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Abstract—The scholarly literature produced by human civi-
lization will soon be considered small data, able to be portably
conveyed by the network and carried on personal machines. This
semi-structured text centric knowledge base is a focus of attention
for scholars, as the wealth of facts, facets and connections in
scholarly documents are large. Such machine analysis can derive
insights that can inform policy makers, academic and industrial
management, as well as scholars as authors themselves.

There is another under-served community of scholarly docu-
ment users that has been overlooked: the readers themselves. We
call for the community to put more efforts towards supporting
our own scholars (especially beginning scholars, new to the
research process) with services using information retrieval and
natural language processing technologies. Techniques that mine
information from within the full text of a document could be used
to introspect a digital library’s materials, inferring better search
metadata, improving scholarly document recommendation, and
aiding the understanding of the text, figures, presentations and
citations of our scholarly literature. Such an introspective digital
library will enable scholars to assemble an understanding of other
scholars’ work more efficiently, and provide downstream machine
reading applications with input for their analytics.

The advent of big data has provided scholars the opportu-
nity to instrument and measure the physical and social worlds
on an unprecedented scale. As of 2014, per day, climatic and
atmospheric science centers generate terabytes of data, while
the users of Facebook and Twitter create social media content
on the order of billions of messages. Creating, collecting,
indexing and transmitting these amounts of data are clear
scalability problems that need to be addressed. Big data and the
services around data have brought about many new initiatives
in computing, even at this present nascent period.

Perhaps even more urgent is in the sense-making of these
raw primary data. The job title of “data scientist” has been half-
jokingly referred to “data janitor”, as the filtering, cleaning,
re-formatting, and sense-making processes on these primary
sources requires significant manual work [1]. Also, often
times insights are found after linking disparate data sources
together (i.e., people names in two different datasets), but such
reference problems themselves are often difficult to solve, even
with manual effort. Privacy concerns and legal rights are also
significant issues that have yet to be adequately addressed and
made actionable to safeguard the individual citizens in big data

scenarios. These curatorial and techno-societal problems are
mounting, and will likely need to be addressed before big data
will reveal its promise.

Yet, much of what scholars discover are ultimately recorded
in a secondary, digested form: the scholarly document. Relative
to primary raw data, the scale of these secondary scholarly
documents is small. In 2013, PubMed – a central source for
medical literature funded by the U.S. government – registered
about 1.1 million new abstracts [2], equivalent to about four
thousand abstracts daily. While not close to the sum total of
daily scientific knowledge created, it is not erroneous to cap
current human knowledge production to tens of thousands of
scholarly works per day, a far cry (as a conservative estimate,
at least five magnitudes) from today’s big data.

While astronomers often have access to efficient
and robust mechanisms that serve to archive, curate,
and make primary data available. But very few
parallel systems exist for derived data. Because most,
if not all, scientific articles in astronomy are based
on derived data, making such data visible, intelli-
gible and available to the public is of fundamental
importance — Pepe et al. [3].

While the big data of the primary empirical evidence is
of import, it is also clear that the relatively small data of
scholarly documents can be much better served. We would
extend Pepe et al.’s reasoning to urge the community to study
our own scholarly literature more deeply to enable better
access. Compared with big data, scholarly documents are
expert-reviewed and deeply self-curated: as a community, we
invest authors’, editors’, reviewers’ and typesetters’ time to
carefully vet the quality of our manuscripts and the metadata
and linkages assigned to them. Also, the scale of scholarly
documents is not trivial – small, yet manageable: we can
imagine even today the machine processing of a few hundred
documents per hours to be within the processing reach of
individual graduate students and certainly faculty members’
laboratories. These positive signals point to a clear research
agenda of operationalizing the next generation digital library,
what we term the introspective digital library (IDL).

In the following, we first describe the state of the current
era of digital libraries, reviewing the current state-of-the-art



of their machine processing. We then define the introspective
digital library, a library that semantically understands the text
of its collection and can facilitate its use for its readership. We
propose several challenges that an introspective digital library
should address, and conclude by showing that text processing,
while a foundation technology for enabling the IDL, will need
to incorporate with multimedia processing to understand its
content, and eventually link back to the readers as an aggregate
to prove its impact.

I. TODAY: ELECTRONIC DIGITAL LIBRARIES

The digital library of today is the electronic library: where
the focus is creating and ensuring proper access to the scholarly
literature on demand. Digitization efforts and e-publishing have
made the majority of the relevant (i.e., currently cited) schol-
arly documents available in electronic copy. The transition
from the automated library1 to the electronic one has been
wildly successful: the pervasiveness of the anytime scholarly
document has significantly raised expectations of scholars,
especially those new to research. Scholarly work encumbered
by access restrictions of either physical or digital nature, only
find a limited audience.

Without loss of generality, a common workflow that many
users follow is to use a search system to locate electronic schol-
arly documents of interest and consume them outside of the
digital library (i.e., by printing them or reading a downloaded
electronic copy). Search is largely keyword driven, using paper
metadata — its title and in some cases, its abstract — as the
source text to match a user’s query against.

While the scholarly document is mostly text, with the
exception of the title and abstract, the current digital library
systems treat their documents as atomic objects, opaque,
characterized by author provided metadata. From this vantage,
the digital library is equivalent to a database of atomic records,
where the objects in the collection itself cannot be scrutinized
in further detail.

A. Citations

The singular success where scholarly documents have been
made transparent is the exception of bibliographic references.
Eugene Garfield’s effort in the 1950’s led to his development of
the longstanding citation indexing system, the Science Citation
Index (SCI), and spurred other similar indices (e.g., Scopus and
Google Scholar). Exposing the bibliographic references made
references actionable, creating a directed network of scholarly
works. The resultant citation network allowed the aggregation
of citations across documents, enabling measures of scientific
impact for both individual works but also on aggregates for
authors, departments, institutions, research fields and countries.
While admittedly imprecise, this data source enabled a level
of analysis of the literature that significantly influenced work-
flows of scholars, policy makers and research management in
indirectly deciding faculty advancement and research funding
decisions.

While SCI is curated and manually linked, even exposing
the bibliographic references of the scholarly document in its

1Where only search and other services are automated, but physical copies
are circulated.

raw form has spurred significant downstream research that
aim to automate or enhance the scholarly document. The
exposed citation metadata and network also gives rise to new
functionality enabled by its aggregation.

Automation. Automated linkage of extracted references
allow scalable document processing to build the citation graph
algorithmically, most notably in Google Scholar2, but also in
open source platforms that support specific communities and
hobbyists [4].

Enhancement and Correction. The references of a docu-
ment represent just a fraction of related work. Due to space
limitations, ignorance or overt omission, many relevant works
are not cited by a source document. By inspecting properties
of the actual citation graph, the link prediction task can
recover and relate potentially relevant missing citations to
a document. Inspecting the citation graph can also help to
fix incorrect metadata, as incorrect conflating and splitting
of names (especially for author names, but also names of
publication venues, article and journal titles) can sometimes
be corrected with holistic evidence from the citation graph.

Also, while citation counting is easily understood, there
are many limitations of a raw count. Citations of a work from
an impactful work versus an insignificant one arguably vary
in their influence, but raw counts do not account for this
factor. This can be posed as a recursive statement, resulting
in the well-known PageRank algorithm [5], formerly a key
component of webpage ranking in the early Google search
engine. Running PageRank or its many variants has been
shown to better assign influencer weights within such graphs
(e.g., [6]).

Functionality. Citation indices induced from aggregating
the bibliographic references also have the useful property of
being time-ordered. This can help scholars go back to find the
source of an idea (by tracing backwards through references,
called backward chaining) and find works that build upon a
current work (by using a citation index to find newer works,
or forward chaining).

Shared citations and references can also help enhance doc-
ument search by providing an alternate means for computing
document similarity. Bibliographic coupling [7] (where two
documents share common references) and co-citation analysis
[8] (where two documents are cited by a common work)
can provide additional evidence of two documents’ similarity
through their relationship with a third party. When common
citations and references are strong, a system can infer that
two documents are strongly related even if their titles and
terminology differ.

Enhancing document similarity computation serves to en-
hance many other downstream digital library functions that use
similarity as a base. Similarity can be used with documents
as targets for document search and paper recommendation and
alerts, but also for authors (suggesting collaborators, reviewers
or peer evaluators), for venues (suggesting potential venues
for publications, given an input title or document text), and
for topics and keywords (as found in scholarly works, useful
in query expansion and expert finding). However useful, these
applications all target external use of the contents of the digital

2http://scholar.google.com.sg/intl/en/scholar/inclusion.html#indexing



library – i.e., they may help in searching, organizing or ranking
the scholarly works, but do nothing to help use the knowledge
within a work. For such capabilities, we need to introspect the
contents of the scholarly work itself.

II. TOMORROW: INTROSPECTIVE DIGITAL LIBRARIES

As scholarly works are now often authored digitally, there
is little technological barrier to exposing the data and letting
machine processes make sense of the data. With more scholarly
data appearing in a freely available form on the web (about
30%, according to [9]), we are already in the transition towards
the introspective digital library.

Definition (Introspective Digital Library) A digital library that
is semantically able to understand the contents of its collection
and act on its understanding to facilitate knowledge discovery,
use and synthesis.

Introspective digital libraries (IDLs) differentiate from
electronic ones in that they are able to act on their inter-
pretation of the contents of their collection. There a few
points worthy to detail more precisely. First, “understanding”
connotes deep knowledge of the document, that goes beyond
the simple inventory of word tokens used in the collection; it
suggests that the IDL either infers or has access to knowledge
(metadata) about the documents that is domain-specific. Sec-
ond, that such knowledge not only facilitates discovery (as
is done by search and indexing systems) but enables “use
and synthesis”: supporting the multiple reading phases of use
(familiarization, understanding, interpretation and analysis),
and the later synthesis stages of knowledge formation (compar-
ing, re-implementing, evaluating, writing). We argue that such
reader-centric services will be a critical component that will
differentiate the introspective digital library from its electronic
predecessor. Such functionality need not be limited manual use
and synthesis, but also encompasses the notion of automation;
i.e., machine processing could iteratively build on facts and
assertions gleaned from its holdings to automatically discover
new knowledge.

How do we get to the IDL? The first step is to make
the scholarly documents accessible. Accessibility of the full
document’s text is mandatory prerequisite to reaching IDL
functionality. Such accessibility improves inherently improves
the current DL services. For example, document similarity via
citation analysis can be supplemented with shared vocabulary
analyses on full documents [10]. Full text analysis also makes
for a better source for paper recommendation, especially when
linking in scholarly document text from citing and referenced
documents [11], [12].

To reach the IDL, we have to go further than just refining
existing discovery and citation-based services. Full text, struc-
ture and figure accessibility will enable the critical functional-
ity of an IDL. However, the prerequisite task of obtaining the
document structure from the raw semi-structured text turns out
to be a serious challenge. While publishers generate a logical,
semantic representation of the published text — with notations
such as figure and table captions, titles, affiliation, footnotes,
etc. — which is usually saved in XML, the conventions are not
consistently applied and vary even within a single publication
venue due to adoption of stylistic conventions.

Inferring and making the logical document structure ex-
plicit from the formatted text has been shown to be a non-
trivial process. It needs to be an automated process to be
scalable. Information extraction workflows which infer such
document structure [4], [13] and associate affiliations and
authors [14] lay the necessary foundation to distinguish body
text from captions, footnotes and page numbering. With the
raw text differentiated by their logical document function, the
introspective digital library can access the relevant text (sans
other irrelevant raw text) to build semantic services for the
document.

The running text of the scholar’s argument in a work is
the key text that will drive the IDL. As there are many ways
that readers consume scholarly text, there are correspondingly
many applications that can help to support the various use
cases; we describe particular applications that we are working
towards in our research, especially with the ForeCite prototype
IDL [15]. For ease of exposition, we organize our discussion
around the source data that they use from the full text: the
running body text, citation sentences and figures.

A. Body Text

Keyphrases and Metadata. A small step towards under-
standing a work is to distinguish its key terminology. Statistical
topic models and keyphrase extraction (e.g., [16]) can help
automatically extract key phrases from documents, to enrich
its document representation. These can be used to supplement
or replace author-provided keyword metadata, which typically
lack coverage due to both time and space constraints.

Such models are often trained to be generic, so as to
be widely applicable, but more fine-grained domain-specific
aspects are useful to mine. For example, within the evidence-
based medicine (EBM) domain, the PICO elements of Patient,
Intervention, Comparison and Outcome are important aspects
that characterize a work. Prospective readers of a EBM article
– busy nurses and doctors – will want to ensure that the patient
demographics in a study match the patients under their care,
before committing time to read a study’s findings. Machine
inference of such metadata is valuable as it enables semantic
search with both active and passive modes (“filter articles by
patient age” and “articles are displayed sorted by patient cohort
age”) [17], [18].

Symbolic Knowledge. In certain disciplines (e.g., chemistry,
mathematics), domain knowledge also has structure and is
coded symbolically. Identifying, extracting, indexing and rea-
soning over symbolic representations also help build services
[19]. In the domain of mathematics, mathematical equations
are of significant import, but often only their natural language
form is used for searching (i.e., people will search using
“Pythagorean theorem” but not “a2 + b2 = c2”) [20]. IDLs
that understand the duality of the knowledge representation
can leverage this to perform their services better (e.g., also
rank documents with the equivalent equation highly). Symbolic
knowledge can also be used as a separate pathway to suggest
relevance: with a math search engine that understands an
equation’s structure, we can cluster documents that use variant
formulations of a central equation; i.e., contrast methods that
have different formulations of iterative PageRank.



Fig. 1. Argumentative zoning sentence classification in the ForeCite prototype digital library. Sentences are color coded to indicate their rhetorical purpose
within the document; the right panel allows a reader to browse through all sentences assigned to a particular argumentative zone.

Argumentative Purpose. While scholarly works often fol-
low specific writing conventions, authors’ own personal styles
do vary substantially. Through the their phrasing, an authors
marks the argumentative purpose of each sentence. Exposing
such information in the IDL reading interface can can give
readers an overview of the document’s argumentative structure.
Given an inventory of argumentative moves, this task can be
structured as a supervised sentence classification task, known
as argumentative zoning (AZ, [21]). Our work has shown
that operationalizing this sentence classification system (as
shown in Fig. 1) with reader-centric purposes (namely, aim,
background, basis, contrast, own, other and textual) improves
reader comprehension of key facts upon a first reading [22].
In particular, sentences identified as Aim sentences, help give
a first-time reader a quick synopsis of the author attributed
contributions of the work3.

3In contrast, the abstract often contains a condensed version of the entire
paper’s points, and may not describe all of the authors’ goals.

B. Citation Sentences

While the identity of a work’s bibliographic references are
available in many DLs, they are only half of the full account of
a citation. The remaining half is the text of citation itself; the
text that attributes the reason for the reference. Such citation
sentences (sometimes referred to as a “citance” [23]) can refine
coarse-grained citation counts. With the evidence from the text
of the accompanying citation sentences, an IDL can infer the
intent of the citation, and possibly its semantic orientation.
Citations exhibit different facets: in terms of scope (general,
over the whole work, or specific to a paragraph, equation
or section), sentiment (give positive endorsement, be neutral
or show a weakness) [24], [25], as well as domain-specific
purpose (e.g., in computer science, citing for a method, dataset,
tool or evaluation metric). One might accord a reference to a
work that is acknowledged specifically for enabling a target
work more weight than one used as a prototypical example
over a number of related works. Inferring such labels and
then aggregating them provide a more accurate depiction of
a work’s impact.



Fig. 2. Citation provenance at work. The claim indicated in the citation sentence on the left column in the reader panel is supported by the text on the right
inset drawn from the cited document.

Citation Provenance. Tracing the provenance of a claim
or idea is also possible with the understanding of citations.
This refines the coarse-grained backward chaining strategy,
with evidence from the citation sentence. For citations that can
be inferred as being specifically scoped to a particular portion
of a referenced work, the IDL can present the relevant section
directly in the DL interface, allowing more seamless reading
experience, as shown in Fig. 2.

Document Summarization. A citation sentence often de-
scribes the referenced work in relation to the target article,
which we can think of as a focused summary. When a work
has sufficient citations, aggregating such citation sentences
produces a summary of the scholarly work from the perspective
of the community. These are notably in complement with
the work’s abstract, which can be viewed is a summary
from the authors’ perspective. Taken together with body text
understanding, automatic summarization can leverage these
many sources to create summaries of varying length, suitable
for use in different contexts.

Summarization of multiple-related documents is arguably
more fruitful than for single documents. Automatic survey
paper generation [26] and related work summarization [27]
make use of information derived from multiple documents to
both generate and extract text to form comparative summaries.
As the component systems of domain-specific metadata extrac-
tion, argumentative zoning and citation understanding improve,
more useful and fine-grained automatic summaries of scholarly
documents will begin to have impact on scientific processes.

C. Figures

Scholarly documents are increasingly composed of multi-
media. In many fields, figures and tables serve as windows
into the primary data of a work, as aggregates or samples. An
IDL will need to extend its services to be sensitive to all of
its different forms of embedded media.

Cross Reference Detection and Scoping. While figures
are stylistically often interpretable with only the help of a
caption, they are also usually cross-referenced explicitly and
discussed in the document’s body text. However, inferring
when the discussion veers from the figure’s topic to other
topics has yet to be well explored. Techniques that utilize
prior research on citation [28] or co-reference scoping may
provide good baselines. Also, some mentions do not follow
explicit conventions, so automated detection can help build the
necessary linkages when only implicit (e.g., “As shown on the
previous page, the subfigure shows ...”). Inferring automatic
linkages will enrich the representation of such multimedia
objects via their accompanying text, which can give sizable
performance over purely content-based solutions (i.e., Web
image search relies heavily on nearby text to characterize it)
which ignore the context.

Data Extraction from Figures. Table and chart understand-
ing can help recover primary data points from charts. The
document understanding community has been developing these
capabilities independently, establishing methods to parse infor-
mation from axes and legends to recover quantitative amounts
(e.g., [30], [31]) from scientific figures. Given adequate cross



Fig. 3. SlideSeer’s [29] coordinated document view and print views. In the document view, the accompanying slide presentations’ context is given on the left,
along with the paper’s text (re-flowed).

reference scoping functionality, the accompanying body text
may serve to constrain the extraction process and enhance
performance. Extracted data can then be used to comparisons
across multiple works, which can be another source of input
for multi-document summarization.

Presentation Alignment. In certain fields, scholarly works
are also presented orally and visually, independent of the docu-
ment artifact. Visual artifacts, such as slide presentations, offer
a dual representation of a work that can serve as a summary
or enhancement of a work. Locating, indexing and linking
such auxiliary artifacts to the primary scholarly work assist
in rendering a complete picture for a reader. As with the main
tenet of the IDL, such artifacts should be aligned to the work at
a fine-grained resolution, allowing deep linkage between the
presentation and work. The area of multimedia research has
pioneered this field (e.g., [32]) as well as providing commercial
products4. The SlideSeer prototype [29], also shown in Fig. 3
casted this as the alignment task between two text streams,
while later work [33] showed the importance of visual features
in tackling this problem, especially on visually-salient slides
which contain little text (e.g., those that feature figures). With
a corpus of aligned presentations and documents, the task of
presentation generation [34] becomes a target, which can be
thought of generating a single document multimodal summary
with specific constraints.

With these directions, we see that introspection clearly
extends to multimedia. Similar to symbolic knowledge, an
understanding of these multimedia artifacts and their meaning
will enable better content-based representations of the schol-
arly work.

III. THE CHALLENGES AHEAD

We have focused primarily on tasks that assist the reader
with the current document at hand. We are particularly inter-
ested with services that help beginning scholars consume and
sense-make from the such documents. Implementing interfaces
that affords distraction-free reading while maintaining easy

4e.g., StreamSage’s synchronization software.

access to auxiliary functions (e.g., notetaking, highlighting,
context switching between auxiliary and linked work) is a
trade-off that will need to be managed well. Information needs
vary widely across disciplines and even within a discipline,
the use of the scholarly document varies with the lifecycle
stage of research a scholar is in (e.g., ideation, problem
formulation, discovery, reading for breadth, reading for depth,
implementation, comparison, writing, and presenting). With a
deeper understanding of its content, IDLs are poised to invent
new services to augment their scholars’ investment in reading.
The grand challenge of the introspective digital library is to
imagine and implement these services that will facilitate more
effective scholarly communication.

We also note that the digital library of today lives in the era
of user generated content (UGC; also known as Web 2.0). This
environment should influence DL architecture by placing the
reader (rather than fellow authors) as an important authoring
stakeholder. Aggregating the activities of the many readers of
a scholarly document will enable “collaborative filtering” like
services. For example, aggregating the textual highlights of
many readers of a single document can provide a “heat map”
visualization of the important portions of a document (similar
to Fig. 4). We believe UGC’s value proposition to the IDL is in
its lightweight contribution framework: User defined tags and
simple conventions (such as #hashtagging) will allow users
to create the functionality they want in their view of their
scholarly interests, while having the ulterior purpose of training
autonomous DL services to contribute such tags automatically.

A final aspect of the challenge will be to integrate the
services mentioned here with larger family of services that
other developments in the digital library space (both academic
and commercial) are pioneering. Building the appropriate
infrastructure to federate the documents as well as the services
will be a key obstacle before the widespread implementation
of the introspective digital library is to occur [35].

In closing, we note that many of today’s netizenry consume
news natively on news portals – not only reading, but in
cases, also actively contributing to the discussion. However,
the same cannot be said for scholarly work – most scholars



Fig. 4. Collaborative highlights and annotations in the ForeCite prototype digital library. Anonymous readers textual highlights are aggregated and available to
all readers, while annotated comments can be public or restricted to be shared with specific user groups.

still consume such knowledge outside of a digital library
framework. A sign that we have completed the grand challenge
of the introspective digital library, is when the IDL becomes
an essential element of a scholar’s toolset; when we can no
longer imagine scholarship without the augmentation afforded
by the IDL.
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