Program-of-Thoughts (PoT) (Chen et al., 2022)
model that has shown strong ability in solving com-
plex numerical reasoning tasks. It first parses the
reasoning steps as Python programs and then exe-
cutes them on a Python interpreter to derive accu-
rate answers. Since most claims in SCITAB also re-
quire numerical reasoning, we want to test whether
program-guided reasoning can be extended to table-
based fact-checking.

Human Performance. To examine how humans
perform on our SCITAB dataset, we hired an anno-
tator from our candidate annotators pool, following
the same training procedure as other annotators.
In the case of 2-class classification, we randomly
selected 40 samples: 20 each for supported and
refuted claims. For 3-class classification, we ran-
domly selected 60 random samples, ensuring an
even distribution of 20 samples across the three la-
bel categories (supported, refuted, and not enough
information). The annotator took approximately
1.5 hours for the 2-class fact-checking task and 2
hours for the 3-class setting. We report the Macro-
F1 scores at the bottom of Table 4.



Models # of Para. Zero-shot In-Context

2-class 3-class 2-class 3-class

TAPAS-large (Tabfact) (Herzig et al., 2020) 340M 50.30 — — —
I. Table-based TAPEX-large (Tabfact) (Liu et al., 2022b) 400M 56.06 — — —

LLMs TAPEX-Zero-large (Liu et al., 2023b) 780M 48.28 29.72 42.44 23.47
TAPEX-Zero-XL (Liu et al., 2023b) 3B 49.77 34.30 42.12 25.62

Flan-T5-base (Chung et al., 2022) 250M 47.38 26.56 44.82 24.09
II. Encoder–Decoder Flan-T5-large (Chung et al., 2022) 780M 51.58 32.55 49.62 27.30

LLMs FLan-T5-XL (Chung et al., 2022) 3B 52.41 38.05 48.05 29.21
Flan-T5-XXL (Chung et al., 2022) 11B 59.60 34.91 60.48 34.04

Alpaca-7B (Taori et al., 2023) 7B 37.22 27.59 40.46 28.95
III. Open source Vicuna-7B (Chiang et al., 2023) 7B 63.62 32.47 50.35 34.26

LLMs Vicuna-13B (Chiang et al., 2023) 13B 41.82 29.63 55.11 35.16
LLaMA-7B (Touvron et al., 2023) 7B 49.05 32.26 45.24 27.17
LLaMA-13B (Touvron et al., 2023) 13B 53.97 37.18 44.39 32.66

InstructGPT (Ouyang et al., 2022) 175B 68.44 41.41 68.10 41.58
IV. Close source InstructGPT+CoT (Ouyang et al., 2022) 175B — — 68.46 42.60

LLMs PoT (Chen et al., 2022) 175B — — 63.79 —
GPT-4 (OpenAI, 2023) — 78.22 64.80 77.98 63.21
GPT-4+CoT (OpenAI, 2023) — — — 76.85 62.77

Human — — — 92.40 84.73

Table 4: Macro-F1 of baselines on SCITAB for different settings. The # of Para. indicates the number of parameters
in the models. The TAPAS and TAPEX models are fine-tuned on the TabFact dataset, while others perform zero-shot
learning. The bold text indicates the best performance among I to III, while the underlined text indicates the overall
best performance among all the models.

4.2 Main Results

We evaluate all models under both zero-shot and
in-context settings. In the zero-shot setting, the
model does not have access to any in-domain data.
In the in-context setting, we provide three hold-
out examples as demonstrations. We report two
sets of results: the 2-class case, where examples
labeled as NEI are excluded (since some models
cannot process NEI claims), and the 3-class case
including all three labels. The results are shown in
Table 4. We have five major observations.

1. In general, all open source LLMs, including
encoder–decoder models and decoder-only models,
do not achieve very promising results on SCITAB
and they still have a large gap from human per-
formance. The best result is 63.62 for the 2-class
setting (Vicuna-7B and 38.05 for the 3-class set-
ting (FLAN-T5-XL). Both results are only moder-
ately better (+13.62 and +4.72) than random guess-
ing. In contrast, a well-trained human annotator
can achieve 92.46 and 84.73 F1 scores in the 2-
class and 3-class settings, respectively. This re-
veals the challenging nature of SCITAB and its
potential to be the future benchmark for scientific
fact-checking.

2. Counter-intuitively, table-based LLMs do not
outperform models pre-trained on pure texts, for
example, FLAN-T5. This discrepancy may be at-
tributed to the dissimilarity between the distribution
of tables in scientific literature and publicly avail-
able table corpus. For example, scientific tables
commonly include both row and column headers,
whereas most tables in Wikipedia lack row headers.
Meanwhile, the claims in our dataset are usually
much longer than those in previous works, raising
challenges to table-based LLMs.

3. The results in the 3-class setting are notably
poorer than those in the 2-class setting. This dis-
crepancy reveals the challenges that most models
face when confronted with the NEI class. One
plausible explanation could be the inherent diffi-
culty in distinguishing between ‘refuted’ and ‘NEI’
claims — a task that even trained human annotators
struggle with, as noted by Jiang et al. (2020). Our
forthcoming error analysis will further demonstrate
that the inclusion of the NEI class tends to dimin-
ish the models’ confidence, causing a shift in their
predictions from ‘supported/refuted’ to ‘NEI’.

4. Interestingly, the provision of in-context ex-
amples does not result in improved performance for



the majority of models. This observation is some-
what expected for open source LLMs as they have
not been reported to possess in-context learning ca-
pabilities. Nonetheless, it is surprising to find that
even with chain-of-thought prompting, in-context
demonstrations do not yield positive effects for In-
structGPT and GPT-4. Our error analysis on the
PoT offers some insight into this phenomenon and
will be discussed in the next section.

5. Closed source LLMs perform better than open
source LLMs, with GPT-4 achieving 78.22 macro-
F1 for the 2-class setting and 64.80 for the 3-class
setting. This aligns with the assertion that GPT-4
has a strong ability to perform complex reason-
ing (OpenAI, 2023) and we show that this ability
can generalize to tabular data as well. However, the
black-box nature of OpenAI models restricts our
further analysis of its behavior.

4.3 Error Analysis

InstructGPT and GPT-4. We show the confu-
sion matrices for InstructGPT and GPT-4 under the
zero-shot 3-class setting in Figure 4. We find that
both models have difficulty in accurately predicting
the NEI class. InstructGPT displays a pattern of
“less confident”, frequently classifying supported
and refuted claims as ‘NEI’. In contrast, GPT-4 ex-
hibits overconfidence, incorrectly categorizing NEI
claims as either supported or refuted. This corrob-
orates our earlier observation that distinguishing
whether a claim is verifiable is one of the key chal-
lenges for SCITAB.

Further, we also examine individual error in-
stances, with typical examples provided in Fig-
ures 11 and 12 of Appendix F. The majority of
‘supported’ claims that were incorrectly classified
as ‘refuted’ (Case 6) involve numerical reasoning
or comparison. Conversely, when ‘refuted’ claims
are inaccurately predicted as ‘supported’ (Case 3),
we find that LLMs often overlook claims contain-
ing negation, indicating a lack of deep compre-
hension. For cases where ‘supported’ or ‘refuted’
claims are erroneously predicted as ‘NEI’ (Cases 1
and 2), such claims typically demand extensive rea-
soning and a deep understanding of the research
findings. Interestingly, when faced with these com-
plex cases, the model tends to default to the safer
choice of ‘uncertain’ (NEI).

PoT. Unexpectedly, incorporating a Python in-
terpreter does not confer any advantage on our
dataset (as shown in Table 4), despite its positive

InstructGPT Label Distribution Percentage (%) GPT-4 Label Distribution Percentage (%)

Figure 4: Confusion matrix for InstructGPT (left) and
GPT-4 (right) in the zero-shot 3-class classification task.

Error Type Estimated Proportion (%)
I. Grounding errors 50
II. Ambiguity errors 22
III. Calculation errors 20
IV. Program errors 8

Table 5: The error types and their estimated proportions
for incorrectly-predicted samples in PoT.

impacts on other numerical reasoning tasks. In or-
der to understand this, we randomly selected 50
claims wherein the PoT incorrectly predicted the
final veracity labels and evaluated the quality of
the generated Python programs. We divide the er-
rors into four categories, as assessed by human
annotators: (i) Grounding errors, where the pro-
gram incorrectly associates data with the respective
cells in the table; (ii) Ambiguity errors, where the
claim contains ambiguous expressions that the pro-
gram fails to represent; (iii) Calculation errors,
where incorrect floating point arithmetic calcula-
tion in Python lead to inaccurate results and (iv)
Program errors, which encompass mistakes such
as incorrect or missing arguments/variables, and
erroneous operations. We present the error analysis
in Table 5, and examples of program errors can be
found in Figure 13 and Figure 14 in Appendix G.
Compared to other datasets, categories (i) and (ii)
present unique challenges in our dataset. Cate-
gory (i) underlines the difficulty in accurately ref-
erencing the specific cells to which a claim refers.
Category (ii), on the other hand, emphasizes the
difficulties posed by the ambiguous nature of scien-
tific claims, such as “A is significantly better than
B”, to program-based methods. This connection
further emphasizes the contribution of our work
in addressing the mismatches between reasoning
types and the occurrence of grounding errors.

5 Related Work

Scientific Fact-Checking Datasets. Existing
datasets for scientific fact-checking are summa-



rized in a recent survey from Vladika and Matthes
(2023). These datasets differ in: 1) domain: bi-
ology (Wadden et al., 2020; Akhtar et al., 2022),
COVID-19 (Saakyan et al., 2021; Sarrouti et al.,
2021; Mohr et al., 2022; Wang et al., 2023), and cli-
mate (Diggelmann et al., 2020), 2) claim creation:
crowd-sourced claims v.s. natural claims, and 3)
evidence source: Wikipedia articles (Diggelmann
et al., 2020) or research papers (Wadden et al.,
2020, 2022; Sarrouti et al., 2021). However, most
of these datasets rely on text evidence to verify
claims. SEM-TAB-FACTS (Wang et al., 2021) is
the only existing dataset based on scientific tables,
but it is limited to simple, crowd-sourced claims.
To bridge this gap, we construct SCITAB which
contains complex claims from authentic scientific
papers with table-based evidence.

Table-based Reasoning. Table-based reasoning
requires reasoning over both free-form natural lan-
guage queries and (semi-)structured tables. Early
works either rely on executable languages (e.g.,
SQL and SPARQL) to access the tabular data (Yin
et al., 2016; Yu et al., 2018) or employ graph neural
networks to capture logical structure in statements,
e.g., LogicFactChecker (Zhong et al., 2020) and
ProgVGAT (Yang et al., 2020). However, these ap-
proaches often struggle with generalization, as they
are tightly bound to specific table formats and lan-
guage patterns. To address this, we have seen a shift
toward table pre-training, with the advent of Table-
BERT (Chen et al., 2020), TAPAS (Herzig et al.,
2020), SaMoE (Zhou et al., 2022), PASTA (Gu
et al., 2022), and DATER (Ye et al., 2023). These
methods encode sentence-table pairs using lan-
guage models and transform table-based reason-
ing into question-answering or natural language
inference. In our work, we focus on evaluating pre-
training-based methods on SCITAB because they
not only demonstrate superior performance but also
offer the benefits of few-shot learning.

6 Conclusion and Future Work

We present SCITAB, a novel dataset for scien-
tific fact-checking that addresses the limitations
of existing benchmarks. By incorporating real-
world scientific claims and their corresponding
evidence in the form of tables, SCITAB offers a
more comprehensive and fine-grained representa-
tion of scientific reasoning. The challenging nature
of SCITAB is evident from the performance of the
state-of-the-art, highlighting the need for further

research. For example, we believe that addressing
the challenges posed by ambiguous claims repre-
sents a crucial direction for research in scientific
fact-checking (Glockner et al., 2023; Liu et al.,
2023a). One potential approach is to enhance the
disambiguation of ambiguous claims by leverag-
ing contextual information or external knowledge
sources. Additionally, studying the compositional-
ity in table-based reasoning is an interesting direc-
tion. Consider the work of Self-Ask (Press et al.,
2022), which proposed the “compositionality gap”
metric to measure the capability of LLMs in com-
positional reasoning. Such evaluations can be en-
riched by annotating SCITAB with ground-truth
reasoning depths and structured reasoning graphs.
Beyond this, another direction worth exploring is
equipping the LLMs with external tools to further
improve the model. For example, the use of GPT-
4 plugins, Program-guided Fact-Checking (Pan
et al., 2023) or adopting approaches from other tool-
augmented LLMs like Toolformer (Schick et al.,
2023) and Chameleon (Lu et al., 2023).

Ethics Statement

We have received approval from the Institutional
Review Board (IRB)3 for our data collection. The
IRB reviewed our experimental design and research
procedures to ensure that they do not pose more
than minimal risks to research participants. We
take steps to protect research participants’ privacy
and the confidentiality of their data. The review
process took two months to complete.

Limitations

Firstly, the method and dataset are primarily de-
signed for languages with limited morphology,
such as English. Secondly, our SCITAB dataset
is specifically focused on fact-checking scientific
claims based on tables, which represents only
one aspect of scientific fact-checking. Further re-
search can explore the integration of other forms
of evidence, including textual evidence and fig-
ure evidence, to enhance the fact-checking process.
Thirdly, our SCITAB dataset is primarily focused
on numerical reasoning types, as it is derived from
the SciGen dataset, which also emphasizes numeri-
cal reasoning. It would be beneficial for future stud-
ies to incorporate a wider range of reasoning types
to provide a more comprehensive fact-checking

3https://www.nus.edu.sg/research/irb. The NUS-
IRB Reference Code is NUS-IRB-2022-599

https://www.nus.edu.sg/research/irb


framework. Lastly, it would be valuable to ex-
plore additional annotation types, such as reason-
ing graphs, to further enrich the depth of analysis
and capture more intricate relationships within the
claims and evidence.
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Max Glockner, Ieva Staliūnaitė, James Thorne, Gisela
Vallejo, Andreas Vlachos, and Iryna Gurevych. 2023.
Ambifc: Fact-checking ambiguous claims with evi-
dence. CoRR, abs/2104.00640.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiao-
man Zhao, and Xiaoyong Du. 2022. PASTA: table-
operations aware fact verification via sentence-table
cloze pre-training. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4971–4983.

Zhijiang Guo, Michael Sejr Schlichtkrull, and Andreas
Vlachos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics (TACL), 10:178–206.

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020. INFOTABS: inference on tables
as semi-structured data. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 2309–2324.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 4320–4333.

Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles
Dognin, Maneesh Kumar Singh, and Mohit Bansal.
2020. Hover: A dataset for many-hop fact extraction
and claim verification. In Findings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), volume EMNLP 2020, pages
3441–3460.

W.Y. Lee, L. Ho, and M.E.T. Ng. 2009. Research Writ-
ing: A Workbook for Graduate Students. Prentice
Hall.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training

https://www.nscc.sg
https://doi.org/10.18653/v1/2022.findings-naacl.1
https://doi.org/10.18653/v1/2022.findings-naacl.1
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.48550/arXiv.2210.11416
https://psycnet.apa.org/record/1960-06759-001
https://psycnet.apa.org/record/1960-06759-001
https://arxiv.org/abs/2012.00614
https://arxiv.org/abs/2012.00614
https://arxiv.org/abs/2104.00640
https://arxiv.org/abs/2104.00640
https://aclanthology.org/2022.emnlp-main.331
https://aclanthology.org/2022.emnlp-main.331
https://aclanthology.org/2022.emnlp-main.331
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://books.google.com.sg/books?id=PW-xAQAACAAJ
https://books.google.com.sg/books?id=PW-xAQAACAAJ
https://doi.org/10.18653/v1/2020.acl-main.703


for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 7871–7880.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and
Yejin Choi. 2022a. WANLI: worker and AI collabo-
ration for natural language inference dataset creation.
In Findings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6826–6847.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr,
Peter West, Alexander Koller, Swabha Swayamdipta,
Noah A. Smith, and Yejin Choi. 2023a. We’re afraid
language models aren’t modeling ambiguity. CoRR,
abs/2304.14399.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022b.
TAPEX: table pre-training via learning a neural SQL
executor. In Proceedings of the 10th International
Conference on Learning Representations (ICLR).

Qian Liu, Fan Zhou, Zhengbao Jiang, Longxu Dou, and
Min Lin. 2023b. From zero to hero: Examining the
power of symbolic tasks in instruction tuning. CoRR,
abs/2304.07995.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. CoRR,
abs/2304.09842.

Isabelle Mohr, Amelie Wührl, and Roman Klinger.
2022. Covert: A corpus of fact-checked biomedical
COVID-19 tweets. In Proceedings of the 13th Lan-
guage Resources and Evaluation Conference (LREC),
pages 244–257.

Nafise Sadat Moosavi, Andreas Rücklé, Dan Roth,
and Iryna Gurevych. 2021. Scigen: a dataset for
reasoning-aware text generation from scientific ta-
bles. In Proceedings of the Neural Information Pro-
cessing Systems (NeurIPS) Track on Datasets and
Benchmarks.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Proceedings of the
Annual Conference on Neural Information Process-
ing Systems (NeurIPS).

Liangming Pan, Xiaobao Wu, Xinyuan Lu, Anh Tuan
Luu, William Yang Wang, Min-Yen Kan, and Preslav
Nakov. 2023. Fact-checking complex claims with
program-guided reasoning. In Proceedings of the

61st Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 6981–7004.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. CoRR, abs/2210.03350.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research
(JMLR), 21:140:1–140:67.

Arkadiy Saakyan, Tuhin Chakrabarty, and Smaranda
Muresan. 2021. Covid-fact: Fact extraction and veri-
fication of real-world claims on COVID-19 pandemic.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
2116–2129.

Mourad Sarrouti, Asma Ben Abacha, Yassine Mrabet,
and Dina Demner-Fushman. 2021. Evidence-based
fact-checking of health-related claims. In Findings
of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 3499–
3512.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
CoRR, abs/2302.04761.

Tal Schuster, Darsh J. Shah, Yun Jie Serene Yeo,
Daniel Filizzola, Enrico Santus, and Regina Barzilay.
2019. Towards debiasing fact verification models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3417–3423.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Juraj Vladika and Florian Matthes. 2023. Scientific fact-
checking: A survey of resources and approaches. In
Findings of the 61st Association for Computational
Linguistics (ACL), pages 6215–6230.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7534–7550.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.findings-emnlp.508
https://doi.org/10.18653/v1/2022.findings-emnlp.508
https://doi.org/10.48550/arXiv.2304.14399
https://doi.org/10.48550/arXiv.2304.14399
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.48550/arXiv.2304.07995
https://doi.org/10.48550/arXiv.2304.07995
https://doi.org/10.48550/arXiv.2304.09842
https://doi.org/10.48550/arXiv.2304.09842
https://aclanthology.org/2022.lrec-1.26
https://aclanthology.org/2022.lrec-1.26
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/149e9677a5989fd342ae44213df68868-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/149e9677a5989fd342ae44213df68868-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/149e9677a5989fd342ae44213df68868-Abstract-round2.html
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.48550/arXiv.2210.03350
https://doi.org/10.48550/arXiv.2210.03350
https://doi.org/10.48550/arXiv.2210.03350
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.findings-emnlp.297
https://doi.org/10.18653/v1/2021.findings-emnlp.297
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.18653/v1/D19-1341
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.18653/v1/2023.findings-acl.387
https://doi.org/10.18653/v1/2023.findings-acl.387
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609


David Wadden, Kyle Lo, Bailey Kuehl, Arman Cohan,
Iz Beltagy, Lucy Lu Wang, and Hannaneh Hajishirzi.
2022. Scifact-open: Towards open-domain scientific
claim verification. In Findings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 4719–4734.

Gengyu Wang, Kate Harwood, Lawrence Chillrud,
Amith Ananthram, Melanie Subbiah, and Kathleen R.
McKeown. 2023. Check-covid: Fact-checking
COVID-19 news claims with scientific evidence. In
Findings of the 61st Association for Computational
Linguistics (ACL), pages 14114–14127.

Nancy Xin Ru Wang, Diwakar Mahajan, Marina
Danilevsky, and Sara Rosenthal. 2021. Semeval-2021
task 9: Fact verification and evidence finding for tabu-
lar data in scientific documents (SEM-TAB-FACTS).
In Proceedings of the 15th International Workshop
on Semantic Evaluation (SemEval@ACL/IJCNLP),
pages 317–326.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Xiaoyu Yang, Feng Nie, Yufei Feng, Quan Liu, Zhigang
Chen, and Xiaodan Zhu. 2020. Program enhanced
fact verification with verbalization and graph atten-
tion network. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 7810–7825.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM Confer-
ence on Research and Development in Information
Retrieval (SIGIR), pages 174–184.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2016. Neural enquirer: Learning to query tables in
natural language. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence
(IJCAI), pages 2308–2314.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 3911–
3921.

Wanjun Zhong, Duyu Tang, Zhangyin Feng, Nan Duan,
Ming Zhou, Ming Gong, Linjun Shou, Daxin Jiang,
Jiahai Wang, and Jian Yin. 2020. Logicalfactchecker:
Leveraging logical operations for fact checking with
graph module network. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 6053–6065.

Yuxuan Zhou, Xien Liu, Kaiyin Zhou, and Ji Wu. 2022.
Table-based fact verification with self-adaptive mix-
ture of experts. In Findings of the 60th Associa-
tion for Computational Linguistics (ACL), pages 139–
149.

https://aclanthology.org/2022.findings-emnlp.347
https://aclanthology.org/2022.findings-emnlp.347
https://doi.org/10.18653/v1/2023.findings-acl.888
https://doi.org/10.18653/v1/2023.findings-acl.888
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://doi.org/10.18653/v1/2021.semeval-1.39
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
http://www.ijcai.org/Abstract/16/329
http://www.ijcai.org/Abstract/16/329
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2022.findings-acl.13
https://doi.org/10.18653/v1/2022.findings-acl.13


A Claim Extraction Procedure

A.1 Claim Definition

In academic writing (Lee et al., 2009), the accompa-
nying text for data, presented as tables and figures),
typically includes three fundamental elements as
outlined below. These elements encompass the def-
inition of claims, which involve highlighting key
data (KD) and commenting on key data (COM)
that emphasizes and comments on the key data.

Location of results (LOC). Statements that lo-
cate where the figure/table is found, e.g., Figure 7
displays the mean percentile scores.

Highlighting of key data (KD). Statements that
highlight the important data, e.g.,(1) Highest or
lowest values (2) Overall trend or pattern in the
data (3) Points that do not seem to fit the pattern
or trend, etc. (4) Results which provide answers to
your research questions

Commenting on key data (COM). Statements
that interpret the data. There are three types of
comments: (1) Generalization (deductions and im-
plications drawn from the results), e.g., “This in-
dicates that ...” (2) Comparison of results with
those from prior studies, e.g., “Different from ...”
(3) Explanation or speculation (possible reasons
or cause-effect relationships for the results), e.g.,
“The possible reason is that ...”

A.2 Claim Extraction Interface

Figure 5 shows the user interface for the claim
extraction task.

B Manual Claim Verification Procedure

B.1 Annotator Training Process

Our annotator selection and training process is sys-
tematic and thorough to ensure the highest quality
annotations. We initiate the process by advertising
on our university’s platform. Interested candidates
are then required to complete a registration form.
From these responses, the authors identify suitable
annotators based on set criteria. Once shortlisted,
the potential annotators are invited for a training
session, which can be conducted either in-person
or via Zoom, lasting approximately one hour. This
session is divided into three parts. Firstly, the au-
thors provide a comprehensive overview of the task
definition, ensuring clarity on what is expected.
Similar to WANLI (Liu et al., 2022a), during our

training sessions4, commonsense interpretations
and a minimum amount of logical inference are
acceptable. Next, a demonstration is given on how
to navigate and utilize the annotation interface ef-
fectively. Following this, a series of trial tests are
released to the annotators. This is to verify their
understanding and capability in the task. Last, we
specify the deadline for completing annotations,
outline how we check the quality of their work,
brief them on a post-annotation survey, and explain
the reimbursement procedure. A Q&A session is
also incorporated to address any uncertainties or
concerns. After receiving their reimbursement, the
annotators signed an agreement sheet to ensure its
receipt.

B.2 NEI Claim Verification Interface

Figure 6 shows the user interface for the NEI claim
verification task.

B.3 Refuted Claim Verification Interface

Figure 7 shows the user interface for the refuted
claim verification task.

B.4 Annotation Post-Survey

Figure 8 shows the examples of post-annotation
survey questions and the answers of annotators.

C Analysis of Refuted Reasons in the
Sci-Fact dataset

Table 6 provides an analysis of the reasons for re-
futed claims in the Sci-Fact dataset, along with
their estimated proportions. A random sample of
100 refuted claims was selected, and the results
indicate that 85% of claims were simply negated
using terms like “not” or paraphrased based on the
evidence sentences. Additionally, 6% of the refuted
claims were attributed to incorrect calculation re-
sults, while 6% were identified as having wrong
commonsense knowledge. A smaller proportion of
refuted claims (3%) were found to have incorrect
open-domain knowledge.

D Discussions on Human-Machine
Collaboration

Our final data creation pipeline undergoes repeti-
tive testing and revision until it reaches its current

4All the related materials including the advertisement, a
sample of the registration form and the agreement sheet are
available at https://github.com/XinyuanLu00/SciTab.

https://github.com/XinyuanLu00/SciTab


Refuted Reasons Prop. (%)
Negation (+not) and paraphrasing. 85
The calculation result is wrong. 6
The commonsense knowledge is wrong. 6
The open-domain knowledge is wrong. 3

Table 6: The refuted reasons and their estimated propor-
tions (Prop.) in the Sci-Fact dataset.

form. In our pilot annotation, we found that man-
ual verification played the most essential role in the
validation of claims marked as “Not Enough Infor-
mation(NEI)”. Initially, we planned to rely solely
on LLMs for generating NEI claims. Our criteria
for the NEI claim is that “the claim should be flu-
ent, logical, and relevant to the table. However,
the claim cannot be verified as true or false solely
based on the information in the table.” However,
after a careful examination of the LLM output, we
found that LLM tends to generate claims that are
either not logical or irrelevant to the table content.
Therefore, human efforts are required to further
select NEI claims that meet our criteria. Out of
900 initial NEI claims generated by LLMs, man-
ual verification narrowed them down to only 355
claims, taking up 40% of the original count. While
it may not have served as crucial a role as filtering
NEI claims, human verification also safeguarded
the data quality in other annotation processes. For
example, among the “supported” claims originally
appearing in the scientific paper, human validation
still identified 10 cases that were actually not sup-
ported (e.g., wrong number matching.)

E Case Study for Refuted Claims

Figure 9 and Figure 10 show five examples of re-
futed cases. Below, we provide explanations for
each of these error cases.

Case A The calculation result is wrong. It pro-
duces incorrect calculation results. The accurate
result should be 27.9-21.7 = 6.2.

Case B The approximation word is wrong. It
generates incorrect approximation words, as 19.4
is not significantly lower compared to 23.3.

Case C The claim is partially right. The claim
is generally correct, with the exception of the
BShift column which does not fulfill the claim.

Case D The values in the claim do not match.
The value in the claim does not align with the cor-

responding value in the table. The correct value
should be 27.9.

Case E The operation type is wrong. It applies
the incorrect operation type. For instance, in the
case of GCN+RC+LA (9), it is not accurate to claim
that it is better than DCGCN1 because 22.9 > 22.0
and 53.0 > 52.6.

F Error Cases for InstructGPT

Figure 11 and Figure 12 show six error examples of
InstructGPT in the zero-shot setting when applied
to our SCITAB dataset.

Error Type 1: Supported predicted as NEI.
This error type indicates a discrepancy between the
gold label, which is Supported, and the predicted
label, which is NEI.

Error Type 2: Refuted predicted as NEI. This
error type indicates a discrepancy between the gold
label, which is Refuted, and the predicted label,
which is NEI.

Error Type 3: Refuted predicted as Supported.
This error type indicates a discrepancy between
the gold label, which is Refuted, and the predicted
label, which is Supported.

Error Type 4: NEI predicted as Supported.
This error type indicates a discrepancy between
the gold label, which is NEI, and the predicted
label, which is Supported.

Error Type 5: NEI predicted as Refuted. This
error type indicates a discrepancy between the gold
label, which is NEI, and the predicted label, which
is Refuted.

Error Type 6: Supported predicted as Refuted.
This error type indicates a discrepancy between the
gold label, which is Supported, and the predicted
label, which is Refuted.

G Error Cases for Program-of-Thoughts

Figure 13 and Figure 14 show five error examples
of Program-of-Thoughts when applied to our SC-
ITAB dataset. Below, we provide explanations for
each of the error cases.

Error Case 1. It exhibits incorrect entity linking
(Grounding error) and incorrect operation (Pro-
gram error). The codes “winograd_baseline
= 73.06” and “winocoref_baseline = 88.48”
should be “IlliCons_winograd = 53.26” and



Figure 5: The user interface for the claim extraction task.

Figure 6: The user interface for the NEI claim verification task.

“IlliCons_winocoref = 74.32” respectively. Ad-
ditionally, the “>” operation should be changed to
“>=”.

Error Case 2. It exhibits incomplete entity link-
ing (Grounding error). The program should also

parse other baseline results, such as ‘SFEGAN_WER
= 14.9”.

Error Case 3. It fails to generate a correct pro-
gram (Program error). The variables and logical
functions in the programs are incorrect. For in-



Figure 7: The user interface for the refuted claim verification task

stance, “G2S_GAT_BLEU_LDC2015E86” should be
“G2S_GIN_BLEU_LDC2015E86”. The logical func-
tion “and” should be replaced with “or”.

Error Case 4. It fails to generate a precise pro-
gram for the approximation word “comparable”
(Ambiguity error). Currently, the program defines
“comparable” as “larger than”, which is not accurate
enough.

Error Case 5. It generates the correct program,
but the calculation result is inaccurate due to incor-
rect float digits in the Python code (Calculation er-
ror). For instance, Python may output ’1.9499999’,
which is not equal to ’1.95’.



Annotation Post Survey 
Annotator 1: 

• Is the task demonstration clear to you? 
Yes,  clear. 

• What do you think is the difficulty of this task?  (1-10 points, 10 points is the most 
difficult) 
5-6. 

• Which part is the most difficult for you? Why? 
Judgment, understanding the way of original author think. 

• Do you think the annotation batch is appropriate? What is the maximum batch 
amount for you in a week?  
Yes. 2 batches in a week during the examination. 4 during vacation. 

• Could you provide some advice on how to improve the annotation platform?  
Looping for multiple operations.  

 
 
Annotator 2:  

• Is the task demonstration clear to you? 
Yes. 

• What do you think is the difficulty of this task?  (1-10 points, 10 points is the most 
difficult) 
6 

• Which part is the most difficult for you? Why? 
Table understanding; different parameters in the attributes. 

• Do you think the annotation batch is appropriate? What is the maximum batch 
amount for you in a week?  
Ok. 2-3 batches 

• Would you like to attend this session again as a 2-week participation?  
ok. 

• Could you provide some advice on how to improve the annotation platform?  
I preferred to write down the annotations on the platform. 

 
 
Annotator 3:  

• Is the task demonstration clear to you? 
Yes, clear. the difficulty is different between demo and real annotation. 

• What do you think is the difficulty of this task?  (1-10 points, 10 points is the most 
difficult) 
7 

• Which part is the most difficult for you? Why? 
Table understanding-vocabulary.  

• Do you think the sample amount is appropriate? What is the maximum batch amount 
for you in a week (1 batch contains 20 samples)?  
10-15 samples for an hour. 50 samples a week.  

 
• Would you like to attend this session again as a 2-week participation?  

Maybe not. But 15 samples offline for a week is ok.   
 

• Could you provide some advice on how to improve the annotation platform?  
I think the current platform is fine for me. 

 
Figure 8: The examples of post-annotation survey questions and the answers of annotators.



H Prompts

H.1 Zero-shot Prompts

Table: <input_table>

Claim: <input_claim>

Based on the information in the Table , is the above claim true?
A) the claim is true.
B) the claim is false.
C) it is impossible to tell.

H.2 Few-shot Prompts

Read the following table and then answer a question.

Caption: Table 5: Results of fine -tuned models on Balanced COPA. Easy: instances with superficial cues ,
Hard: instances without superficial cues.

Table:
|| Model | Training data | Overall | Easy | Hard ||
|| BERT -large -FT | B-COPA | 74.5 (±0.7) | 74.7 (±0.4) | 74.4 (±0.9) ||
|| BERT -large -FT | B-COPA (50%) | 74.3 (±2.2) | 76.8 (±1.9) | 72.8 (±3.1) ||
|| BERT -large -FT | COPA | 76.5 (±2.7) | 83.9 (±4.4) | 71.9 (±2.5) ||
|| RoBERTa -large -FT | B-COPA | 89.0 (±0.3) | 88.9 (±2.1) | 89.0 (±0.8) ||
|| RoBERTa -large -FT | B-COPA (50%) | 86.1 (±2.2) | 87.4 (±1.1) | 85.4 (±2.9) ||
|| RoBERTa -large -FT | COPA | 87.7 (±0.9) | 91.6 (±1.1) | 85.3 (±2.0) ||

Claim: RoBERTa -large outperforms BERT -large when fine -tuned on full and balanced COPA.

Question: Is the above claim true or false? Please directly give the answer.

Answer:
The claim is true.
------
Caption: Table 5: Results of fine -tuned models on Balanced COPA. Easy: instances with superficial cues ,
Hard: instances without superficial cues.

Table:
|| Model | Training data | Overall | Easy | Hard ||
|| BERT -large -FT | B-COPA | 74.5 (±0.7) | 74.7 (±0.4) | 74.4 (±0.9) ||
|| BERT -large -FT | B-COPA (50%) | 74.3 (±2.2) | 76.8 (±1.9) | 72.8 (±3.1) ||
|| BERT -large -FT | COPA | 76.5 (±2.7) | 83.9 (±4.4) | 71.9 (±2.5) ||
|| RoBERTa -large -FT | B-COPA | 89.0 (±0.3) | 88.9 (±2.1) | 89.0 (±0.8) ||
|| RoBERTa -large -FT | B-COPA (50%) | 86.1 (±2.2) | 87.4 (±1.1) | 85.4 (±2.9) ||
|| RoBERTa -large -FT | COPA | 87.7 (±0.9) | 91.6 (±1.1) | 85.3 (±2.0) ||

Claim: The difference between RoBERTa -large -FT and BERT -large -FT is 3.8 points on B-COPA ,
which is significantly smaller than the difference in COPA.

Question: Is the above claim true or false? Please directly give the answer.

Answer:
The claim is false.
------
Caption: Table 4: The ablation study on the WoZ2.0 dataset with the joint goal accuracy on the test set.
For ``- Hierachical -Attn'', we remove the residual connections between the attention modules in the CMR
decoders and all the attention memory access are based on the output from the LSTM.
For ``- MLP'', we further replace the MLP with a single linear layer with the non -linear activation.

Table:
|| Model | Joint Acc. ||
|| COMER | 88.64% ||
|| - Hierachical -Attn | 86.69% ||
|| - MLP | 83.24% ||

Claim: [CONTINUE] The effectiveness of our hierarchical attention design is proved by an accuracy drop
of 1.95% after removing residual connections and the hierarchical stack of our attention modules.

Question: Is the above claim true or false? Please directly give the answer.

Answer:
The claim is true.
------
Caption: Table 4: Scores for different training objectives on the linguistic probing tasks.

Table:
|| Method | Depth| BShift| SubjNum | Tense | CoordInv | Length | ObjNum | TopConst | SOMO | WC ||
|| CMOW -C | 36.2 | 66.0 | 81.1 | 78.7 | 61.7 | 83.9 | 79.1 | 73.6 | 50.4 | 66.8 ||
|| CMOW -R | 35.1 | 70.8 | 82.0 | 80.2 | 61.8 | 82.8 | 79.7 | 74.2 | 50.7 | 72.9 ||
|| CBOW -C | 34.3 | 50.5 | 79.8 | 79.9 | 53.0 | 75.9 | 79.8 | 72.9 | 48.6 | 89.0 ||
|| CBOW -R | 33.0 | 49.6 | 79.3 | 78.4 | 53.6 | 74.5 | 78.6 | 72.0 | 49.6 | 89.5 ||



Claim: While CMOW -R and CMOW -C perform comparably on most probing tasks ,
CMOW -C yields 5 points higher scores on WordContent and BigramShift.

Question: Is the above claim true or false? Please directly give the answer.

Answer:
The claim is false.

(· · · more in-context examples here · · ·)

------
Caption: <input_caption>

Table: <input_table>

Claim: <input_claim>

Question: Is the above claim true or false? Please directly give the answer.

Answer:

H.3 Chain-of-Thought Prompts

Read the following table and then answer a question.

Caption: Table 5: Results of fine -tuned models on Balanced COPA. Easy: instances with superficial cues ,
Hard: instances without superficial cues.

Table:
|| Model | Training data | Overall | Easy | Hard ||
|| BERT -large -FT | B-COPA | 74.5 (±0.7) | 74.7 (±0.4) | 74.4 (±0.9) ||
|| BERT -large -FT | B-COPA (50%) | 74.3 (±2.2) | 76.8 (±1.9) | 72.8 (±3.1) ||
|| BERT -large -FT | COPA | 76.5 (±2.7) | 83.9 (±4.4) | 71.9 (±2.5) ||
|| RoBERTa -large -FT | B-COPA | 89.0 (±0.3) | 88.9 (±2.1) | 89.0 (±0.8) ||
|| RoBERTa -large -FT | B-COPA (50%) | 86.1 (±2.2) | 87.4 (±1.1) | 85.4 (±2.9) ||
|| RoBERTa -large -FT | COPA | 87.7 (±0.9) | 91.6 (±1.1) | 85.3 (±2.0) ||

Claim: RoBERTa -large outperforms BERT -large when fine -tuned on full and balanced COPA.

Question: Is the above claim true or false? Let us think step by step.

Reasoning:
We need to compare the performance of RoBERTa -large and BERT -large on full and balanced COPA.
For full COPA , RoBERTa -large has an overall performance of 87.7 (table [6,2]),
while BERT -large has an overall performance of 76.5 (table [3 ,2]).
Therefore , RoBERTa -large outperforms BERT -large on full COPA.
For balanced COPA , RoBERTa -large has an overall performance of 89.0 (table [4,2]),
while BERT -large has an overall performance of 74.5 (table [1 ,2]).
Therefore , RoBERTa -large outperforms BERT -large on balanced COPA.
Finally , since RoBERTa -large outperforms BERT -large on both full and balanced COPA , the Claim is true.

Answer:
Therefore , the claim is true.
------
Caption: Table 5: Results of fine -tuned models on Balanced COPA. Easy: instances with superficial cues ,
Hard: instances without superficial cues.

Table:
|| Model | Training data | Overall | Easy | Hard ||
|| BERT -large -FT | B-COPA | 74.5 (±0.7) | 74.7 (±0.4) | 74.4 (±0.9) ||
|| BERT -large -FT | B-COPA (50%) | 74.3 (±2.2) | 76.8 (±1.9) | 72.8 (±3.1) ||
|| BERT -large -FT | COPA | 76.5 (±2.7) | 83.9 (±4.4) | 71.9 (±2.5) ||
|| RoBERTa -large -FT | B-COPA | 89.0 (±0.3) | 88.9 (±2.1) | 89.0 (±0.8) ||
|| RoBERTa -large -FT | B-COPA (50%) | 86.1 (±2.2) | 87.4 (±1.1) | 85.4 (±2.9) ||
|| RoBERTa -large -FT | COPA | 87.7 (±0.9) | 91.6 (±1.1) | 85.3 (±2.0) ||

Claim: The difference between RoBERTa -large -FT and BERT -large -FT is 3.8 points on B-COPA ,
which is significantly smaller than the difference in COPA.

Question: Is the above claim true or false? Let us think step by step.

Reasoning:
To verify this claim , we need to compare the performance difference between RoBERTa -large -FT
and BERT -large -FT on B-COPA and COPA.
The difference between RoBERTa -large -FT and BERT -large -FT on B-COPA is 89.0 - 74.5 = 14.5
(table [4,2] - table [1 ,2]).
The difference between RoBERTa -large -FT and BERT -large -FT on COPA is 87.7 - 76.5 = 11.2
(table [6,2] - table [3 ,2]).
The difference between RoBERTa -large -FT and BERT -large -FT on B-COPA is significantly larger
than the difference on COPA. Therefore , the Claim is false.

Answer:
Therefore , the claim is false.
------
Caption: Table 4: The ablation study on the WoZ2.0 dataset with the joint goal accuracy on the test set.



For ``- Hierachical -Attn'', we remove the residual connections between the attention modules in the CMR
decoders and all the attention memory access are based on the output from the LSTM.
For ``- MLP'', we further replace the MLP with a single linear layer with the non -linear activation.
Table:
|| Model | Joint Acc. ||
|| COMER | 88.64% ||
|| - Hierachical -Attn | 86.69% ||
|| - MLP | 83.24% ||

Claim: [CONTINUE] The effectiveness of our hierarchical attention design is proved by an accuracy drop
of 1.95% after removing residual connections and the hierarchical stack of our attention modules.

Question: Is the above claim true or false? Let us think step by step.

Reasoning:
To verify this claim , we need to compare the performance of COMER with
and without hierarchical attention design.
The performance of COMER with hierarchical attention design is 88.64% (table [2 ,2]).
The performance of COMER without hierarchical attention design is 86.69% (table [3 ,2]).
Therefore , the performance of COMER with hierarchical attention design is higher than
the performance of COMER without hierarchical attention design by 88.64 - 86.69 = 1.95.
Therefore , the Claim is true.

Answer:
Therefore , the claim is true.
------
Caption: Table 4: Scores for different training objectives on the linguistic probing tasks.

Table:
|| Method | Depth| BShift| SubjNum | Tense | CoordInv | Length | ObjNum | TopConst | SOMO | WC ||
|| CMOW -C | 36.2 | 66.0 | 81.1 | 78.7 | 61.7 | 83.9 | 79.1 | 73.6 | 50.4 | 66.8 ||
|| CMOW -R | 35.1 | 70.8 | 82.0 | 80.2 | 61.8 | 82.8 | 79.7 | 74.2 | 50.7 | 72.9 ||
|| CBOW -C | 34.3 | 50.5 | 79.8 | 79.9 | 53.0 | 75.9 | 79.8 | 72.9 | 48.6 | 89.0 ||
|| CBOW -R | 33.0 | 49.6 | 79.3 | 78.4 | 53.6 | 74.5 | 78.6 | 72.0 | 49.6 | 89.5 ||

Claim: While CMOW -R and CMOW -C perform comparably on most probing tasks ,
CMOW -C yields 5 points higher scores on WordContent and BigramShift.

Question: Is the above claim true or false? Let us think step by step.

Reasoning:
To verify this claim , we need to compare the performance of CMOW -R
and CMOW -C on WordContent and BigramShift.
The performance of CMOW -R on WordContent is 72.9 (table [2 ,10]).
The performance of CMOW -C on WordContent is 66.8 (table [1 ,10]).
The performance of CMOW -R on BigramShift is 70.8 (table [2 ,2]).
The performance of CMOW -C on BigramShift is 66.0 (table [1 ,2]).
Therefore , the performance of CMOW -C is higher than
the performance of CMOW -R on WordContent by 66.8 - 72.9 = -6.1.
The performance of CMOW -C is lower than
the performance of CMOW -R on BigramShift by 66.0 - 70.8 = -4.8.
Therefore , the Claim is false.

Answer:
Therefore , the claim is false.

(· · · more in-context examples here · · ·)

------
Caption: <input_caption>

Table: <input_table>

Claim: <input_claim>

Question: Is the above claim true or false? Let us think step by step.

Reasoning:

Answer:

H.4 Program-of-Thoughts Prompts

Read the following table and then write Python code to answer a question:
(please call the function equal(a, b) to check whether a and b are equal)

Caption: Table 4: The ablation study on the WoZ2.0 dataset with the joint goal accuracy on the test set.
For ``- Hierachical -Attn'', we remove the residual connections between the attention modules in the CMR
decoders and all the attention memory access are based on the output from the LSTM.
For ``- MLP'', we further replace the MLP with a single linear layer with the non -linear activation.

Table:
|| Model | Joint Acc. ||
|| COMER | 88.64% ||
|| - Hierachical -Attn | 86.69% ||



|| - MLP | 83.24% ||

Claim: [CONTINUE] The effectiveness of our hierarchical attention design is proved by
an accuracy drop of 1.95% after removing residual connections
and the hierarchical stack of our attention modules.

Question: Based on the information in the table , is the above claim true or false?

# Python Code , return ans
COMER_acc = 88.64
COMER_acc_no_residual = 86.69
accuracy_drop = COMER_acc - COMER_acc_no_residual
ans = equal(accuracy_drop , 1.95)
------
Read the following table and then write Python code to answer a question:
(please call the function equal(a, b) to check whether a and b are equal)

Caption: Table 3: Ablation study of capsule net and word -level attention on Wikidata dataset.

Table:
|| Recall | 0.1 | 0.2 | 0.3 | AUC ||
|| -Word -ATT | 0.648 | 0.515 | 0.395 | 0.389 ||
|| -Capsule | 0.635 | 0.507 | 0.413 | 0.386 ||
|| Our Model | 0.650 | 0.519 | 0.422 | 0.405 ||

Claim: According to the table , the drop of precision demonstrates
that the word -level attention is quite useful.

Question: Based on the information in the table , is the above claim true or false?

# Python Code , return ans
our_model_recalls = [0.650 , 0.519, 0.422, 0.405]
without_word_att_recalls = [0.648 , 0.515, 0.395, 0.389]
ans = True
for i in range (4):

if our_model_recalls[i] < without_word_att_recalls[i]:
ans = False
break

------
Read the following table and then write Python code to answer a question:
(please call the function equal(a, b) to check whether a and b are equal)

Caption: Table 4: Scores for different training objectives on the linguistic probing tasks.

Table:
|| Method | Depth| BShift| SubjNum | Tense | CoordInv | Length | ObjNum | TopConst | SOMO | WC ||
|| CMOW -C | 36.2 | 66.0 | 81.1 | 78.7 | 61.7 | 83.9 | 79.1 | 73.6 | 50.4 | 66.8 ||
|| CMOW -R | 35.1 | 70.8 | 82.0 | 80.2 | 61.8 | 82.8 | 79.7 | 74.2 | 50.7 | 72.9 ||
|| CBOW -C | 34.3 | 50.5 | 79.8 | 79.9 | 53.0 | 75.9 | 79.8 | 72.9 | 48.6 | 89.0 ||
|| CBOW -R | 33.0 | 49.6 | 79.3 | 78.4 | 53.6 | 74.5 | 78.6 | 72.0 | 49.6 | 89.5 ||

Claim: While CMOW -R and CMOW -C perform comparably on most probing tasks ,
CMOW -C yields 5 points higher scores on WordContent and BigramShift.

Question: Based on the information in the table , is the above claim true or false?

# Python Code , return ans
CMOW_C_score_on_WC = 66.8
CMOW_C_score_on_BShift = 66.0
CMOW_R_score_on_WC = 72.9
CMOW_R_score_on_BShift = 70.8
ans = equal(CMOW_C_score_on_WC - CMOW_R_score_on_WC , 5)
and equal(CMOW_C_score_on_BShift - CMOW_R_score_on_BShift , 5)

(· · · more in-context examples here · · ·)

------
Read the following table and then write Python code to answer a question:
(please call the function equal(a, b) to check whether a and b are equal)

Caption: <input_caption>

Table: <input_table>

Claim: <input_claim>

Question: Based on the information in the table , is the above claim true or false?

# Python Code , return ans



A. The calculation result is wrong.

Claim: For example, the single DCGCN model gains 5.9 more BLEU points than the single 
models of Seq2SeqB on AMR17.

B. The approximation word is wrong.

Claim: However, when we set the number to 18, GCN+RC+LA achieves a BLEU score of 19.4, 
which is significantly worse than the BLEU score obtained by DCGCN2 (23.3).

C. The claim is partially right.

Claim: While CMOW-R and CMOW-C perform comparably on most probing tasks, CMOW-C 
yields 5 points lower scores on WordContent and BigramShift.
BShift column doesn't satisfy the claim.

Figure 9: The refuted claims cases A to C. Case A represents the calculation result is wrong. Case B represents the
approximation word is wrong. Case C represents the claim is partially right.



E. The operation type is wrong.

Claim: GCN+RC+LA (9) is better than DCGCN1. 

D. The values in the claim do not match.

Claim: Our single model achieves 27.6 BLEU points, which is the new state-of-the-art 
result for single models. 

Figure 10: The refuted claims cases D and E. Case D represents the values in the claim do not match. Case E
represents the operation type is wrong.



Claim: With the coverage mechanism, the result drops by 1.7/2.4 points for B/C scores.

Claim: Analyzing Table 3, we can observe that all values of precision using the Portuguese 
corpora have higher scores when compared with the English corpora.

Error case 1 (43.9%) : Gold Label: Supported  Prediction Label:  NEI

Error case 2 (38.7%): Gold Label: Refuted Prediction Label: NEI

Claim: Analyzing Table 3, we can observe that all values of precision using the English 
corpora have higher scores when compared with the Portuguese corpora.

Error case 3 (7.6%) : Gold Label: Refuted Prediction Label:  Supported

Figure 11: Error Cases 1-3 for InstructGPT in the zero-shot setting.



Claim: This is particularly true for the BIDAF model.

Error case 4 (4.6%) : Gold Label: NEI  Prediction Label:  Supported

Error case 6 (2.4%) : Gold Label: Supported Prediction Label:  Refuted

Claim: For example, GCN+RC+LA (10) achieves a BLEU score of 21.2, which is worse 
than GCN+RC+LA (9).

Error case 5 (2.8%) : Gold Label: NEI Prediction Label:  Refuted

Claim: These results show that the questionnaire takers had an average accuracy of 
98.2% in answering word intrusion questions for words associated with meanings 
imparted by standard word embeddings

Figure 12: Error Cases 4-6 for InstructGPT in the zero-shot setting.



Error case 1

Claim: The best performing system is KnowComb. It improves by over 20% over a state-of-art 
general coreference system on Winograd. On the WinoCoref dataset, it improves by 15%.

programs: ["winograd_baseline = 73.05\n winograd_knowcomb = 76.41\n winocoref_baseline
= 88.48\nwinocoref_knowcomb = 89.32\nans = (winograd_knowcomb - winograd_baseline > 
20) and (winocoref_knowcomb - winocoref_baseline > 15)"

Error case 2

Claim: The AAS method with weights wAC=1 and wAD=105 shows the lowest WER and DCE.

gold: refutes,
prediction: supports,
programs: [
AAS_wAC_1_wAD_0_WER = 15.6\n
AAS_wAC_1_wAD_105_WER = 14.4\n
AAS_wAC_1_wAD_0_DCE = 0.330\n
AAS_wAC_1_wAD_105_DCE = 0.303\n
ans = (AAS_wAC_1_wAD_105_WER <
AAS_wAC_1_wAD_0_WER) 
and (AAS_wAC_1_wAD_105_DCE <
AAS_wAC_1_wAD_0_DCE)

Error case 3 programs： [
"G2S_GIN_BLEU_LDC2015E86 = 22.93\n
G2S_GAT_BLEU_LDC2015E86 = 23.42\n
G2S_GGNN_BLEU_LDC2015E86 = 24.32\n
G2S_GIN_METEOR_LDC2015E86 = 29.72\n
G2S_GAT_METEOR_LDC2015E86 = 29.87\n
G2S_GGNN_METEOR_LDC2015E86 = 30.53\n
G2S_GIN_BLEU_LDC2017T10 = 26.90\n
G2S_GAT_BLEU_LDC2017T10 = 26.72\n
G2S_GGNN_BLEU_LDC2017T10 = 27.87\n
G2S_GIN_METEOR_LDC2017T10 = 32.62\n
G2S_GAT_METEOR_LDC2017T10 = 32.52\n
G2S_GGNN_METEOR_LDC2017T10 = 33.21\n
ans = (G2S_GAT_BLEU_LDC2015E86 >
G2S_GIN_BLEU_LDC2015E86) 

and (G2S_GGNN_BLEU_LDC2015E86 > 
G2S_GAT_BLEU_LDC2015E86)
and (G2S_GAT_METEOR_LDC2015E86 > 

G2S_GIN_METEOR_LDC2015E86) 
and (G2S_GGNN_METEOR_LDC2015E86 > 
G2S_GAT_METEOR_LDC2015E86) 
and (G2S_GAT_BLEU_LDC2017T10 > 
G2S_GIN_BLEU_LDC2017T10) 
and (G2S_GGNN_BLEU_LDC2017T10 >
G2S_GAT_BLEU_LDC2017T10) 

and (G2S_GAT_METEOR_LDC2017T10 > 
G2S_GIN_METEOR_LDC2017T10) and
(G2S_GGNN_METEOR_LDC2017T10 > G"

claim: This suggests that graph encoders based on gating mechanisms are very effective in 
text generation models.

gold: supports, prediction: refutes

gold: supports, prediction: refutes,

Figure 13: Error Cases 1-3 for Program-of-Thoughts. Error Case 1 exhibits incorrect entity linking (Grounding
error) and incorrect operation (Program error). Error Case 2 exhibits incomplete entity linking (Grounding error).
Error Case 3 exhibits Program error since it fails to generate a correct program.



Error case 4

claim: Pretraining the HAN models, although intuitively promising, yields only comparable
results with those without.
gold: supports, prediction: refutes
Programs: 
["HAN_F_score = 37.8\n
HAN_pretrainT_F_score = 37.6\n
HAN_pretrainU_F_score = 37.6\n
ans = (HAN_F_score - HAN_pretrainT_F_score == 0.2) and 
(HAN_F_score - HAN_pretrainU_F_score == 0.2)"]

Error case 5
Claim: The effectiveness of our hierarchical attention 
design is proved by an accuracy drop of 1.95% after 
removing residual connections and the hierarchical stack 
of our attention modules.",
gold: supports,
prediction: refutes,
programs: [“
COMER_acc = 88.64\n
COMER_acc_no_residual = 86.69\n
accuracy_drop = COMER_acc -
COMER_acc_no_residual\n
ans = (accuracy_drop == 1.95)"]

Figure 14: Error Cases 4 and 5 for Program-of-Thoughts. Error Case 4 exhibits Ambiguity error since it fails to
generate a precise program for the approximation word “comparable”. Error Case 5 exhibits Calculation error since
it generates the correct program, but the calculation result is inaccurate due to incorrect float digits in the Python
code.


