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ABSTRACT 
When users seek to find specific resources in a digital library, they 
often use the library catalog to locate them. These catalog queries 
are defined as known item queries. As known item queries search 
for specific resources, it is important to manage them differently 
from other search types, such as area searches. We study how to 
identify known item queries in the context of a large academic 
institution’s online public access catalog (OPAC), in which queries 
are issued via a simple keyword interface. We also examine how to 
recognize when a known item query has retrieved the item in 
question. Our approach combines techniques in machine learning, 
language modeling and machine translation evaluation metrics to 
build a classifier capable of distinguishing   known item queries and 
correctly classifies titles for whether they are the known item sought 
with an 80% and 95% correlation to human performance, 
respectively on each task. To our knowledge, this is the first report 
of such work, which has the potential to streamline the user interface 
of both OPACs and digital libraries in support of known item 
searches.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval: search process; H.4.m [Information Systems 
Applications]:  Miscellaneous. 

General Terms 
Algorithms, Experimentation, Human Factors. 

Keywords 
Known item queries, query language model, query types. 

1. INTRODUCTION 
Consider a scenario in which an academic library patron wants to 
see whether his institution subscribes to a specific journal in his 
research area. Knowing the journal title makes it easy for him to 
construct a query to the local online public access catalog: for 
example, “journal of housing for the elderly”. If the periodical is 
carried by the library and the title appears in the search results, the 

user can locate the journal. If the library does not carry it, the 
catalog may retrieve irrelevant resources that share words with the 
query. In this case, the user may have to sift through the returned 
results, only to conclude that the library does not carry the journal. 
These types of queries, in which the user knows what resource he is 
seeking prior to searching, are often called known item queries. 
Slone [19] differentiates known item queries from two other types of 
catalog queries: a) unknown item queries, where the user tries to 
locate resources to solve a problem or address an issue, and b) area 
queries, where the patron uses the catalog to locate a library section 
or area. Since known item queries are used to retrieve a specific 
resource, results that do not match are irrelevant. This is in contrast 
with unknown item and area searches where partial matches to a 
query may meet the user’s needs. As such, the detection and proper 
support of known item queries is important to the satisfaction of 
library users. 
How important is known item search?  In the setting of an OPAC, it 
is very important. Larson [10][10] points at the long term decline of 
subject searching in OPACs, in which known item search accounts 
for a growing proportion of library catalog searches, up to 50%. 
However, supporting these types of searches has largely been 
ignored by the information retrieval community, whose focus has 
been on topical search (e.g., TREC bakeoff competitions [4]). While 
these efforts have improved the state of the art for topical search, we 
see a need to support better known item query detection and 
retrieval. 
Modern OPACs have several search access points that query the 
same catalog. A keyword search box is arguably the simplest one to 
use and is often the default search interface. Separate title, subject, 
and author search interfaces or advanced syntax may be provided to 
limit search to such bibliographic fields, and is often utilized by the 
expert user whom desires fine-grained control of their search [2]. 
Despite the affordances that these more exact search tools provide, 
the reality is that novice users often use the keyword interface as a 
default, and employ it for subject, author and title searching. Aside 
from prescriptive education of users in search techniques, OPACs 
need to handle the variety of different queries, including known-
item ones, as best as possible. 
To address this problem, we propose a system that a) detects known 
item queries, and b) detects when such queries retrieves the desired 
known items. The system performs both tasks by employing a 
learning paradigm. A query model is first built from past known 
item queries and their corresponding catalog search results. Our 
final query model itself consists of three components: a set of query 
features distilled from empirical observation, n-gram language 
models and matching models for returned search results using 
machine translation scoring metrics. Then, when a user issues a new 
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query to the catalog, the system checks whether the known item 
query model applies to the new query and its search results. A key 
finding of our study is that knowing what results of the query are 
help to improve known item query detection significantly. The 
resulting system is able to distinguish known item queries at 80% of 
the level of human performance. We also show that it is possible to 
correctly identify when the known items are retrieved by the catalog 
with 95% of the level of human performance.  

These two parts of the system can be integrated with an online 
public access catalog (OPAC) to improve catalog usability and user 
satisfaction. When the known item is in a library’s collection, proper 
handling known item queries can route the user to the desired 
resources quickly. When the known item is not in a library’s 
collection, the system can let the user know that the library does not 
carry the title. In both cases, the user does not have to wade through 
a list of search results, saving time for the user and avoiding 
frustration. 

2. OUR APPROACH 
To identify and support known item queries, we break down the 
process into two separate tasks: 
1. to classify user queries as either known item queries or not;  
2. to identify which, if any, of the returned search results are the 

known items sought.  
We examine both tasks as machine learning problems. In machine 
learning, a system develops knowledge based on training data. 
Using the training data, we apply learning to model the two tasks 
and which can be applied to solve them. 
To perform this study we first needed to collect ground truth 
annotations to use as training data. We detail our data collection 
process and assess the level of inter-judge agreement to establish an 
upper bound for performance. We then detail our automated 
approaches to the two tasks. For known item query detection, we 
start with a simple model that uses only the query itself as input for 
the classification task. We then develop a more comprehensive 
model that adds the returned search results as input to this first task 
and shows how it improves performance. We then examine the 
second task, search result classification, to see whether automated 
methods can distinguish known items from other search results. 

3. DATA COLLECTION 
To provide the necessary data for both training and evaluation, we 
need to examine actual catalog queries and their search results. The 
sample queries are drawn from the transaction logs of INNOPAC, 
the local OPAC system at the National University of Singapore. 
These logs consist of approximately 290,000 unique queries issued 
to the simple keyword access search point during a period of about 
fifteen months. We took sample queries from the logs for annotation 
and analysis. The queries were carefully chosen to represent diverse 
types of queries that were encountered in the logs. We detail this 
procedure in Section 4.1. 
Given queries, we need to know whether they are known item 
queries or not. The optimal way to make this judgment is to ask the 
user who issued the original query, as was done in previous library 
studies [19][18]. However, our transaction logs do not collect the 
identity of the original library user, as most catalog queries come 
from anonymous access via public access terminals or the internet. 
As such, we had to simulate this judgment using a separate set of 
human subjects. A total of 9 participants (including the authors, all 
of whom were university students or staff) took part in annotating 

the set of queries and their search results. The participants were 
directed to judge queries and catalog search results. Instructions that 
defined the tasks and gave example answers were given to the 
subjects before they were allowed to annotate. Online help with the 
evaluation was available at all times during the annotation process.  
Annotation of both queries and retrieved items allows an algorithm 
to distinguish known items and their queries from others. Thus we 
asked our annotators to judge queries and search results in two 
separate tasks, as discussed in Section 2. However, as search results 
can influence whether a query is perceived as a known item query, 
we included a third task of query judgment that uses both the query 
and the search results as input. Each of the 320 queries was 
annotated by at least one subject. 
In the first query judgment task, participants were instructed to 
decide whether a given query was a known item query or not. The 
subjects were given just the query for the first task and asked to rate 
the query on a 9-point Likert scale, ranging from “Definitely a 
known item query (1)” to “Definitely not (9)”.  
In the second query judgment task, illustrated in Figure 1, the 
participants re-judged the query given the results of the search in the 
local OPAC. We showed participants the first page of results 
returned by the catalog. Subjects were asked to re-judge the query 
on the known item task on the same 9 point Likert scale, with their 
previous choice highlighted and chosen as a default. We believed 
that this additional source of information might help polarize 
judgments. For example, a query that may have been unfamiliar to 
the subject might be re-judged as a known item if there are exact 
title matches returned by the OPAC.  

 
Figure 1: The query re-judging task, using search results. Here, 

the query “geopolitics” has been re-judged as  
a likely known item query.  

A final search results judgment task followed. Here, the participants 
were asked to assume that the query was actually a known item 
query (i.e., that the user who originated the query had a specific 
resource in mind to retrieve) and to judge whether each of the search 
results was the intended item. Again, the participants were asked to 
classify the titles along the 9-point Likert scale:  “Definitely the item 
sought (1)” to “Definitely not the item sought (9)”. Note that 
multiple items may be classified as the known item, as the catalog 
can return identically named titles when the library has multiple 
copies of the title or has the title in multiple formats (e.g., “To Kill a 
Mockingbird [large-print]” and “To Kill a Mockingbird 
[videocassette]”).  
Using this interface, a total of 320 query judgments and re- 
judgments were collected, along with 1,500 query results judgments.  

Original ranking, 
without search results 

New ranking



3.1 Inter-judge Agreement  
Classifying queries as known item or non known item searches may 
seem easy. Queries such as “The Catcher in the Rye” or “cosmos 
carl sagan” are simple to classify as known items when one knows 
of the title in question. However, many book titles are similar to 
general subject areas, perhaps to enhance a book’s merchantability. 
In such cases, it may be difficult to distinguish whether the query is 
known item or not without prior knowledge. For example, to digital 
library researchers and practitioners “practical digital libraries” 
could be a known item query searching for the text by Michael Lesk 
but “practical digital archiving” is not. To the non-specialist, the two 
may be viewed as equivalent. 
As the same item may be rated by subjects differently, the known 
item query and title judgment tasks are not rigorously defined. Still, 
we argue that the concept of a known item query is meaningful and 
that the tasks that are well-defined. To support this, we calculated 
Pearson’s R among the users. This correlation score measures inter-
judge agreement: a value of ‘1’ indicates perfect correlation, 
whereas values of ‘0’ and ‘-1’ indicate no correlation and perfect 
opposition, respectively. Well-defined tasks can be defined as 
having an R value greater than .4. Table 1 shows the correlation 
analysis for the three tasks, respectively. We show both per-item R 
scores as well as averaged R scores over all subject pairs. 
Table 1: Pearson’s R for data collection tasks. Per-item and per-

user averages shown for both raw and binary classes.  
9-point scale 2 class Task 

Per-item Avg Per-
subject 

Per-item Avg. Per-
subject 

1. Query 
(just query)  

.577 .546 .392 .411 

2. Query 
(w/ results) 

.604 .664 .593 .656 

3. Query 
Results 

.745 .763 .739 .750 

 
In applications, we often need to simplify the problem to a binary 
classification: for example, whether a query is a known item query 
or not. The last two columns of Table 1 show the same correlation 
analysis for the tasks, in which the 9-point scale is collapsed to two 
classes: known item queries (raw values 1 and 2) and not known 
item queries (raw values 3-9). Note here that the reduction to two 
classes is asymmetric: we collapse only the top two classes for 
which subjects had marked as most sure as known items queries. 
This is because we want the detection of known item queries to be 
more precise (at the expense of non-known item queries).  
The results in both the raw 9-point and the binary classification 
show similar characteristics. Each of the tasks seems well-defined, 
having correlations largely above .4. Additionally, we see that 
having the query results helps raters to establish more consistent 
ratings for their known item judgments, moving the tasks from a 
medium level of correlation (.4 to .6) to a high level (above .6). This 
validates our hypothesis that the search results are important to use 
in the query classification task. Examining the data we see that when 
the OPAC does return items that exactly match or are very similar to 
the query, users agree that the search was a known item one. We 
also see that the title classification task is much easier. This is 
because the large bulk of the returned items are not known item 
matches.  

Aside from showing that these tasks are well-formed, the correlation 
scores also act as an upper bound on the performance of automated 
methods. We consider an automatic method successful if it can 
achieve an R score at or close to the level of human-human 
agreement.  

4. KNOWN ITEM QUERY 
CLASSIFICATION 
We now turn our attention to automatic methods to perform these 
three tasks. As humans, one can often identify a known item query 
by simple inspection. Slone [19] notes that words from the title and 
author’s name frequently help to distinguish a known item query 
from other types of queries. Allen [1] also showed that bibliographic 
cues provided by the searcher are more conducive to known-item 
search, as compared to freeform and structural cues. In support of 
this, Kilgour et al. [8][9] explored how to best conduct known item 
queries efficiently – and concluded that the author’s surname plus 
first and/or last title words can help to pinpoint the known item 
within the first 20 results over 98% of the time in their university 
OPAC. Our work is complementary to these works, as we 
cooperatively identify whether or not a query is a known item one, 
rather than prescribe guidelines for constructing them. 
Aside from these hints, we consider other features that may help 
identify known queries. We look at two examples: “Hill Raymond 
Coding Theory – A First Course” and “japan and cultural”. The first 
query is a known item query and the second one is most likely not a 
known item query. By examining a small training portion of the 
collected data of the annotation results we can make the following 
general observations about known item queries: 

• They are longer: Users tend to type more when they have a 
specific resource in mind. In an academic setting such as ours, 
they may be copying a reference or citation from a syllabus or 
pasting one from a web site into the search field. We believe 
that the latter case would be more prominent in digital library 
scenarios in which catalog access is often juxtaposed with 
internet access. The problems of query construction and 
formulation are alleviated in known item searches, and as such, 
longer queries come more easily to the known item searcher.  

• They contain determiners: In English titles, determiners (such 
as “the”, “an”, and “a”) are often parts of book titles and are 
thus also prevalent in known item queries. In contrast, most 
area or unknown item searchers do not type determiners into 
search boxes as many know that such words are often ignored 
by OPACs. 

• They contain proper nouns: Similar to Slone and Kilgour et 
al.’s studies, we have observed occurrences of author and 
editor names in known item queries, as in the first example. 
When seen together with other features such as common nouns 
(which may indicate title words), proper nouns are a strong 
indicator of a known item query. Surnames alone may indicate 
an author search, but not necessarily a known item search (as 
an author may have written several works). 

• They contain mixed case: Known item queries often match 
exactly the title’s orthographic case, as the user is likely to be 
pasting or typing in the query from another resource at hand. In 
our local OPAC, the catalog search is case insensitive. Even 
though library users may be aware of this, disregarding case is 
an active process that requires a user to think about their input. 
A user who may be copying or pasting from another source is 
unlikely to engage in this process and is more likely to copy the 
title into the search box verbatim. 



• They contain certain advanced operators: INNOPAC allows 
users to limit portions of their search to specific fields. For 
example, “(a: author)” specifies that “author” should appear in 
the author / editor field of the retrieved result. A strong 
indicator of a known query is when both the author or title 
limit operators are present. However, not all OPAC operators 
indicate a known item query. In our observation, truncation, 
grouping and proximity operators (i.e., “**”, “()” and “within 
<digit>” or “near” in INNOPAC) are strong indicators of area 
or unknown item search. Boolean “and” and “or” operators are 
more difficult to characterize: they do appear in titles of books 
and therefore in known item queries, but are also used to 
bridge subjects in area and unknown item search. 

• They contain keywords: Keywords that indicate a type of 
publication are strong indicators of a known item. Keywords 
such as “journal”, “course” and “textbook” usually connote the 
desired type of resource, rather than a keyword search for the 
word. Similarly, many titles in libraries but few subject 
headings consist of these words. 

To decide whether a particular query is a known item query or not, 
we combine these separate pieces of evidence to make a decision. 
This is done using machine learning, in which the annotated queries 
from Section 3 are used to learn a model based on features distilled 
from the above evidence. Each query is transformed into a set of 
numeric values that reflect the query’s length and its words’ parts-
of-speech, as obtained from a publicly available part-of-speech 
tagger [16]. We also encode whether certain advanced operators or 
publication specific keywords are present. At the end of this process, 
a query is represented as a set of 16 basic feature values.  

4.1 Query Sampling by Query Types 
Ideally, we would annotate the full set of 290,000 historical queries 
from the logs. This is infeasible as we have limited resources and 
thus a sampling of the queries must be made. A random sampling is 
a logical choice if we have no prior bias or information. However, 
since we believe that the features above are important to known item 
queries classification, we can choose to annotate queries that 
maximize the discrimination between the two classes as much as 
possible.  
This is done by choosing queries that possess different values in 
their 16 basic features. All queries that exhibit the exact same 
feature values could be represented by a single, annotated query. We 
say that queries that exhibit the same feature values belong to the 
same query type. This makes a simplifying assumption that the 
features of query length, keyword content, parts-of-speech and case 
uniquely determine whether it is a known item query or not. 
Although this assumption is false, it allows us to sample the query 
space more effectively to cover more feature values. 
In this way, we processed all 290,000 queries through our feature 
extraction program to obtain their query type. This resulted in a total 
of 1,690 unique query types. A few of these query types and their 
demographics are shown in Table 2. As expected, query distribution 
among the query types is not uniform: for example, we see partial 
evidence that very few of the queries contain advanced operators, 
which supports earlier findings in query analysis. 
We ordered the 1,690 query types by their descending frequency 
(representing their coverage of the query set). The first 320 were 
annotated by our human subjects in our study. These 320 annotated 
query types cover about 94% of all queries in our corpus. 

Table 2: Sample query types and representative queries. 
Query Type Description Sample Query Instances 

(% of 
corpus) 

Two word, average length word 
query, no proper nouns 

diagnosis surgery 35,014
(12%) 

Single word, long query, tagged 
as proper noun 

lobachevsky 1,070
(0.3%) 

Medium length, multiword query 
with determiner “the” 

the melodrama’s 
role 

999
(0.3%) 

5 words, short query, containing 
advanced operators 

short stor* and 
(t:familiar) 

34
(0.001%) 

 

4.2 Bigram Query Language Modeling  
While we believe the features discussed earlier are important for 
known item query discrimination, there are potentially limitless 
words and word patterns that might help discriminate known item 
queries. Although we may not be able to enumerate all such 
patterns, we still want to create a language model that characterizes 
known item queries. Given annotated queries, we first build a 
language model for known item queries and another for non-known 
item queries. At run-time, we pass the target query to each language 
model to find which model is a better fit for the query.  This 
information can then be used as an additional feature for machine 
learning. 
Language modeling is common in speech recognition [7], and a 
popular approach here is to use n-gram modeling. This approach has 
also recently been used for authorship attribution and genre 
detection [15] and recently for known-item finding on the web [13]. 
For our work, an n-gram is defined as a sequence of n words (as 
opposed to characters, for example). An n-gram language model 
estimates the probability of a word sequence P(w1,w2,…wn) by 
decomposing the problem as a product of simpler conditional 
probabilities.  
As we have limited annotated data, we use a simple bigram (n=2) 
model, which limits the context to two words:  
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Such a model uses the previous word wi-1 to predict the current word 
wi. We preprocess the 320 annotated queries, canonicalizing spaces 
and performing case folding. We then construct bigram models from 
the training queries. This is done by taking all labeled queries 
belong to a certain class and decomposing each into separate 
bigrams. For example, the query “the melodrama’s role” would be 
separated into two bigram events: “melodrama’s” preceding “the”, 
and “role” preceding “melodrama’s”. These bigrams are tabulated 
for all of the annotated queries belonging to a certain class (e.g., 
known item query), and the resulting model is smoothed using 
standard Good-Turing smoothing. The bigrams are used to construct 
two sets of language models: one set of two models for two class 
task and another set of nine models for the 9-point Likert-scale task.  
Then, to evaluate a test query, we test its goodness of fit to the 
language models by calculating its perplexity: 

n
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The language model with the lowest perplexity is the model that has 
the highest probability of generating the test query, and is thus the 
language models’ best guess of the classification of the query. 

4.2.1 Bootstrapping a language model 
We construct language models using just the 320 annotated queries. 
However, since the annotated corpus is small in size, the resulting 
model may not generalize well to test queries (i.e., the model may 
overfit the data). To address this problem of data sparsity, we need 
to find comparable queries to the annotated ones to use as training 
data to construct the language model. 
As we have annotated instances of query type that represent sets of 
queries that have the same feature values, we can use all the queries 
that belong to a query type to help build the language model. This is 
a semi-supervised approach that enlarges the 320 labeled instances 
to over 270,000 noisily labeled queries.  

4.3 Methods and Evaluation 
We thus process the 320 annotated queries into the 17 features total: 
the 16 basic features and a language model feature. For the language 
model, we assess both using the standard supervised language 
model using only the 320 annotated query instances as well as the 
bootstrapped method that uses over 270,000 query instances. We 
combine these features with the participant’s labels from the first 
query classification task. We use a decision tree model and support 
vector machines to create suitable machine learned models. We use 
standard ten-fold cross-validation to perform training and testing 
partitioning of the annotated data set. Although there are many 
models for machine learning, we chose SVMs, as past work has 
shown good performance on a wide range of tasks and decision trees 
as the resulting model is readily understandable to humans. We use 
the SVM and decision tree (named “J48”) algorithm implementation 
in the freely-available Weka [20] machine learning package.  
A majority baseline would pick the mode of both classes and would 
not exhibit any correlation with the human judges, although by pure 
instance accuracy, it would achieve 20% accuracy on the 9-point 
scale problem (always choosing “3” (likely a known item query)) 
and 60% accuracy on the two class problem (not a known item 
query). In this paper, we do not consider the instance accuracy of the 
learner as we have a categorization problem that has a skewed 
distribution. To measure performance that favors good classification 
accuracy on a per-category basis, we can use macro-averaged 
metrics. In our case, since we have numeric classes, we can use 
correlation with human judgment, which is the metric which we will 
use throughout the remainder of the paper. 
We show the performance of the different learners and feature 
combinations in terms of their Pearson’s R values in Table 3. For 
features we use “BF” to denote the 16 basic features, “BLM” to 
denote the bigram language model, and “BBLM” to denote the 
bootstrapped version of the bigram language model. Note that the 
language models themselves can be used without a machine learning 
framework to predict the resulting class. 

Table 3: Correlation of the models on the basic query task.  
Pearson’s R correlation Configuration 

9 point Likert Two 
Class 

Majority Baseline 0 0 

Inter-judge Agreement   .546 .411 
   

Bigram LM only (i.e., BLM) .150 .133 
Bootstrapped BLM only (i.e., BBLM) .295 .210 

J48 (BF) .327 .057 

J48 (BF + BLM) .438 .151 

J48 (BF + BBLM) .284 .093 

SVM (BF)  .377 .195 

SVM (BF + BLM) .318 .133 

SVM (BF + BBLM) .402 .281 

 
Performance on this task is upper bounded by human agreement and 
lower bounded by the majority baseline. Inter-judge agreement as 
measured by Pearson’s R is capped by .546 for the 9-point scale and 
.411 for the simplified 2 class problem. Our learned models perform 
at .438/.546 = 80% of human performance using decision trees with 
the simple bigram language model for the 9-point scale, and at .281 / 
.411 = 68% using a bootstrapped bigram language model with 
SVMs in the two class problem. Also, both the simple and 
bootstrapped language model features turn out to be weak predictors 
of human judgment, but the bootstrapped model has a much better 
correlation when used alone, possibly because it is provided with a 
much larger data set for model building (albeit a noisy one). When 
suitably paired with a learner, is able to improve upon the 
performance of the learners using just the basic features.  
An analysis of the best performing decision tree model reveals that 
the language model feature is the most important for classification, 
as it is at the root of the decision trees. The number of words and 
whether the words of the query are capitalized are also strong 
features used by the decision tree. The presence of advanced 
features and publication keywords do not contribute much in the 
decision tree classification performance.  
Also note that the bootstrapped language model increases the 
performance of the SVM-based model over the standard bigram 
model, but decreases performance when used in the decision tree 
learning framework. Why do the SVM and J48 classifiers react 
differently to the original bigram model and the bootstrapped one?   
We hypothesize that as the decision tree model uses the bigram 
model features at the root, the bigram model feature has a strong 
effect of the classification. Noise that has been incorporated in the 
bootstrapping process has a large impact on performance. In the 
SVM model, all feature values are taken in consideration 
simultaneously, with the weighting determining feature importance. 
As such, we believe that the SVM model may incorporate the 
bootstrapped bigram model features more effectively, as the model 
has a natural propensity to handle noise well. 

5. QUERY CLASSIFICATION USING 
SEARCH RESULTS 
Thus far we have only used evidence within the query itself to 
accomplish known item query discrimination. In Section 3.1, we 



showed that agreement among human subjects increased when they 
were allowed to examine the catalog titles returned by the OPAC.  
A logical extension of the previous experiments is to leverage these 
catalog results in the learning framework. Similar to the first task, 
we distill four observations about how known items and the queries 
that attempt to retrieve them match each other: 

• The sequence of words in the item’s title overlap 
significantly with the query: Matching individual words 
between the item and the query is not enough. For example, the 
words of the query “family in a changing society” may overlap 
entirely with a title such as “Family Caregiving in a Changing 
Society”, but the title is not likely to be the known item sought 
(the problem here is the intervening headword “Caregiving”. 
Treating the query as an unordered set of words may not be 
sufficient for many cases. The sequential order of the words in 
the query plays an especially important role in determining 
whether a retrieved item is a known item. 

• The overlap between the query and the title should be a 
significant portion of the title: Titles that have all of the word 
sequences found in the query are not necessarily known item 
matches. Consider the query “the bible” and the item “Great 
people of the Bible and how they lived”. Although the query is 
fully embedded within the item’s title, it is not likely the known 
item being sought after. In our observation, this is especially 
true for long titles and short queries. 

• First and last word sequences in the query are important to 
match in the title: Consider again the query “marriage and the 
family in a changing society”, and three retrieved items 
“Marriage and family: change and continuity”, “Restructuring 
the Chinese city: changing society, economy and space“ and 
“Marriage and family in a changing society”. Here, we see that 
the beginning two words (“marriage and”) and the last two 
(“changing society”) are matched only in the last item. These 
two positions are important to distinguish known items from 
distracters. 

• Publication keywords are important to match: If the known 
item query has a publication specific keyword (again, words 
such as “journal”, “atlas” or “guide”), they should be present in 
the title as well. 

Thus, if the returned titles exhibit one or more of these matching 
characteristics, we have partial evidence that the query is a known 
item query. Note the difference when a query retrieves no search 
results (0 titles) as opposed to retrieving results that do not match 
well with the query in the categories above. In the former case, we 
have little evidence to change our decision (as our institution may 
simply not carry the title searched for), but in the latter, we have 
evidence that the search is intended to find subject material and not 
known items. 

5.1 Computing Overlap with Machine 
Translation Metrics 
Sequential matching of words between the query and the item title 
are important. To model this, we adopt metrics in machine 
translation (MT) that measure translation fidelity.  
To evaluate an MT system, a reference translation is first created and 
an automated system’s translation is compared against it. A 
translation with high fidelity should match the reference in terms of 
its vocabulary, word order and length. Similarly, a known item 
should match a query intended to retrieve it along the same criteria. 

The NIST and BLEU machine translation metrics model the 
goodness of fit of a candidate translation to a reference translation. 
Both metrics use a modified precision count of the number of n-
gram matches between the reference and candidate. BLEU is a 
normalized score between 0 and 1 that combines n-gram fidelity at 
several sizes [14], whereas NIST uses only trigram fidelity (n=3) 
and seeks to maximize the score difference between different 
candidate translations [12]. Both metrics also employ a length 
penalty for translations that are overly long. 
Given a retrieved title and the search query, we can calculate both 
scores by using the title as the reference translation and the search 
query as the translation. These two metrics are used to measure the 
first two observations: that known item queries match the title 
sought in terms of vocabulary, order and length. 

5.2 Other Features 
To model the final two observations, we encode separate values for 
when the first and the last query bigrams are matched, the total 
number of titles returned by the OPAC, and a Boolean feature that 
indicates when a publication keyword in the query is matched. We 
encode the total number of hits returned by the catalog as an 
additional feature. A total of six features thus model the returned 
item’s fit to the query. 
Note that these features are created on a per search item basis, not a 
per query basis. We need to propagate appropriate values to the 
search queries. We take the maximum value of each feature over all 
of the returned search results as the value for the query feature. This 
is because a single search item that matches well with the query is 
likely to be a plausible known item and thus favor the classification 
of the query as a known item search. 

5.3 Methods and Experiments 
For our experiments, we repeat the same basic procedure as in the 
original query-only judgment task. Specifically, we first process the 
same 320 annotated queries and their corresponding search results 
to derive the maximal matching features values for each query. We 
combine the resulting feature vector with the participants’ labeling 
on the second query judgment task. Again, using ten-fold cross 
validation and using both SVMs and decision trees to learn models 
and evaluate them. As in the previous case, the majority baseline 
does not show any correlation with human judgments (R = 0). 
Correlation is shown in Table 4, where “MTscores” denotes the two 
machine translation score based features, “other” denotes the other 
features based on our own manual analysis. 
As the scores on this task are generally higher than in the previous 
judgment task without the query results, this validates that the search 
result information does make the task easier. We can see that both 
the machine translation metrics and the other matching features both 
help to improve classification accuracy. It is also encouraging to see 
that their combination reinforces each other, leading to better 
performance. In this task, we see that the results clearly favor the 
SVM learner, with best scoring configurations using both sets of 
query result features and language modeling, garnering .454 / .664 = 
68% and .367 / .656 = 55% of the level of human performance on 
the 9-point Likert and two class problems, respectively. Although 
the percentage performance is lower than the previous task, absolute 
performance is increased by using search results: by 3% and 30% in 
the 9-point Likert and two class problem, respectively. 
 
 
 



Table 4: Correlation on the query task using search results. 
Configuration 9 point Likert Two Class 

Majority Baseline 0 0 

Inter-judge Agreement .664 .656 
   

J48 (BF + MTscores) .297 .261 

J48 (BF + others) .333 .224 

J48 (BF + both) .366 .285 

J48 (BF + BLM + both)  .374 .269 

J48 (BF + BBLM + both)  .305 .257 

SVM (BF + MTscores) .372 .320 

SVM (BF + others) .409 .333 

SVM (BF + both) .411 .334 

SVM (BF + BLM + both) .454 .351 

SVM (BF + BBLM + both) .447 .367 

An analysis of the J48 classifier reveals that the both the machine 
translation and the manually distilled search result features are the 
most important features for classification. The language model 
feature is less useful, only used in a few branches of the final tree. 
This correlates with our expectations, as the addition these features 
increases absolute correlation performance.  

6. CLASSIFYING SEARCH RESULTS 
The final task is to identify known items from the returned search 
results. As the features that distinguish the known items from other 
returned results are largely shared with the query re-judgment task, 
we can perform these two classifications in parallel. We use the 
search result matching features introduced in the previous re-
judgment task but calculated on a per-search result basis, rather than 
on a query basis. We also introduce features that normalize the 
results compared to the maximal match for the query. For example, 
say a query returns 10 results, and that the maximum BLEU score 
for any of the 10 results is .5. The BLEU score for a particular 
search result relevant to that query might be .2. In this case, we add 
the raw BLEU score as a feature and its normalized BLEU score 
(.2/.5) = .4 as an additional feature. We calculate these scores for all 
1,500 annotated search result instances to perform cross validation, 
as noted in Section 4.1. Table 5 shows the correlation of the 
different configurations to the annotations.  
Table 5: Correlation on the search result classification task. 

Configuration 9 point Likert Two Class 

Majority Baseline 0 0 

Inter-judge Agreement .763 .750 
   

J48 (MTscores) .632 .607 

J48 (others) .655 .648 

J48 (both) .726 .685 

SVM (MTscores) .519 .562 

SVM (others) .524 .560 

SVM (both) .609 .639 

 
 

In this task, the decision tree classifier outperforms the SVM based 
classifier in every configuration. Similar to the query re-judgment 
task, we see that the machine translation features are correlated with 
the task but not as strongly as our manually distilled features. The 
two sets of features are complementary and reinforce each other to 
yield the best performance. In this case, the decision tree classifier 
yields a performance that is .726 / .763 = 95% of the level of 
performance of human participants on the raw 9-point scale.  

7. USING THE CLASSIFIERS 
Having known item query and title classifiers allows for more 
sophisticated query handling in a library catalog. For example, if a 
user’s query is clearly a known item query and produces no results 
in the catalog, it is clear that the item is not present in the library 
catalog. Instead of ending the search in frustration for the user, the 
OPAC can cooperatively help by providing useful alternatives. 
These would include recommending the user to try external catalogs 
(e.g., interlibrary loan) or recommending that the library purchase 
the title. Note that these actions are specific to known item queries, 
not unknown item and area searches, because the search implies that 
the item does exist but is not owned by the library. Conversely, 
when the query is a known item query and the catalog does retrieve 
it, we can zoom directly to title’s entry rather than waste the user’s 
time with a display of the remaining search results.  
As important is the opportunity to teach the user how to use the 
catalog more effectively. We can automatically “rewrite” any known 
query to use advanced operators (e.g., “t:” in INNOPAC to match 
only title fields) to teach users how to utilize the operators to make 
more precise searches. An alternative is to direct users to alternative 
title, author and subject query interfaces. Either way enhances the 
literacy rate of OPAC users in a cooperative manner that does not 
require explicit demonstration and time commitment, unlike formal 
training. 
These possibilities are shown in screen mock-ups in Figure 2. We 
display these screen prototypes to show the spirit of the cooperative 
model and not as finished products; suitable user interface 
engineering and design would need to be done to tune the screens 
appropriately.  
As our models include different levels of confidence though the use 
of the raw 9-point Likert scores, we can have different models of 
interaction for different levels of confidence. For example, if the 
system suspects that a title is the known item that the user is 
searching for but is not certain, it can re-order the search results to 
place the title in the first position or place circulation information as 
part of the search results. Availability / circulation information is 
particularly important in known item search, as it is likely that the 
user will want to access or borrow the title if it is available.  

8. CONCLUSION 
Automatic query analysis in general is a topic of growing interest 
recently. The IR community has mostly focus on topical search in 
the past decade with TREC work, although there have been some 
attempts in categorizing known item search in the outputs of TREC 
related research as well [11][12][14]. Recently, work in the web 
search community has also called attention to query analysis, as 
query logs show that queries are more heterogeneous than just 
topical search alone [17][18].  
 
 
 



 
 
 
 

          
Figure 2: Prototype cooperative user interface for known item query handling, in successful (l) and unsuccessful (r) cases. 

 
Known item search is an important factor in both automated library 
catalogs and digital libraries. An example from [6] cites researchers 
ourselves: when looking for references and citations, expert 
researchers tend to look for specific papers, authors or research 
groups, rather than do topical search. While known item search has 
been shown to be the most straightforward and simple type of search 
[19], this does not mean we cannot improve upon this and that they 
are unimportant. On the contrary: as known item queries represent a 
sizeable percentage of catalog queries and can easily be resolved, 
providing cooperative handling for both successful and failed 
known item queries can lead to better usability of library catalogs.  
Our study has investigated how a system can automatically 
determine whether a query is a known item query, and whether the 
known item(s) exist in a library’s holdings. We have analyzed both 
known item queries and the titles retrieved by them in a large 
academic catalog. From this data, we have distilled a number of 
characteristics that can distinguish known items queries from other 
queries, and identify when the known item is correctly retrieved by 
the catalog. We have demonstrated that an automatic approach can 
be constructed and achieves up to 80% and 95% correlation with 
human annotations, for each of the two tasks respectively. Our study 
also indicates that knowledge of the queries’ search results makes 
the query classification task more consistent and polarizes 
judgments among human annotators. This source of information can 
assist the automatic classifier as well improving performance over 
approaches that examine the query alone.  
While the results of our research are not perfect (in fact our study 
hints that there is not likely to be 100% consensus on what queries 
are known items or not), our system approaches human performance 
at distinguishing queries. We believe with suitable user interface 
integration, this module can help streamline the OPAC search 
process and reduce user frustration.  
To our knowledge, this is the first work that seeks to characterize 
known item queries and identify their targets in an automated 
manner. Kilgour [8] prescribes how informed library users can issue 
effective known item queries, by including the author’s surname and 
specific words from the title of the item. However, many users will 
not have the luxury or inclination to learn best practices. As such, 
we see our work as complementary to Kilgour’s in tackling the same 

problem – support of known item queries – from two different 
perspectives.  
We have focused on cooperative strategies for OPAC searching. As 
patrons are increasingly using a single search text box as the sole 
user interface to a DL, we need to expend more efforts into 
intelligently process their queries and to assist them with their 
searches. Our work here is one step in this direction.  
In future work, we plan to examine the effects of using a larger 
collection of known item titles (e.g., Books in Print) to further 
improve the query classifier. We also plan to study author searchers 
in greater detail as this type of query also plays a large role in OPAC 
searches. Additionally, in this paper, we have focused on a model 
that deals with individual queries independently of others. By 
associating queries with user session (by checking whether queries 
close in time also use similar query keywords) in a manner similar to 
[3], we hope to understand the greater context in which known item 
queries are made (e.g., Are they made in batches?  Do users query 
for both known and unknown items in a single search session?). We 
believe that the answers to these questions will have a large impact 
on the path of future research in computer-supported retrieval. 
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