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Abstract. We present an automated approach to classify sentences of
scholarly work with respect to their rhetorical function. While previous
work that achieves this task of argumentative zoning requires richly an-
notated input, our approach is robust to noise and can process raw text.
Even in cases where the input has noise (as is obtained from optical char-
acter recognition or text extraction from PDF files), our robust classifier
is largely accurate. We perform an in-depth study of our system both
with clean and noisy inputs. We also give preliminary results from in
situ acceptability testing when the classifier is embedded within a digital
library reading environment.

1 Introduction

Even as early as 1984, Cleverdon estimated an annual output of 400,000 papers
from the most important journals covering the natural sciences and technology
[1]. Today’s scholars, even if focusing on a small slice of science that is to be-
come their thesis, need to keep abreast of a large, growing number of scientific
developments.

In particular, in the current trend towards interdisciplinarity, researchers
will increasingly need to gain an overview of a new field. We call this task
sensemaking, which is a task that we want to contribute towards. To achieve
this goal through the digital library, we need to first generalize some of the
needs that researchers must meet. Shum [2] states that what is most interesting
to researchers in such a situation is what the main problems and approaches
field are. Another question of particular interest is which researchers and groups
are connected with which scientific concepts. Knowledge that a scientist acquires
over years is a complex network [3]; a system that simply returns an individual
publication belies this fact.

Contextual knowledge is needed in order to place and understand the work
within the confines of the already existing literature, in all stages of information
gathering, e.g., relevance assessment, exploration, reading and utilizing. There is
no immediate mechanism in today’s digital libraries that addresses this. While
most modern digital libraries have keyword search, this ability does little to
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Fig. 1. Argumentative zoning overlaid on a page image from a scholarly article (detail).
The sidebar explains the color highlighting of the annotation.

address our challenges [4, 5]. What is needed is the provision of assistance so
that readers can understand the text.

While as varied as other types of text, scientific discourse is a coherent genre
with fixed rhetorical expectations, and with a clear argumentative function. Re-
search articles are biased reports of problem-solving, oriented towards the au-
thor’s own viewpoint [6]. This fact facilitates the automated analysis of docu-
ment structure, which largely follows canonical scientific argumentation. Roughly
speaking, aims and hypothesis are given first, and are followed by the proof in
empirical terms, e.g., the description of an experiment to satisfy the critical and
skeptical reader. Particularly important is the embedding of the new work in the
research niche, i.e., in relation to already published work. A step towards this
sensemaking could be implemented as shown in Figure 1, where a scholarly work
is annotated to show which of its sentences discuss the relationship between the
work and its contextual literature.

Teufel and Moens [7] introduced Argumentative Zoning (AZ), a sentence-
based classification of scientific text according to rhetorical status. The AZ clas-
sification was designed to be domain-independent and easy for subjects to an-
notate reliably. In particular, proper AZ annotation highlights how the current
work relates to the context of other referenced work in the article.

Given its advantages, it would seem useful to show argumentative zoning
alongside an article in a digital library reading environment. However there are
substantial barriers that have thus far prevented the practical, widespread use of
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AZ. As manual annotation is prohibitively expensive, only an automated system
could be considered. However, thus far, automated AZ has only been tried with
articles that take rich semantic markup, such as SciXML [8]. Furthermore, to our
knowledge, no existing digital library system has fielded a production version of
AZ nor shown whether such markup is effective.

Our work in this paper is to address these weaknesses. Specifically, we have
created a Robust AZ (RAZ) system that functions over raw English input. We
benchmark this system against the original work done previously in Teufel’s
thesis, which required richly annotated semantic markup, using both clean plain
text (extracted from the original richly annotated text) as well as noisy text
(extracted directly from the PDF). We have also fielded our classifier within a
production digital library system and report preliminary results on the usefulness
of such annotation.

2 Argumentative Zoning

Argumentative Zoning (AZ) [7] is an analysis of document structure based on the
idea that there are distinct rhetorical moves in scientific papers which together
form a scientific argument. An example of a rhetorical move is a goal statement
or the criticism of some existing piece of work. The analysis also assumes that
rhetorically neutral pieces of text should be classified according to the ownership
of the ideas described in the paper: are they new contributions (i.e., just being
contributed by the authors), statements that nobody in particular lays claim to
(e.g., because they are too commonplace), or are they somebody else’s (citable)
ideas? Another important aspect of the scheme is sentiment, in particular the
authors’ sentiment towards cited work, as addressed in Nanba and Okumura’s
work [9].

The categories in the scheme are based on similar rhetorical moves in the
literature, e.g., Liddy’s Empirical Summary Components [10], Shum’s conceptual
categories [2], Swales’ argumentative moves [6], and Kando’s rhetorical categories
for information retrieval [11].

AZ is defined as a sentence-based classification according to the following
categories (example sentences given in italics; three letter abbreviations in paren-
theses):

– Aim (Aim): Sentences that describe the specific research aims, contributions
and conclusions of the current work. We describe and experimentally evaluate
a method for automatically clustering words according to their distribution
in particular syntactic contexts.

– Basis (Bas): Other work that describes tools, theory or findings that the
current work uses as a foundation for argument. The corpus used in our first
experiment was derived from newswire text automatically parsed by Hindle’s
parser Fidditch (Hindle, 1993).

– Background (Bkg): Knowledge that the author feels is generally accepted,
not needing argumentative proof or citation. Methods for automatically clas-



4

sifying words according to their contexts of use have both scientific and prac-
tial interest.

– Contrast (Ctr): Statements of contrast, comparison, weaknesses of other
solutions. These can help identify contradictions or suprising results that
differ from established thought. His notion of similarity seems to agree with
our intuitions in many cases, but it is not clear how it can be used directly
to construct classes and corresponding models of association

– Other (Oth): Other work that is specifically mentioned or cited. Includes
work done by the author previously, outside of the current work. In Hindle’s
proposal, words are similar if we have strong statistical evidence that they
tend to participate in the same events.

– Own (Own): Sentences that describe the author’s own work, method, re-
sults, discussion and future work. These sentences describe the majority of a
scholarly document. More specifically, we model senses as probabilistic con-
cepts or clusters c with corresponding cluster membership probabilities p(c|w)
for each word w.

– Text (Txt): Sentences that describe the text’s internal structure. We then
describe our experimental results in Section 4.

Teufel et al. [12] showed that trained humans are able to produce consistent
AZ annotation with acceptable Kappa (κ) [13] of 0.713. Teufel and Moens [7]
describe a Näıve Bayes implementation of AZ which is based on 16 sentential
features. This model achieves an agreement of κ = 0.45, whereas Siddharthan
and Teufel report κ = 0.48 for the same data set [14].

3 Related Work

Hachey and Grover [15] present an AZ-based model for the rhetorical classifi-
cation of legal texts. Their main improvement over Teufel is to use a maximum
entropy model, which allows them to use unigrams and bigrams over words as
a feature. This improves results considerably. Merity et al. [16] use a similar
Maximum Entropy approach to AZ which uses unigrams, bigrams and Viterbi
search over the category history as its main features. They evalute directly on
Teufel and Moens’ dataset, and although the evalutation metric used in the pa-
per is not comparable to earlier results (they report weighted accuracy), their
classification is more accurate than the earlier results from Teufel and Moens.

A much simpler task than AZ is that of re-introducing rhetorical headlines
into structured abstracts in the medical and biological domain [17–19]. These
typically use structured abstracts to learn a statistical model of what kind of
information follows what kinds in abstracts. The models can then be applied to
unstructured abstracts in their collection (e.g., only 9% of MEDLINE abstracts
are structured).

3 Kappa values range from 1 (perfect agreement) to -1 (perfect disagreement). A score
of 0 indicates no correlation.
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4 Method

To accomplish the classification for RAZ, we also turn to maximum entropy
(ME) modeling. Like other forms of supervised classification, a ME classifier
casts each problem instance as a set of features associated with an appropriate
class label. Two key characteristics that differentiate it from other approaches
are that the features only take on binary values, and that problem instances are
typically chracterized by hundreds of thousands of features. In natural language
tasks where word forms are often used as features, the latter characteristic is of
utmost importance. Vocabulary sizes in typical English discourse often take a
range in the tens of thousands of wordforms.

Each training instance thus can be represented as an n-dimensional feature
vector. Even with thousands of training examples, each acting as a constraint
on the model, there exist many models that fit the data, as the problem is
underconstrained. To select an appropriate model from the multitude possible,
the ME classifier seeks out the model where the distribution is most uniform;
i.e. the model with the maximum entropy.

Finding the unique exact maximum entropy model is usually not possible
analytically, but when the feature functions take on an exponential form as in
Equation 1, iterative scaling can be used to find a model within an arbitrary
ε-bound of the exact solution, p̂.

p̂(y|x) =
1

Z(x)
exp(

∑
i

λifi(x, y)) (1)

where Z(x) is the partition function
∑

y exp(
∑

i λifi(x, y)), that ensures the
p(·|·) values are normalized to actual probabilities. A key consideration of ME is
that features for such classifiers do not have to be independent of each other. ME
can be implemented to perform feature selection implicitly, so the practitioner
is free to introduce a large set of features without much concern with respect to
their relevance to the classification task.

During both training and testing, we transform each instance into its vector
form: a set of binary valued f(x, y) features. Each feature combines a class label
y and a predicate x, as in Equation 2:

f(x, y) =


1 if y = other and x is the predicate that

the current sentence contains the word “they”,

0 otherwise.

(2)

To describe the features for our particular classification task of argumen-
tative zoning, we must describe the classes and predicates. The class labels Y
correspond to the set of Teufel’s full argumentative zone scheme: {Aim, Bkg,
Bas, Ctr, Oth, Own, Txt}. The predicates X fall into different categories of
information that we compute from each sentence.

As discussed previously, RAZ takes as input an entire text in plain text
(ASCII, UTF-8), processes it to delimit sentences [20] and adds part-of-speech
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annotation with part-of-speech tagger [21]. These sentence are fed into the fea-
ture computation process, which generates the feature vectors for each sentences.
We list these categories below, along with their motivation.

– Raw tokens: Individual words in a sentence can be indicative of certain
argumentative zone classes. For example, “we” often occurs in a sentence
where the authors are describing their own work (Own). We register each
alphanumeric word of the sentence as an individual feature. In addition to
the form present in the sentence, we register both lowercased and (English)
stemmed forms as different features. Stemming is provided by an implemen-
tation of Porter’s stemmer [22]. We also capture the word’s part-of-speech,
to differentiate between different senses of individual words (e.g., “direct” as
a adjective or verb). Equation 2 gives an example of a specific word feature.

– Bigram and Trigram tokens: Individual words can be ambiguous, and
certain word combinations have different meanings and can be strongly in-
dicative of certain classes. For example, “in contrast” strongly signals a con-
trastive sentence (Ctr). We capture contiguous bigram and trigrams from
the sentence, and use these as features as well. We create separate bigram
and trigram sequences from the raw tokens, as well as from their stemmed
form.

– Cue Words and Phrases: We look for whether the word contained within
a list of 881 known English keywords and 157 cue phrases that may signal a
rhetorical move, as defined in Teufel’s thesis [23]. She categorized these words
and phrases manually in her study of computational linguistics literature.
This feature partially overlaps with the previous two classes – “in contrast”
and “we” are both listed in these lists – but provide an extra weighting
mechanism for the ME classifier to weight the presence of these key terms and
phrases more heavily. Some of these cue phrases (about 10%) are actually
lexical regular expressions containing part-of-speech constraints which we
currently do not handle.

– Position: Certain classes of argumentative zones are more prevalent at cer-
tain points in the scientific discourse than others. For example, Bkg knowl-
edge generally comes in the introduction and surveys of related work. We
register the sentence’s position in the document, in both absolute and rela-
tive terms. We count the number of sentences from the beginning for absolute
features, and normalize these versus the number of sentences in the entire
document for relative features. Both types of sentence position features are
binned at a coarse and fine grained resolution to alleviate problems with
data sparsity.

– Citation Presence: Citations also strongly indicate certain argumentative
classes, such as other work (Oth). Previous studies have differentiated be-
tween self-citation (often the basis for the current work; Bas) and citation
to others. In RAZ, we built a simple citation presence detector using regular
expressions to find standard citation marker patterns. These include num-
bers in square brackets, tokens that are followed by the suffix “et al.” and
potential year numbers in parentheses (“[1]”, “Wong et al.”, “Brown (1988)”,
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respectively). Our citation detector is quite simple, aiming for a balance of
precision and recall while maintaining efficiency.

– Sentence Length: Longer sentences can correlate to detailed discussion
and data analysis. We measure the length of a sentence in ten word units as
a feature.

– Title Overlap: If a sentence’s words overlap with the title, there is a higher
probability that it elaborates on the theme of the article (e.g., Own). We
treat the first 100 words of the article as a “title” and identify which words
in a candidate sentence overlap with these title words. We use this span as
in the raw input text, we have no explicit way to capture the title, so we use
this approximation.

– Agent: Syntactic information can further discriminate the role of certain
words. The token “we” can be the agent of a sentence (e.g., “We performed
...”) or can be the patient receiving an action (“...is different from what we
measure”). Given the part-of-speech input, we use a set of simple heuristics
to locate the agent of the sentence, and encode this as an individual feature.

– Verb tense: Similarly, verb identity and tense can also signal particular
argumentative classes. Sentences in past tense can disclose past work (Oth),
for example. We use the part-of-speech information to locate the main verb
in the sentence, using a set of heuristics, and create features for its identity
and tense.

Finally we feed the feature vectors to the maximum entropy software4) to
generate models in training, or to label new unseen sentences in testing.

Table 4 illustrates a concrete example of the different features that are com-
puted, given a sample sentence.

Sentence The DT back-off JJ model NN of IN Katz NNP (1987) NNP provides VBZ a DT
(with POS Tagging) clear JJ separation NN between IN frequent JJ events, NN for IN . . .

Tokens The back off model of katz 1987 provides a clear separation . . .
STEMSthe STEMSback-off STEMSmodel STEMSof STEMSkatz STEMS(1987 . . .

Bigrams / Trigrams The DT back-off JJ back-off JJ model NN model NN of IN of IN Katz NNP . . .
The DT back-off JJ model NN back-off JJ model NN of IN . . .

Cue Phrases CPWORK CPPOS
Sentence Position REL POSITION2 ABS POSITION1 REL POSITION2 1 ABS POSITION25
Citation Presence CITEyear CITEcount1
Sentence Length SENTLENGTH3
Title Overlap (N/A)
Agent AGENTmodel nn
Verb tense VERBprovides vbz VERBTENSEvbz

Table 1. Features generated from an example sentence.

4 We use Le Zhang’s toolkit, available at: http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
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5 Evaluation

Our formal evaluation tests our RAZ system in with both perfect input (with
correct splitting of sentences) as well as realistic, noisy input (using automatic
sentence splitting and part of speech tagging done programatically). We bench-
mark RAZ against the original AZ system devised by Teufel [23], which used
richly annotated SciXML as input.

In contrast, our RAZ system handles impoverished input of plain text that
has been extracted from PDF files. It is well known to the community that
extracting text from PDF files (especially legacy PDF files) can be problem-
atic, due to accents, ligatures (e.g., “fi” combined into a single glyph) and font
substitutions.

In our formal evaluation, we wish to answer the following questions to better
understand RAZ.

Question A. How much does argumentative zoning recognition decrease if we
use clean text instead of the “perfect” semantically rich markup provided by
SciXML?

Question B. How much does argumentative zoning recognition decrease if we
use noisy text instead of clean text?

Question C. What performance is achieved in using the different sets of fea-
tures? How important is each feature class towards achieving the maximum
classification accuracy?

Question D. What types of errors commonly occur in the best performing
classifier?

5.1 Corpus

Perfect Clean Noisy
(Dataset P) (Dataset C) (Dataset N)

Text obtained via Manual Entry Manual Entry Automatic Extraction
from PDF

Structural markup
(XML)

Hand-annotated Absent Absent

Paragraph and Sen-
tence Boundaries

Hand-corrected Hand-corrected Automatic

POS Tags Hand-corrected Hand-corrected Automatic

Table 2. Dataset descriptions

We obtained the 74 gold standard files from [23], which represent open-access
computational linguistics research articles contributed to the arXiV digital li-
brary from a period of 1994 to 1996. These have “perfect” XML structure and
“perfect” human AZ annotation; we call this set “Dataset P”. The SciXML
markup used in Dataset-P provides annotations of correct paragraph and sen-
tence boundaries, topic changes, hierarchical logical structure (including head-
ers), equations, citations (differentiating self-citations from others), and citation
function.
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We then further stripped Dataset-P of the rich markup XML, to reveal
“clean” text, which is however not perfect because it lacks the important struc-
tural markup. We call this set of “Dataset C” (for “clean”).

Finally, we located the original corresponding 74 source .PDF files from
arXiv. By programmatically extracting the text from the PDF files, we ob-
tained a final “noisy” dataset, complete with all imperfections that come with
such a method – incorrectly extracted words, hypenation, font substitutions and
occasional column flow problems. We call this set of papers “Dataset N” (for
“noisy”).

The performance of Dataset N against the gold standard Dataset P measures
the system’s errors. Dataset C measures the portion of system errors that are
attributable to differences in modeling (Q1). The difference between Datasets C
and N, however, quantifies the system’s robustness (Q2); i.e., how much decrease
in performance is due to the textual noise in the PDF texts, as opposed to the
loss of structure information. The perfect AZ data set has both clean text and
structure information, but the implementation of all AZ features is only possible
with structural information.

5.2 Noisy Evaluation – Questions A and B

A heuristic alignment of sentences in Dataset P with Datasets N and C is nec-
essary, as the automatic creation of Dataset N from the PDF incurs errors in
detecting sentence boundaries, in detecting non-running text (such as titles, au-
thors, headers, footnotes, etc), and might incorporate non-running text partially
into “sentences”. Our implementation uses edit-distance, by calculating the ra-
tio of the longest common substring shared between two potentially aligned
sentences, to their average length [24]. Matches are accepted if a threshold (cur-
rently 0.65) is exceeded; heuristic search attempts to maintain relative sentence
ordering, but can jump over up to 30 sentences, as the PDF conversion is often
unable to excluded non-running text which occurs as tables or figures.

The alignment reveals a precision and recall of aligning Dataset P with
Dataset N of 9.71% and 15.88%, which is very low. This number might un-
derestimate the real precision and recall, which we believe to be in the range of
70%, but latest measurements were not possible due to time limits. The num-
bers are also lowered by the fact that Dataset P has an idiosyncratic marking
of sentences containing equations. This results in Dataset C, although the text
is entirely clean, also does not reach 100% precision and recall on alignment:
Precision of aligning Dataset P with Dataset C is 0.97, and recall is 0.99.

Once sentences are aligned, normal agreement figures can be reported for
both Dataset N and C. We use 2-fold cross-validation.

Results and Discussion Table 3 shows the results of the comparison to the
74 gold standard files. Agreement is measured using κ, which corrects for chance
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agreement [25–27]. We also report accuracy P (A), chance agreement P (E), num-
ber of items (N) and 95% confidence interval for κ.5

Table 3 answers Questions A and B. On first inspection, RAZ in both its clean
and noisy incarnations, fares significantly worse than the previously reported
AZ system that uses “perfect” data. However, one should note that the ceiling
we compare against (AZ with 16 features as reported in [14]) is not directly
comparable, as 6 additional files are used in their case.

The good news is that RAZ fares respectably on Dataset N when compared to
Dataset C, answering Question B, and validating our claim of robustness. When
interpreting this gap, one also needs to consider that on Dataset N, performance
can only be evaluated on aligned sentences, whereas RAZ on Dataset C is eval-
uated on practically all sentences (alignment is trivial, as the RAZ pipeline was
given texts from original gold standard corpus6. Thus, Dataset N has far fewer
sentences than Dataset C and would be perceived by a human user as obviously
inferior, due to this fact.

Proc. Dataset; # Files X-val Folds κ N P (A) P (E)

RAZ N (74) 2 0.23±0.016 8,494 0.63 0.53
RAZ C (74) 2 0.28±0.014 11,732 0.68 0.56
AZ P (80) 10 0.48±0.014 12,464 0.76 0.54

Table 3. Agreement with gold standard for RAZ with Noisy and Clean input data, in
comparison to AZ with Perfect input from [14].

The RAZ results at κ = 0.23 (Dataset N) and κ = 0.28 (Dataset C) are
respectable considering how little information the classifier has at its disposal,
in comparison to full AZ, where structural information, syntactic information,
and full regular expressions for meta-discourse can be exploited. One should also
take into consideration that RAZ classification is immediately and practically
usable, in contrast to any other AZ implementation we know of: it is robust,
can be performed on practically any scientific text available on the web and it
produces its classification in real-time (about 10 milliseconds per sentence on a
standard desktop PC; equivalent to 3-5 seconds per conference paper).

5.3 Clean Evaluation – Questions C and D

In our clean evaluation, we examine the performance over Dataset C, the dataset
used to train the final, deployed RAZ classifier. Here, we wish to assess the
usefulness of individual feature classes towards overall classification performance.
We used 10-fold stratified cross validation to assess our ME classification model
performance with the differing feature classes introduced previously. Table 4

5 Reporting kappa with a confidence interval is one of the recommendations brought
forward in [28].

6 Of course the system was never tested on any text it was trained on.
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gives the raw accuracy, macro averaged precision, recall and F1 performance
levels for these different combinations.

Feature Classes Accuracy Precision Recall F1

All 66.8% 47.8% 37.6% .4142

All features except one

All − Words 67.4% 45.5% 33.4% .3739
All − 2,3 grams 66.4% 46.8% 40.9% .4339
All − Title 66.7% 47.1% 38.0% .4151
All − Sent Position 65.3% 45.6% 35.5% .3908
All − Cue Phrases 66.6% 47.2% 36.2% .4019
All − Cite 67.1% 49.3% 36.9% .4121
All − Sent Length 66.8% 46.7% 37.8% .4116
All − Agent 66.6% 47.1% 37.4% .4102
All − Verb 67.4% 48.7% 37.3% .4133

Single features

Words 59.7% 36.9% 34.4% .3553
2,3 grams 59.0% 34.9% 31.2% .3268
Title – – – –
Sent Position 66.9% 18.2% 20.6% .1810
Cue Phrases 22.4% 23.8% 8.8% .1229
Cite 68.3% 16.1% 17.2% .1604
Sent Length 66.8% 9.5% 14.2% .1145
Agent 52.5% 38.0% 22.7% .2686
Verb 37.9% 23.0% 10.7% .1332

Table 4. Feature ablation test performance, averaged over stratified 10-fold cross vali-
ation. Precision, Recall and F1 are macro averaged over all 7 AZ categories.

In addition to this macro-level analysis, we also wish to assess the perfor-
mance of individual AZ categories. As such, we carried out a more detailed error
analysis. Table 5 gives the full confusion matrix among the classifier’s decision
using the full model that utilizes all features.

Results and Discussion Question C of our evaluation is answered by the data
in Table 4. Surprisingly, performance peaks (when measured by macro F1) when
we use all of the features except the bigrams and trigrams. We believe this is
caused by the sparsity of data that comes from this feature, causing minority
AZ classes to suffer. As there is some redundancy between the word (unigram)
and the bi-/tri-gram features, omitting either one does not cause much change
in the model.

It is more obvious which features are most significant to the ME models
when only a single feature class was used. All single feature models underperform
the combined classifiers significantly. While some simple models (e.g., Sentence
Position, Citation, Sentence Length) are as accurate as the combined classifiers
on a per-instance basis, their F1 scores are dismal (˜.11–.18), showing that they
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n=12898 Aim Bas Bkg Ctr Oth Own Txt Un. # of instances Precision Recall F1

Aim 138 5 14 10 7 50 4 1 229 (1.77%) 60% 44% 51%
Bas 10 45 5 10 39 45 1 155 (1.20%) 29% 18% 22%
Bkg 10 4 157 46 105 167 2 2 493 (3.82% ) 32% 20% 24%
Ctr 3 6 40 86 52 111 4 302 (2.34%) 28% 14% 19%
Oth 16 60 148 102 559 695 14 4 1598 (12.38%) 35% 28% 31%
Own 131 119 419 342 1253 7526 85 14 9889 (76.67%) 76% 87% 81%
Txt 5 3 2 1 4 26 117 158 (1.22%) 74% 52% 61%
Un. 4 4 1 3 62 74 (0.5%) – – –

Table 5. Confusion matrix for the RAZ classifier using all feature classes for our clean
evaluation. Gold standard answers in rows, RAZ automatic classification in columns.
Bolded figures are correct classification instances. The Undefined (Un.) class is used
for text that is not body text (e.g., section headers, page numbers).

mostly just classify all sentences as Own, the majority class. Our tests show
that the battery of features is robust on its own (from our All – single feature
tests), and that no single feature performs well outright (from our single feature
tests).

To answer Question D, we turn to the detailed analysis of the confusion
matrix of the full classifier (Table 5). Focusing first on the number of instances
of each class, we notice right away the problem of skewed input in the dataset –
almost 90% of the ground truth belongs to just two classes: Oth and Own. This
skewed input certainly makes the recognition of the minority classes difficult, as
only a modicum of training data is available for these classes.

Among the remaining 5 minority classes, textual structure (Txt) and aims
(Aim) are relative easy to identify, likely due to the presence of key words (e.g.,
“propose”, “Section”) and common positions (following other Txt, or at the be-
ginning of the paper). Background, Basis and Other are also commonly mistaken
for each other, due to their similarity in wording. This is also a common mistake
for people to make as well – in some sense, all three of these classes describe
contextual information needed to understand the author’s own claims, but differ
in the nuances of attribution. We believe being able to attribute personal names
and citations to either the paper’s authors (self-citation) or to others would help
to improve these classes’ recognition. Finally, the constrast class Ctr is the
most difficult to classify, with a meagre .19 F1. Contrasts are sometimes built
over multiple sentences and are not always signaled explicitly by discourse cues,
contributing to false negatives. On the other hand, some strong lexical cues for
contrast are also used in other ways (e.g.,“We were able to detect the objects
however small they appear in the video dataset”), leading to false positives.

6 Deployment

We believe that argumentative zoning is useful in obtaining an overview of a
document’s purpose, structure of argumentative and relationship to other doc-
uments. To test this theory, we must integrate the AZ classifer within a digital
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Fig. 2. RAZ annotations in the ForeCiteReader environment. The reader has clicked on
a particular Contrast sentence in the sidebar (Inset A), which has been automatically
highlighted in the reader (Inset B, slightly darker green than other Ctr sentences).
Some lines have been misidentified by the environment as non-body text and vice versa
(Insets C and D).

library reading interface, where the reader can view AZ annotations directly
on the document. For this purpose, we retrained the RAZ classifier over the full
training dataset, and incorporated it into ForeCite [29], a digital library that has
a web-based reading environment that can display arbitrary, word-span based
annotations, as shown in earlier in Figure 1 (which is actually a detail of the
screenshot of the system), and in Figure 2.

The interface overlays a transparent colored layer over each sentence in the
document, where the color is determined by the RAZ classifier. The interface
allows the reader to see the AZ annotation of a sentence in the context of other
sentences (in the reader window, left panel), as well as jump to other parts
of the document, grouped by AZ classes (right panel). The AZ panel features a
collapsable hierarchical interface that allows quick access to the text and location
of sentences of a particular AZ class.

The careful reader will note that RAZ annotation is omitted to the bullet
points and headers in 2. The ForeCite framework automatically determines (with
some noise) which text in the document is body text, where sentences start and
end, and passes only these body text sentences to the RAZ classifier.
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6.1 In Situ Usability

To assess whether RAZ does help in sensemaking, we have carried out a pre-
liminary indicative study with the ForeCite reading interface. The task in the
experiment was to answer four central questions about the paper, and then to
critique the interface and annotation shown.

Four graduate research students in information systems were asked to skim
two computational linguistics 8-page conference papers (not from the training
data), for which they had little previous background. However, they had general
background in reading conference papers. They were shown one document in
the ForeCiteReader plain reading interface, and one displaying RAZ annotation.
Each subject experienced a different ordering of the papers and of the interfaces,
to mitigate order and learning effects.

The students were given a copy of the task instructions, while the inter-
viewer verbally went over the instructions. Before answering the questions and
providing feedback, the students were to first skim the documents. The entire
interview took about 30 minutes per subject. The four questions that were given
are replicated below, paraphrased for length considerations:

Q1: Please name the central contribution(s) of the work.
Q2: Name two related works in this paper and describe their relationship to

this paper.
Q3: Identify any datasets that were used in evaluation and its origin.
Q4: (one variant shown) Let’s suppose that another paper cites this paper as:

“[This paper] describes the first approach to apply co-training in a bilingual
setting, that is with a pair of languages.” Can you identify whether this
citation claim is a valid or not?

The students were informed that they would be timed, but that a longer or
shorter time to task completion would not affect them in any way. In designing
the questionnaire, we hypothesized that Q1 and Q2 could be addressed by using
the AZ markup, specifically by the Aim for Q1 and Oth, Ctr and Bas classes,
for Q2. Q3 was inserted as a control, as AZ does not specifically indicate sen-
tences that describe datasets (as the AZ scheme is general and does not presume
experimental validation). Q4 was tailored to each of the two articles, and asks
whether a claim in another (hypothetical) paper citing the target paper could
be validated.

We emphasize that our study is indicative and not designed to be summative
or statistically accurate, since the sample size is small. With this in mind, we
discuss salient observations from the survey with respect to AZ.

Time to Task Completion. AZ did not have a measureable effect on task
time completion. Using AZ required the subject to experiment with the
interface and also required subjects to shift attention (the left vs. right of the
interface) and to change task (reading vs. focused navigation). The sentence
previews in the AZ sidebar alleviated this somewhat, but when context was
needed to interpret the sentence, subjects had to return to the reading panel
to verify evidence.
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AZ Effectiveness. In both subjective opinion and interviewer observation, AZ
had a positive effect in locating answers to Q2 when used by the subjects.
For Q1, it did not help as both papers indicated the goal within the abstract
or introduction, and most of the subjects started off reading. However, one
subjects did use the Aim class to read off the contributions of the paper as
listed throughout different sections of the paper.

Annotation Noise. While our current AZ classifier performs only at a mediocre
level (.41 macro F1), differentiating the minority classes (i.e., Aim, Bas,
Ctr, Oth) from the Own majority helped to identify candidate sentences
that might contain answers. Subject commented that the annotations were
largely correct for key sentences and that errors in the automatic segmen-
tation of the body text and sentence delimitation were larger barriers than
the AZ classification itself (as seen in Figure 2).

Interaction with Reading. Subjects universally complained that the AZ
coloring detracted from their reading experience, as it decreased the contrast
of the text. Subjects suggested that the interface should be loaded plain but
that spans could be colored on demand from the right hand side AZ sidebar.

Unknown Terminology. While unknown terminology kept subjects from
deep understanding of the goal, they were generally able to recognize sen-
tences that describe answers to the questions. Two subjects stated that an
extension of AZ could help identify definitions.

Other Extensions of AZ. Two of the four subjects suggested that AZ be
extended to work to extract key facts, such as the identity of datasets and
specific tools or methodologies used. They also mentioned that contributions
(rather than aims) and experimental results could be part of the AZ schema.

The pilot evaluation hints that RAZ can be a useful part of a holistic sense-
making interface. Our current RAZ system certainly assists the reader, along
with the authors’ own careful text structuring, in interpreting the major points
in a work as well as its contextual place among referenced documents. While
the reading interface should place reading functionality first, AZ (and possibly
other) annotations should be called on demand and displayed in an unobtrusive
manner.

We are currently revising the integrated system to account for the feedback.
Our current work can be categorized along two fronts. The first front is in im-
proving the interface, such that reading ease is maximized. Standard, digital
reading affordances (locating a section, page, or finding instances of individual
words) need to be supported. Parallel work within the ForeCite digital library
project has achieved this goal of the re-discovery of logical sections from scien-
tific documents (both modern ones born digitally as well as legacy documents
that are only represented by scanned images) [30].

Second, as our subjects have commented, AZ highlighting should be done
on demand by the user and only for a particular AZ class. We have modified
the display framework to account for this feedback. Own sentences in particular
are not helpful to identify (as this is the majority of the paper), so are now
omitted from the interface entirely. The second front is to extend information
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extraction and classification further into the document content. Our longer term
plans are to extract definitions of terms, identify the semantic categories of perti-
nent keyphrases as methods, systems, tools, or other domain-specific constructs.
These may further aid the understanding of the document.

7 Conclusion

Abstracts have been acknowledged as the author’s view of the importance of
their own work. Recently, the community has acknowledged that sentences that
cite a paper describe the community’s view of the importance of a paper [31, 32].
We claim that the document itself has its own voice about what is important.
The discourse and argumentative structure in a well-written paper also direct a
reader to its important aspects within the reading context.

We have captured this notion of argumentative zoning (AZ) in an imple-
mented classifier and described the textual features it uses to render its judg-
ment. To our knowledge, we describe the first robust AZ system (RAZ) that
is able to perform such classification on noisy inputs that come from PDF text
extraction, as well as the relatively clean output of optical character recognition.

Our work also represents the first system that has been integrated into a
production digital library system, ForeCite. Our preliminary in situ study in-
dicates that robust AZ can be a helpful source of evidence in sensemaking for
understanding the contributions and context of the individual scholarly paper.
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