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Abstract—We study how users of multiple online social net-
works (OSNs) employ and share information by studying a com-
mon user pool that use six OSNs – Flickr, Google+, Instagram,
Tumblr, Twitter, and YouTube. We analyze the temporal and
topical signature of users’ sharing behaviour, showing how they
exhibit distinct behaviorial patterns on different networks. We
also examine cross-sharing (i.e., the act of user broadcasting
their activity to multiple OSNs near-simultaneously), a previously-
unstudied behaviour and demonstrate how certain OSNs play the
roles of originating source and destination sinks.

Keywords—Online Social Networks, cross-sharing, user be-
haviour

I. INTRODUCTION

Reading and posting from social networks has become
a staple daily activity for many. The Pew Internet Project’s
January 2014 research reported that 74% of online adults
use social networking sites1. More recently, the Global Web
Index’s January 2015 Social Report monitored engagement
with close to 50 online social networks (OSN) observed an
average of 5.54 social media accounts per user, with 2.82 being
used actively2.

Even with so much social network activity and the wide
variety of networks, the published literature reports little about
their usage. We know precious little about what users actually
do on OSNs, aside from our own individual use. Even less is
known about how individuals interact across multiple OSNs.
Many functionalities across networks are similar. So why
do people find themselves using more than one? Are what
individuals do on one network the same as their behavior
on another? Does participation in one network impact their
activity on another?

These questions are important, but yet remain unaddressed
by existing literature. With many of today’s users being
engaged on multiple platforms, do studies limited to individual
social network platforms provide a good picture of user
behaviour in general? To date, there has not been a definitive
answer to this question.

The above are all questions about single networks, but
users can use several OSNs simultaneously. One artifact of
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this is cross-network sharing (akin cross-posting in mailing
lists) – when people post about their activities on more than
one network. To our knowledge, why and how do people do
such cross-sharing has not previously been investigated.

We aim to address both issues of multi- and cross-OSN
behavior in part in this work. We present an exploratory user-
centric study on a large sample of users that participate in
multiple OSNs. In particular, we analyse over 15,000 individ-
uals that participate and link their accounts on six platforms
– Flickr, Google+, Instagram, Tumblr, Twitter, and YouTube –
through their publicly-available profile descriptions and public
sharing activity on these networks. Through our study of
this dataset on macro-, meso- and micro-scale analyses, we
conclude that single network analysis is limited and does not
yield representative holistic patterns. Even though we only
study public data, we find support for the claim that each
network is different and has a particular social networking
niche to fill.

We first review related work in Section II and then describe
our dataset in detail in Section III. We then analyse user
profiles, posting time, post topic and professions with respect
to multiple networks in Section IV. Finally, in Section V we
turn to cross-network interactions, discovering a clear topology
of source and sink network relationships among public OSNs.

II. RELATED WORK

Structure, content and user behavior are three major aspects
that can be said to characterize research on social networks.
Leveraging the user relationship graph, early studies [1], [2]
investigated the structural properties among networks such as
Flickr, YouTube and Myspace. They confirmed two empirical
observations true of other networks; namely, that they follow
a power law distribution and exhibit both small-world and
scale-free properties. More recent work examined how the user
generated content can be leveraged for knowledge discovery
by examining networks over time and topic evolution. For
example, Althoff et al. presented a comprehensive study about
the evolution of topics across three online media streams [3].

The third aspect, user behavior, plays a key role. Un-
derstanding user behavior is a key modeling problem as it
affects the social network structure as well as attempts to best
model users themselves. For example, Lerman et al. conducted
empirical analyses of user activities on Digg and Twitter to
assess how it affected dissemination patterns [4]. Other user
activities, such as social connection [5], content generation [6],



participation in conversation [7], have also been studied to gain
better understanding of OSNs.

However, a major shortcoming of these works is that they
are limited to macroscopic analyses from a network (graph)
perspective. Most works have neglected any analysis of micro-
(individuals) or meso- (small aggregrates) levels. In contrast,
we perform a user-centric analysis: following the same users
across their multiple social networks to uncover how and why
users participate in and interact among their multiple social
networks.

To understand how user interacts with multiple OSNs,
early studies exploited user clickstream data from passively
monitored network traffic [8] or a social network aggregator
[9]. However, clickstream data is difficult to obtain for cross-
network analysis due to privacy reasons, rendering such tech-
niques difficult to execute in practice. While user-generated
content (UGC) in part overcomes these problems (unlike
web search history, UGC in OSNs is often created by users
voluntarily and for public consumption, alleviating privacy
concerns), the additional problem of user linkage needs to
be solved. Automated user linkage aims to link user accounts
among different social networks that belong to the same person
in the real world [10], [11].

Given the associated user accounts and collected UGC
among different networks, works can then address the sub-
sequent analysis and build downstream application. For ex-
ample, Kumar et al. performed pioneering analyses on users’
migration patterns across seven OSNs, providing guidelines to
encourage or deter social media traffic [12]. Chen et al. exam-
ined the extent of personal information revealed by users across
multiple OSNs, and found the amount of information revealed
in user profiles correlated with occupation and pseudonym
use [13].

There are relatively few studies on cross-posting. Many
OSNs provide a cross-site linking functionality – linking two
accounts on different platforms so that information can be (au-
tomatically) shared between them. This is often a mandatory
step for users to perform cross-posting. Chen et al., using a
data-driven approach, investigated how users cross-linked their
Foursquare accounts to other OSNs, namely Facebook and
Twitter [14]. Most relevant to cross-posting is work by Ottoni
et al. [15]. They studied the correspondence and discrepancy in
user activities across Twitter and Pinterest. Their key findings
were that 1) users often generate content on Pinterest and
then share them to Twitter, and 2) users exhibit more focused
interests on Pinterest than Twitter. In contrast, our research
is based on six OSNs that span a more diverse set of media,
and correlates these with analyses from other perspectives (i.e.,
temporal and professional aspects).

III. DATASET

A user-centric study of cross-OSN behavior requires a
collective study of many individual users, each of whom use
multiple OSNs. We purposefully sidestep the issue of user
linkage to focus our attention on user behavior.

We leverage an OSN aggregation service called About.me3,
which enables people to easily create a public online identity

3http://about.me

Fig. 1. A sample About.me profile linking to 10 of the user’s websites.

that unifies a self-described short biography with prominent
links to the person’s other OSN accounts and personal web-
sites. According to web analytics provided by Alexa Internet4,
About.me is ranked as the 1,731th most popular website
worldwide, which is more popular with female users, users
completing graduate education, and with a worldwide user base
with a prominent number of visitors in the U.S., India, Spain
and Canada, among others. In our own informal analysis of
About.me users, we find that they are often people who may
benefit from having a stable, open, public and visual presence
on the Web for professional reasons: creative, freelancing and
marketing types are common job profiles of About.me users.

While About.me users are clearly atypical Web users, they
do represent an important subset of OSN users that use multi-
ple OSNs and benefit from having a central point to aggregate
their activities and publish an overarching biographical sketch
of themselves. We argue that such users are important to
study as they represent key aggregators and disseminators of
information on OSNs, by virtue of needing a service like
About.me to manage their distributed activities and identity.
Aside from solving the user linkage problem manually for us,
About.me importantly 1) offers an application programming
interface (API) and 2) ensures that the data captured by their
site is publicly available, which are both considerations for
programmatic and reproducible analyses.

Using the About.me API, we collected a set of more than
180, 000 registered user profiles. Fig. 1 shows the profile of
Jane Doe (not her real name), which links to her OSN accounts
and websites (including Twitter, Linked.In and Wordpress).
From the cumulative distribution of the number of linked OSN
accounts per user, we see that the a slight majority of users
list four or more accounts (Fig. 2(b), red line).

We further limit the dataset used in this paper to users that
link to certain OSNs meeting three criteria for inclusion. To
ensure our results are representative, we limit our study to the
twelve most frequently-linked OSNs (Fig. 2(a)). We further
require that the OSN expose most user information publicly
through an API, so that we could retrieve user activity; and
that the final OSNs chosen represent the breadth of media and
functionality common in today’s Web 2.0 ecology. With these
selection criteria, we selected the 15, 595 users that linked at
least the average (n = 4, n̄ = 3.7) number of OSNs from

4http://www.alexa.com/siteinfo/about.me, retrieved on 27 April 2015.



(a) # of users per OSN

(b) CDF of # of accounts per user

Fig. 2. # of About.me users linked to the 12 most frequently-linked OSN.

TABLE I. DEMOGRAPHICS OF OUR COMPILED ABOUT.ME DATASET.

OSN # Users Activity Type # Activities
Twitter (Twi) 15,103 microblog 43,042,857
Google+ (G+) 12,445 post 2,522,873
Instagram (Ins) 11,922 photo (upload) 1,054,047
Tumblr (Tum) 10,259 post 8,171,592
Flickr (Fli) 10,139 photo (upload) 11,266,954
YouTube (YT) 8,883 feed (upload) 180,618

the set of six OSNs: Flickr, Google+, Instagram, Tumblr,
Twitter and YouTube. Here, we note that Flickr, Instagram
and YouTube focus on photo and video sharing, Twitter and
Tumblr are microblogging providers, and Google+ is a typical
social networking site. To compile the dataset used in this
study, we crawl each user’s publicly accessible activities via
the respective APIs on 15 August 2013. Since all of the data
we have obtained is public, and since we believe that the
compiled dataset is a valuable resource for studying multiple
OSN behavior, we have released our dataset for others to
conduct further study5. Table I gives statistics on the resultant
dataset.

A. Statistics

We first calculate the degree of overlap of users of one
OSN with the others in our dataset using Jaccard similarity
(Table II). Our figures are largely consistent with the previous
Pew Internet study that was performed over a global sample of
online adults [16]. We see that Twitter has the largest overlap,
followed by Google+, revealing their popularities among active
social media users who interact with multiple OSNs. Among
pairs, we see that YouTube shares 84.1% users with Google+,
likely explained by their unique affiliation to Google and easy
cross-sharing mechanism; and that overlaps between Instagram
and Tumblr are also high (78.8% and 68.5%), which validates
previous survey work [17] demonstrating that users prefer
OSNs that better support visual media.

5http://wing.comp.nus.edu.sg/downloads/aboutme

TABLE II. % OF USERS OF ONE OSN WHO ALSO PARTICIPATE IN
ANOTHER OSN IN OUR ABOUT.ME DATASET.

also use
Twi G+ Ins Tum Fli YT

% of Twi – 79.4 76.4 65.2 64.4 56.2
% of G+ 96.4 – 73.5 61.7 61.0 65.0
% of Ins 96.7 76.8 – 68.5 60.4 51.0

% of Tum 96.0 74.9 78.8 – 59.4 49.2
% of Fli 96.0 74.8 71.0 60.1 – 53.3
% of YT 95.5 84.1 68.4 56.6 60.9 –

Fig. 3. Cumulative distribution of users’ average daily OSN visits (excluding
zeros).

Merely linking an OSN account does not necessarily imply
that the user actively participates. To gain deeper insight, we
filter away dates where users did not use one of the examined
OSN. We plot the average number of networks visited daily
as a cumulative distribution function (Fig. 3), where a single
user’s different days of use each contribute one data point. We
see that involvement on multiple networks is quite common
– ∼ 40% of all users in our dataset are active on any given
day, interacting with an average of 1.5 networks. We further
examine that on highly active days – e.g., the days with over
10 activities – the average number of networks utilized is also
correspondingly larger (dashed line in Fig. 3).

IV. MULTI-NETWORK PARTICIPATION ANALYSIS

Many online social network platforms have similar func-
tions. Being able to follow individuals, post media and com-
ments are pretty much ubiquitous activities that all OSN
expose to users. Given this common functionality, why do
users choose to use different OSNs? Is it due to their personal
social networks (sharing things with different people who serve
different social roles), or due to differences in functionality?
Our dataset also records users’ self-reported profile description
(on each network and About.me as well), in addition to
historical activity logs of the users’ interaction with each OSN.
These two data sources allow the analyses to be done on
each source, which can be used to triangulate support for
conclusions and yield complementary perspectives. Our results
from both source corroborate that different OSN platforms are
utilised differently, and serve distinct purposes collectively.

A. User Profiles

Online social networks often encourage users to maintain
and complete their profiles, possibly to increase users’ vested
interest in using their network. These optional profiles are
typically short sentences (e.g., a tagline) or paragraphs and
are publicly accessible, making them a good source of free
text demographic information. Here we seek to answer the



TABLE III. USER PROFILES FOR TWO USERS WHO PARTICIPATE IN ALL
SIX OSNS. NOUNS USED IN SIMILARITY CALCULATION ARE BOLDED.

User 1
Twitter I’m a Digital Media Specialist passionate about self

education, lifelong learning...
Google+ Knowledge is freedom. I run a website called DIY

Genius that helps young people self education.
Instagram Explore Dream Create.

Tumblr I’m interested in digital media, adventure sports, and
mountains.

Flickr All my photographs are posted under the creative com-
mons non commercial attribution...

YouTube A collection of videos I’ve filmed on my iPhone while
hiking skiing and biking in the mountains.

User 2
All 6 networks Web Geek?, Senior Digital Strategist in Melbourne,

social media maven, Google-aholic, simplicity and UX
advocate...

Fig. 4. Cumulative user distribution for self-description similarity. 7% of users
have similar profiles across networks (top dot), while the majority describe
themselves quite differently on different OSNs (left dot).

question: How do profile descriptions differ across multiple
OSNs?

The user profile function is a common feature in OSNs,
which is usually optional (as in the case of the studied six
OSNs). We expect that some users reuse the same textual
description over all of their OSN accounts. This is observed in
our dataset (e.g., User 2 in Table III) but actually makes up a
relatively small percentage of cases; of the users that filled all
six OSNs profiles, 3% used the same descriptions throughout.
More common were user profiles that hinted about the user’s
identity with respect to the common functionality of the OSN.
User 1 illustrates this case where each profile description is
different, and customizes it towards the main functionality of
the OSN; disclosing their job title in Google+ and Twitter,
introducing personal interests in Tumblr, and summarizing
their media contributions in Flickr and YouTube.

To examine this issue further, we collected all users who
had populated profiles in all six networks (inclusive of Users 1
and 2). We further filtered out users whose descriptions were
too short (less than 5 words), to lessen the impact of word
sparsity. On this final set of 190 users, we first preprocessed
their profile descriptions in each network by retaining only
frequent non-stopword nouns (as bolded in Table III). We
employ the standard Jaccard coefficient over the two sets
of remaining single-word nouns from the pairs of the user’s
profile descriptions, to calculate the average pairwise similarity

of each user’s profiles.

We plot the cumulative distribution of the average pairwise
Jaccard profile description similarity in Fig. 4. We see most
users have an average pairwise similarity significantly less
than 0.5 (∼ 95%, top labeled dot), which is considered a
common threshold for sentential similarity in prior work [18].
In fact, the majority users’ profile similarity score is lower
than 0.15 (left labeled dot), indicating that most users describe
themselves very differently across different OSNs. Our follow-
up manual sample analysis confirms this hypothesis. We thus
posit that social networks are distinct to users based on their
functionality, and that the functional difference manifests itself
in the users’ self-description in the user profiles.

B. Post Time

Being habitual beings, timing describes the way we behave
in our daily lives: activities such as eating, sleeping and
working. Correspondingly, post timing gives us a way to
ascertain how users behave on each OSN. In this subsection,
we analyse user behaviour by looking at temporal metadata
of all posts shared by the user. We study a larger pool of
27K About.me users that provide their locale information, from
which we are able to find out the local time of each post. Here,
we answer the question: How does user sharing behaviour vary
with time?

1) Time of Day Analysis: To begin, we analyse the time of
day users are most active in sharing content on social networks.
We first divide the hours of a day into 8 intervals of 3 hours
each and distinguishing between weekdays and weekends. For
each user, we aggregate his/her sharing activity on each social
network into a distribution over the 8 intervals. After summing
and normalizing the distributions for all the users, we plot the
resultant aggregated distributions as seen in Fig. 5.

Macroscopically, the results show that activity across all
six social networks follow a similar general trend. Low levels
of activity are observed in the wee hours of the night, and
higher levels of activity during the waking hours of the day
and evening.

Taking a closer look, we notice that Google+ exhibits
higher levels of activity during working hours (09:00-18:00)
on weekdays; but exhibits lower and more evenly distributed
activity during and after working hours on weekends. Interest-
ingly, Instagram shows an opposite trend, peaking in activity
after working hours (>18:00) on weekdays, and showing a
decline after working hours on weekends. This hints, albeit
subtly, at the contrasting nature of these two social networks
– Instagram is a platform more frequently used during non-
working hours, while Google+ is used more during working
hours.

2) Day of Week Analysis: We see a clearer duality between
OSN’s usage during working times and non-working times
when we perform the same analysis over days of the week.
Fig. 6 shows the distribution of sharing activity over days of
the week and provides us with several key insights. Image
based social networks (i.e., Flickr and Instagram) show a
different trend throughout the week, peaking on the weekends,
in comparison with the other video based, text and mixed
media social networks that peak during the middle of the week



(a) Weekend

(b) Weekday

Fig. 5. Distribution of user sharing activity over 24 hours for each social
network.

– Wednesday. One possible reason for this is that users are less
able to take photos due to work on weekdays.

Fig. 6. Distribution of user sharing activity over days of the week for each
social network.

To quantify the temporal similarity of the social networks
in sharing activity, we employ Kullback-Leibler (KL) diver-
gence to measure the difference between their posting day-of-
week distribution. KL divergence is an asymmetric measure of
difference between two probability distributions, defined by the
information loss when using one distribution to approximate
another:

Dkl(P ||Q) =
∑
i

P (i)ln
P (i)

Q(i)
(1)

We chart a similarity matrix as seen in Fig. IV using
scores derived from Equation 1 (KL divergence for discrete

TABLE IV. KL DIVERGENCE SCORES BETWEEN THE DISTRIBUTIONS
OF OSN SHARING ACTIVITY OVER DAYS OF THE WEEK.

Q\P KL Divergence Scores
Twi G+ Ins Tum Fli YT

Twi 0 0.0021 0.0365 0.0018 0.0172 0.0023
G+ 0.0021 0 0.0226 0.0070 0.0075 0.0002
Ins 0.0340 0.0217 0 0.0505 0.0131 0.0233

Tum 0.0019 0.0074 0.0553 0 0.0282 0.0072
Fli 0.0164 0.0073 0.0132 0.0263 0 0.0067
YT 0.0022 0.0002 0.0244 0.0069 0.0069 0

TABLE V. PROFESSION DESCRIPTION EXAMPLES.

Profession Self-description
Marketing
Expert

I am making new improvements new innovative solutions and
new marketing tactics for e commerce affiliate marketing and
vertical e commerce in Turkey. I want to make e commerce
pie bigger. Also I am making consulting for e commerce and
dotcom projects. If I believe in something, I have to do it.

Producer I’m a Delhi based Electronic musician creative artist. I DJ
produce minimal techno tracks as [...]. Also, I love robots.

Developer I’m a fifty something Scottish born software developer living
in strand near cape town South Africa and working for [...] in
Stellenbosch. I enjoy photography and am a committee member
of [...] photographic society photography.

distributions). We note how dissimilar Instagram and Google+
are. This is consistent with what we observe from Fig. 6 –
Instagram users are extremely active during weekends, while
Google+ users are mostly active during the middle of the week.

C. Profession

As described in Section II, About.me is a platform for users
to advertise themselves professionally. Leveraging on this, we
seek to answer the following question: Do users favour certain
social networks for sharing personal and work related content?

The separation of work related and personal posts are
user dependent, e.g., photography is one’s hobby but another’s
profession. Therefore, to answer the above question accurately,
we need to group users into professions. We start with a set of
seed keywords that are related to ten representative professions
in About.me (i.e. Marketing Expert, Producer, Developer,
Photographer, Realtor, F&B, Healthcare, Blogger/Writer, Au-
tomobile, Graphic Designer/Artist). Then we search users’
About.me profiles by these keywords and manually validate if
each keyword adequately describes the profession. We prune
and add more keywords and repeat this process until we are left
with a sizable set of keywords. Finally, we use these keywords
to identify user’s profession and select users for our profession
group analysis.

Due to limited space, we limit our analyses here to
three professions, namely, Marketing Expert, Producer (e.g.,
Musician, Podcaster, Filmmaker), and Developer. We select
these three professions for two reasons: 1) they are typical
professions in About.me and have a large user base, and 2)
they are easily distinguishable and thus help to simplify the
identification and validation process. In Table V, we provide
example self-description for the three professions.

Our sample used in this analysis consists of 200 users from
each of the three selected professions. We determine if a user’s
post is work related or personal by drawing a relation between
the post’s topic and the user’s profession. To automate the
process of inferencing topics from posts, we employ statistical
topic modelling in the form of Latent Dirichlet Allocation



Fig. 7. Percentage of users who are workaholic – primarily using social
networks for professional purpose.

(LDA) [19]. LDA models documents and their vocabulary
in the same space, clustering similar documents and words
together based on co-occurrence. Social Media posts being
very short documents face the issue of insufficient verbosity
for LDA to assign topics accurately. We tackle this issue by
author-time pooling of posts as described in [20]: Instead of
a post being a single document, we treat a document as a
collection of posts that have been shared within a time interval
of 4 hours by the user. To construct our LDA model, we
select a group of 2000 random users and train our model
on a collection of 1, 441, 987 author-time pooled documents
from their posts from all six social networks, with a predefined
number of topics set to 50 by experimentation. We manually
assign a label to each topic by looking at its top keywords, and
further associate relevant topics to their respective profession
groups. Some examples of the topic–profession associations
are: Search Engine Optimisation (SEO) topics to marketing
professionals, technology and gadgetry topics to developers,
and music and video making topics to producers. We aggregate
the frequency of posts with the same labelled topic given by
LDA to find out the top topics for each user.

We start our analysis by asking: For each profession
group, what percentage of users are “workaholics”, those who
frequently post about their work in OSNs? To be specific, we
deem a user a workaholic if any of his/her top two topics in
any of the six social networks matches the topics related to
his/her profession. Fig. 7 shows the percentage of workaholics
in the three professions.

Developers do not frequently use social networks for
professional purpose as compared to the other two professions.
This phenomenon may be explained by the fact that the other
two professions have more reasons to use OSNs as means
of reaching out to their target audience: producers of content
may use OSNs to publish their works and likewise, marketing
experts use them as means of promoting their cause. However,
there may be less motivation for developers to do the same,
hence a less sharing of work-related content is observed for
them.

A natural follow up question is: For those workaholics,
which social networks do they prefer? Fig. 8 shows that
Google+ is consistently a popular choice amongst all three
groups for sharing content related to work. YouTube is a
video based OSN and is the primary choice for producer,
as it is a suitable medium for them to distribute and publish
their work. Twitter is the favourite choice amongst marketing
experts possibly because of the high propensity for Twitter
users to browse tweets via hashtags or trending topics, thus

Fig. 8. User’s social network preference to share work related content.

making it easier for unrelated users to discover each other – a
great marketing outreach medium.

For each profession group, we further investigate the most
popular topics posted on each OSN for both hourly and daily
intervals. We observe that the most popular topics remain
consistent over time, e.g., the most popular topic for developers
on Twitter is technology for any day of the week and any time
of the day. This shows each platform, to a user, has its own
dedicated function, i.e., a platform used mostly for work will
unlikely be used often for personal (non-work related) purpose.

Our analysis in this subsection concurs with results ob-
tained from our temporal analysis. Google+ sharing activity
reaches its peak during working days and similarly, is the
network of choice for professions that do not deal with media
(music, video, images). Also, Instagram consistently ranks one
of the lowest for all three professions supporting our earlier
postulation of it being a network for personal rather than
professional use. We can conclude from our analysis that some
OSNs are used more frequently for work related purposes,
whereas others are preferred for personal use.

V. CROSS-NETWORK INTERACTION ANALYSIS

Informally, cross OSN sharing is when a user multicasts
his/her activity over multiple networks. For example, photos
shared from Instagram to Flickr are automatically tagged as
”uploaded:by=instagram”, indicating their originality. Like the
Instagram/Flickr case, cross sharing often has a source OSN
platform (shared from) and a sink (shared to).

To examine this user behavior, we build timelines for
each user’s activities and identify cross-sharing activities. An
example timeline fragment of one user is shown in Table VI,
where we observe cross-sharing. Cross-sharing can be enabled
by third party software, which may broadcast the content
simultaneously to target OSNs. We identify cross-shared (ag-
gregate) activities as consecutive activities on different OSNs,
where common timing and content define the bounds of the
cross-shared activity (bolded instances in Table VI). In our
dataset, we programmatically identified 111, 431 cross-sharing
activities.

Formally, we define cross-sharing as a 4-tuple:

CS :=< U,P,Nsource, Nsink >

where U is the user identification, P is the post being cross-
shared, Nsource indicates the network where the post is orig-
inally created (or source), and Nsink indicates the destination
network (or sink). Note that we only assign source and sink



Fig. 9. Cross-sharing per OSN. (l) percentage of posts shared from an OSN;
(r) percentage of all identified cross-shared activities in our dataset shared to
a particular OSN.

roles only when evidence of the direction of sharing is present;
e.g., in Table VI, the tweet’s inlined shortened URL resolves
to Instagram, and the photo on Flickr contains the machine
generated tag “uploaded:by=instagram”.

TABLE VI. A FRAGMENT OF A SAMPLE USER’S ACTIVITY TIMELINE,
THAT ILLUSTRATES A CROSS-SHARED ACTIVITY (BOLDED).

Time Network Content
26/05/2013
18:36:46

Twitter my poolside jam... http://t.co/f2480xhw5u

27/05/2013
03:00:42

Instagram I miss baby snuggles when the kids are
away... :) I’m so blessed. #momlife

27/05/2013
03:00:44

Flickr I miss baby snuggles when the kids are
away... :) I’m so blessed. #momlife

27/05/2013
03:00:44

Twitter I miss baby snuggles when the kids are
away... :) I’m so blessed. #momlife @ home
tweet home http://t.co/WioRNR6BjA

27/05/2013
21:02:02

Twitter you just never know who or what’s going to
show up at a wedding ... ;)

Given the identification of these cross-sharing activities,
we characterize cross-sharing behavior in terms of platform
considerations in the following.

We map the dissemination flow of user content in the six
OSNs by aggregating the respective Nsource and Nsink identi-
ties over all detected cross-sharing activities. Fig. 9 (left) shows
the percentage of all posts in each OSN that is cross-shared to
another OSN. Instagram and YouTube hold the highest shared
from percentage and serve as the most significant source OSNs.
We also plot (in Fig. 10) the CDF of users with respect to
their cross-sharing ratio; i.e., the percentage of the user’s own
content that are also disseminated to another OSN. Cross-
sharing turns out to be platform-sensitive. Instagram serves as a
popular source; over 90% of Instagram users have shared their
Instagram posts to another network. For Flickr and Google+,
fewer than 20% of users took their original platform content
and shared it to another OSN.

We graph each platform’s share of all 111K+ identified
cross-shared activities as a destination (sink) in Fig. 9 (right).
Twitter dominates, being the dominant destination for 54% of
cross-sharing activities. We believe that OSNs examined play
largely different roles in source/sink discrimination. Source
and sink networks for cross-sharing activity are markedly
different.

Instagram user content originates from its mobile applica-
tion that places sharing as a central theme, manifesting in the
embedded “Share” button to route the post to various social
media networks. As shown in Fig. 11, the central placement of
the sharing functionality and its usability (dedicated buttons for

Fig. 10. Cumulative distribution of users with respect to their percentage of
cross-sharing activities.

Fig. 11. Sharing functionality in the Instagram mobile application.

different OSNs) drives the cross-sharing behavior we observe.
This suggests that platform functionality strongly drives cross-
sharing. We examined the current (ca. April 2015) state of
embedded cross-sharing options for each of the six networks,
both in their website versions as well as mobile apps for the
iOS and Android mobile platforms, presented in Table VII. We
find that Instagram and YouTube support the most sharing des-
tinations; Tumblr and Flickr support sharing to certain sinks,
while Twitter and Google+ do not support sharing. Aside from
in-platform support, cross-sharing can be done through third-
party plug-ins (e.g., friendplus.me for Google+) or manually
done by the user. Fig. 12 illustrates our understanding of the
information flow among the networks examined, where the
horizontal axis represents the tendency of a platform to serve
as source or sink, and the vertical axis represents the level of
explicit cross-sharing interaction. With some caveats, we see
that OSNs that focus more on visual media tend to be sources,
whereas platforms focusing textual media serve more as sinks.
Tumblr, Flickr and Google+, positioned in the middle, play
both roles.

We make several additional observations surrounding
cross-sharing source (source support). Although Instagram cut
off its sharing to Google+ after being acquired by Facebook
(April 2012), some of the About.me users in our dataset still
manage to cross-share their Instagram photos to Google+.
Also, while Google+ positions itself as a sink network, and
does not support any cross-sharing, users have found means
to do so through other workflows. We believe both source and
sink characteristics have their roles within the OSN ecology:
“sourceness” acknowledges original content and possibly the
value add of using a particular platform (artistic filters in
Instagram may be an example), while “sinkness” promotes an
aggregator effect that enables downstream analytics to gain
more complete pictures.



TABLE VII. CROSS-SHARING SUPPORT BY PLATFORM.

Supported destination network
Twitter –

Google+ –
Instagram Twitter, Flickr, Tumblr

Tumblr depends on the user’s personalized setting
Flickr Twitter, Tumblr

YouTube Twitter, Tumblr, Google+

Fig. 12. User generated content flow among OSN platforms. Content flows in
the directions indicated by arrows and line thickness represents flow volume.
Arrow color correspond to a specific OSN.

VI. CONCLUSION

We studied multiple online social networks (OSNs) from a
user-centric perspective, with the aim of discovering behavioral
patterns in their multiple network use. We analyzed how
users participate and interact among six popular OSNs in our
crawled dataset which we have made publicly available. Our
study validates the hypothesis that users exhibit varied behavior
on different OSNs, accounting in part for the OSN’s primary
media type. In our multi-network analysis of single OSNs, we
initially showed how the majority of users portray themselves
differently across OSNs, suggesting differences in use. By
examining users’ sharing activities, we uncovered a dichotomy
between usage for professional and personal reasons. In our
cross-network sharing analyses, we mapped how users post
from one source network to a sink network. By plotting the
source–sink directionality of cross-sharing, we labeled the
media-centric OSNs of YouTube and Instagram to be sources,
and the lowest common denominator Twitter OSN to be the
common sink.

Our study has examined the public face of OSNs, uncov-
ering just the surface of the vibrant and varied ecology that is
today’s totality of social media. While our study covers a much
larger scale than previous works that have largely confined
themselves to the analyses of one or two individual networks,
a key limitation of our work is that we have only studied
large networks, and their users’ public sharing activities. In the
future, we plan to harvest data from private social networks
where possible, to gain further insight on the differentiation
between public and private OSN use. We believe such work
may benefit social media applications.
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