
Detecting and Supporting Known Item Queries
in Online Public Access Catalogs

Min-Yen Kan
School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543

kanmy@comp.nus.edu.sg

Danny C. C. Poo
School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543

dpoo@comp.nus.edu.sg

ABSTRACT
When users seek to find specific resources in a digital library, they
often use the library catalog to locate them. These catalog queries
are defined as known item queries. As known item queries search
for specific resources, it is important to manage them differently
from other search types, such as area searches. We study how to
identify known item queries in the context of a large academic
institution’s online public access catalog (OPAC), in which queries
are issued via a simple keyword interface. We also examine how to
recognize when a known item query has retrieved the item in
question. Our approach combines techniques in machine learning,
language modeling and machine translation evaluation metrics to
build a classifier capable of distinguishing known item queries and
correctly classifies titles for whether they are the known item sought
with an 80% and 95% correlation to human performance,
respectively on each task. To our knowledge, this is the first report
of such work, which has the potential to streamline the user interface
of both OPACs and digital libraries in support of known item
searches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval: search process; H.4.m [Information Systems
Applications]: Miscellaneous.

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Known item queries, query language model, query types.

1. INTRODUCTION
Consider a scenario in which an academic library patron wants to
see whether his institution subscribes to a specific journal in his
research area. Knowing the journal title makes it easy for him to
construct a query to the local online public access catalog: for
example, “journal of housing for the elderly”. If the periodical is
carried by the library and the title appears in the search results, the

user can locate the journal. If the library does not carry it, the
catalog may retrieve irrelevant resources that share words with the
query. In this case, the user may have to sift through the returned
results, only to conclude that the library does not carry the journal.
These types of queries, in which the user knows what resource he is
seeking prior to searching, are often called known item queries.
Slone [19] differentiates known item queries from two other types of
catalog queries: a) unknown item queries, where the user tries to
locate resources to solve a problem or address an issue, and b) area
queries, where the patron uses the catalog to locate a library section
or area. Since known item queries are used to retrieve a specific
resource, results that do not match are irrelevant. This is in contrast
with unknown item and area searches where partial matches to a
query may meet the user’s needs. As such, the detection and proper
support of known item queries is important to the satisfaction of
library users.
How important is known item search? In the setting of an OPAC, it
is very important. Larson [10][10] points at the long term decline of
subject searching in OPACs, in which known item search accounts
for a growing proportion of library catalog searches, up to 50%.
However, supporting these types of searches has largely been
ignored by the information retrieval community, whose focus has
been on topical search (e.g., TREC bakeoff competitions [4]). While
these efforts have improved the state of the art for topical search, we
see a need to support better known item query detection and
retrieval.
Modern OPACs have several search access points that query the
same catalog. A keyword search box is arguably the simplest one to
use and is often the default search interface. Separate title, subject,
and author search interfaces or advanced syntax may be provided to
limit search to such bibliographic fields, and is often utilized by the
expert user whom desires fine-grained control of their search [2].
Despite the affordances that these more exact search tools provide,
the reality is that novice users often use the keyword interface as a
default, and employ it for subject, author and title searching. Aside
from prescriptive education of users in search techniques, OPACs
need to handle the variety of different queries, including known-
item ones, as best as possible.
To address this problem, we propose a system that a) detects known
item queries, and b) detects when such queries retrieves the desired
known items. The system performs both tasks by employing a
learning paradigm. A query model is first built from past known
item queries and their corresponding catalog search results. Our
final query model itself consists of three components: a set of query
features distilled from empirical observation, n-gram language
models and matching models for returned search results using
machine translation scoring metrics. Then, when a user issues a new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
JCDL’05, June 7–11, 2005, Denver, Colorado, USA.
Copyright 2005 ACM 1-58113-876-8/05/0006…$5.00.

query to the catalog, the system checks whether the known item
query model applies to the new query and its search results. A key
finding of our study is that knowing what results of the query are
help to improve known item query detection significantly. The
resulting system is able to distinguish known item queries at 80% of
the level of human performance. We also show that it is possible to
correctly identify when the known items are retrieved by the catalog
with 95% of the level of human performance.

These two parts of the system can be integrated with an online
public access catalog (OPAC) to improve catalog usability and user
satisfaction. When the known item is in a library’s collection, proper
handling known item queries can route the user to the desired
resources quickly. When the known item is not in a library’s
collection, the system can let the user know that the library does not
carry the title. In both cases, the user does not have to wade through
a list of search results, saving time for the user and avoiding
frustration.

2. OUR APPROACH
To identify and support known item queries, we break down the
process into two separate tasks:
1. to classify user queries as either known item queries or not;
2. to identify which, if any, of the returned search results are the

known items sought.
We examine both tasks as machine learning problems. In machine
learning, a system develops knowledge based on training data.
Using the training data, we apply learning to model the two tasks
and which can be applied to solve them.
To perform this study we first needed to collect ground truth
annotations to use as training data. We detail our data collection
process and assess the level of inter-judge agreement to establish an
upper bound for performance. We then detail our automated
approaches to the two tasks. For known item query detection, we
start with a simple model that uses only the query itself as input for
the classification task. We then develop a more comprehensive
model that adds the returned search results as input to this first task
and shows how it improves performance. We then examine the
second task, search result classification, to see whether automated
methods can distinguish known items from other search results.

3. DATA COLLECTION
To provide the necessary data for both training and evaluation, we
need to examine actual catalog queries and their search results. The
sample queries are drawn from the transaction logs of INNOPAC,
the local OPAC system at the National University of Singapore.
These logs consist of approximately 290,000 unique queries issued
to the simple keyword access search point during a period of about
fifteen months. We took sample queries from the logs for annotation
and analysis. The queries were carefully chosen to represent diverse
types of queries that were encountered in the logs. We detail this
procedure in Section 4.1.
Given queries, we need to know whether they are known item
queries or not. The optimal way to make this judgment is to ask the
user who issued the original query, as was done in previous library
studies [19][18]. However, our transaction logs do not collect the
identity of the original library user, as most catalog queries come
from anonymous access via public access terminals or the internet.
As such, we had to simulate this judgment using a separate set of
human subjects. A total of 9 participants (including the authors, all
of whom were university students or staff) took part in annotating

the set of queries and their search results. The participants were
directed to judge queries and catalog search results. Instructions that
defined the tasks and gave example answers were given to the
subjects before they were allowed to annotate. Online help with the
evaluation was available at all times during the annotation process.
Annotation of both queries and retrieved items allows an algorithm
to distinguish known items and their queries from others. Thus we
asked our annotators to judge queries and search results in two
separate tasks, as discussed in Section 2. However, as search results
can influence whether a query is perceived as a known item query,
we included a third task of query judgment that uses both the query
and the search results as input. Each of the 320 queries was
annotated by at least one subject.
In the first query judgment task, participants were instructed to
decide whether a given query was a known item query or not. The
subjects were given just the query for the first task and asked to rate
the query on a 9-point Likert scale, ranging from “Definitely a
known item query (1)” to “Definitely not (9)”.
In the second query judgment task, illustrated in Figure 1, the
participants re-judged the query given the results of the search in the
local OPAC. We showed participants the first page of results
returned by the catalog. Subjects were asked to re-judge the query
on the known item task on the same 9 point Likert scale, with their
previous choice highlighted and chosen as a default. We believed
that this additional source of information might help polarize
judgments. For example, a query that may have been unfamiliar to
the subject might be re-judged as a known item if there are exact
title matches returned by the OPAC.

Figure 1: The query re-judging task, using search results. Here,

the query “geopolitics” has been re-judged as
a likely known item query.

A final search results judgment task followed. Here, the participants
were asked to assume that the query was actually a known item
query (i.e., that the user who originated the query had a specific
resource in mind to retrieve) and to judge whether each of the search
results was the intended item. Again, the participants were asked to
classify the titles along the 9-point Likert scale: “Definitely the item
sought (1)” to “Definitely not the item sought (9)”. Note that
multiple items may be classified as the known item, as the catalog
can return identically named titles when the library has multiple
copies of the title or has the title in multiple formats (e.g., “To Kill a
Mockingbird [large-print]” and “To Kill a Mockingbird
[videocassette]”).
Using this interface, a total of 320 query judgments and re-
judgments were collected, along with 1,500 query results judgments.

Original ranking,
without search results

New ranking

3.1 Inter-judge Agreement
Classifying queries as known item or non known item searches may
seem easy. Queries such as “The Catcher in the Rye” or “cosmos
carl sagan” are simple to classify as known items when one knows
of the title in question. However, many book titles are similar to
general subject areas, perhaps to enhance a book’s merchantability.
In such cases, it may be difficult to distinguish whether the query is
known item or not without prior knowledge. For example, to digital
library researchers and practitioners “practical digital libraries”
could be a known item query searching for the text by Michael Lesk
but “practical digital archiving” is not. To the non-specialist, the two
may be viewed as equivalent.
As the same item may be rated by subjects differently, the known
item query and title judgment tasks are not rigorously defined. Still,
we argue that the concept of a known item query is meaningful and
that the tasks that are well-defined. To support this, we calculated
Pearson’s R among the users. This correlation score measures inter-
judge agreement: a value of ‘1’ indicates perfect correlation,
whereas values of ‘0’ and ‘-1’ indicate no correlation and perfect
opposition, respectively. Well-defined tasks can be defined as
having an R value greater than .4. Table 1 shows the correlation
analysis for the three tasks, respectively. We show both per-item R
scores as well as averaged R scores over all subject pairs.
Table 1: Pearson’s R for data collection tasks. Per-item and per-

user averages shown for both raw and binary classes.
9-point scale 2 class Task

Per-item Avg Per-
subject

Per-item Avg. Per-
subject

1. Query
(just query)

.577 .546 .392 .411

2. Query
(w/ results)

.604 .664 .593 .656

3. Query
Results

.745 .763 .739 .750

In applications, we often need to simplify the problem to a binary
classification: for example, whether a query is a known item query
or not. The last two columns of Table 1 show the same correlation
analysis for the tasks, in which the 9-point scale is collapsed to two
classes: known item queries (raw values 1 and 2) and not known
item queries (raw values 3-9). Note here that the reduction to two
classes is asymmetric: we collapse only the top two classes for
which subjects had marked as most sure as known items queries.
This is because we want the detection of known item queries to be
more precise (at the expense of non-known item queries).
The results in both the raw 9-point and the binary classification
show similar characteristics. Each of the tasks seems well-defined,
having correlations largely above .4. Additionally, we see that
having the query results helps raters to establish more consistent
ratings for their known item judgments, moving the tasks from a
medium level of correlation (.4 to .6) to a high level (above .6). This
validates our hypothesis that the search results are important to use
in the query classification task. Examining the data we see that when
the OPAC does return items that exactly match or are very similar to
the query, users agree that the search was a known item one. We
also see that the title classification task is much easier. This is
because the large bulk of the returned items are not known item
matches.

Aside from showing that these tasks are well-formed, the correlation
scores also act as an upper bound on the performance of automated
methods. We consider an automatic method successful if it can
achieve an R score at or close to the level of human-human
agreement.

4. KNOWN ITEM QUERY
CLASSIFICATION
We now turn our attention to automatic methods to perform these
three tasks. As humans, one can often identify a known item query
by simple inspection. Slone [19] notes that words from the title and
author’s name frequently help to distinguish a known item query
from other types of queries. Allen [1] also showed that bibliographic
cues provided by the searcher are more conducive to known-item
search, as compared to freeform and structural cues. In support of
this, Kilgour et al. [8][9] explored how to best conduct known item
queries efficiently – and concluded that the author’s surname plus
first and/or last title words can help to pinpoint the known item
within the first 20 results over 98% of the time in their university
OPAC. Our work is complementary to these works, as we
cooperatively identify whether or not a query is a known item one,
rather than prescribe guidelines for constructing them.
Aside from these hints, we consider other features that may help
identify known queries. We look at two examples: “Hill Raymond
Coding Theory – A First Course” and “japan and cultural”. The first
query is a known item query and the second one is most likely not a
known item query. By examining a small training portion of the
collected data of the annotation results we can make the following
general observations about known item queries:

• They are longer: Users tend to type more when they have a
specific resource in mind. In an academic setting such as ours,
they may be copying a reference or citation from a syllabus or
pasting one from a web site into the search field. We believe
that the latter case would be more prominent in digital library
scenarios in which catalog access is often juxtaposed with
internet access. The problems of query construction and
formulation are alleviated in known item searches, and as such,
longer queries come more easily to the known item searcher.

• They contain determiners: In English titles, determiners (such
as “the”, “an”, and “a”) are often parts of book titles and are
thus also prevalent in known item queries. In contrast, most
area or unknown item searchers do not type determiners into
search boxes as many know that such words are often ignored
by OPACs.

• They contain proper nouns: Similar to Slone and Kilgour et
al.’s studies, we have observed occurrences of author and
editor names in known item queries, as in the first example.
When seen together with other features such as common nouns
(which may indicate title words), proper nouns are a strong
indicator of a known item query. Surnames alone may indicate
an author search, but not necessarily a known item search (as
an author may have written several works).

• They contain mixed case: Known item queries often match
exactly the title’s orthographic case, as the user is likely to be
pasting or typing in the query from another resource at hand. In
our local OPAC, the catalog search is case insensitive. Even
though library users may be aware of this, disregarding case is
an active process that requires a user to think about their input.
A user who may be copying or pasting from another source is
unlikely to engage in this process and is more likely to copy the
title into the search box verbatim.

• They contain certain advanced operators: INNOPAC allows
users to limit portions of their search to specific fields. For
example, “(a: author)” specifies that “author” should appear in
the author / editor field of the retrieved result. A strong
indicator of a known query is when both the author or title
limit operators are present. However, not all OPAC operators
indicate a known item query. In our observation, truncation,
grouping and proximity operators (i.e., “**”, “()” and “within
<digit>” or “near” in INNOPAC) are strong indicators of area
or unknown item search. Boolean “and” and “or” operators are
more difficult to characterize: they do appear in titles of books
and therefore in known item queries, but are also used to
bridge subjects in area and unknown item search.

• They contain keywords: Keywords that indicate a type of
publication are strong indicators of a known item. Keywords
such as “journal”, “course” and “textbook” usually connote the
desired type of resource, rather than a keyword search for the
word. Similarly, many titles in libraries but few subject
headings consist of these words.

To decide whether a particular query is a known item query or not,
we combine these separate pieces of evidence to make a decision.
This is done using machine learning, in which the annotated queries
from Section 3 are used to learn a model based on features distilled
from the above evidence. Each query is transformed into a set of
numeric values that reflect the query’s length and its words’ parts-
of-speech, as obtained from a publicly available part-of-speech
tagger [16]. We also encode whether certain advanced operators or
publication specific keywords are present. At the end of this process,
a query is represented as a set of 16 basic feature values.

4.1 Query Sampling by Query Types
Ideally, we would annotate the full set of 290,000 historical queries
from the logs. This is infeasible as we have limited resources and
thus a sampling of the queries must be made. A random sampling is
a logical choice if we have no prior bias or information. However,
since we believe that the features above are important to known item
queries classification, we can choose to annotate queries that
maximize the discrimination between the two classes as much as
possible.
This is done by choosing queries that possess different values in
their 16 basic features. All queries that exhibit the exact same
feature values could be represented by a single, annotated query. We
say that queries that exhibit the same feature values belong to the
same query type. This makes a simplifying assumption that the
features of query length, keyword content, parts-of-speech and case
uniquely determine whether it is a known item query or not.
Although this assumption is false, it allows us to sample the query
space more effectively to cover more feature values.
In this way, we processed all 290,000 queries through our feature
extraction program to obtain their query type. This resulted in a total
of 1,690 unique query types. A few of these query types and their
demographics are shown in Table 2. As expected, query distribution
among the query types is not uniform: for example, we see partial
evidence that very few of the queries contain advanced operators,
which supports earlier findings in query analysis.
We ordered the 1,690 query types by their descending frequency
(representing their coverage of the query set). The first 320 were
annotated by our human subjects in our study. These 320 annotated
query types cover about 94% of all queries in our corpus.

Table 2: Sample query types and representative queries.
Query Type Description Sample Query Instances

(% of
corpus)

Two word, average length word
query, no proper nouns

diagnosis surgery 35,014
(12%)

Single word, long query, tagged
as proper noun

lobachevsky 1,070
(0.3%)

Medium length, multiword query
with determiner “the”

the melodrama’s
role

999
(0.3%)

5 words, short query, containing
advanced operators

short stor* and
(t:familiar)

34
(0.001%)

4.2 Bigram Query Language Modeling
While we believe the features discussed earlier are important for
known item query discrimination, there are potentially limitless
words and word patterns that might help discriminate known item
queries. Although we may not be able to enumerate all such
patterns, we still want to create a language model that characterizes
known item queries. Given annotated queries, we first build a
language model for known item queries and another for non-known
item queries. At run-time, we pass the target query to each language
model to find which model is a better fit for the query. This
information can then be used as an additional feature for machine
learning.
Language modeling is common in speech recognition [7], and a
popular approach here is to use n-gram modeling. This approach has
also recently been used for authorship attribution and genre
detection [15] and recently for known-item finding on the web [13].
For our work, an n-gram is defined as a sequence of n words (as
opposed to characters, for example). An n-gram language model
estimates the probability of a word sequence P(w1,w2,…wn) by
decomposing the problem as a product of simpler conditional
probabilities.
As we have limited annotated data, we use a simple bigram (n=2)
model, which limits the context to two words:

∏ −≅
m

i
iim wwPwwwP)|(),...,,(121

Such a model uses the previous word wi-1 to predict the current word
wi. We preprocess the 320 annotated queries, canonicalizing spaces
and performing case folding. We then construct bigram models from
the training queries. This is done by taking all labeled queries
belong to a certain class and decomposing each into separate
bigrams. For example, the query “the melodrama’s role” would be
separated into two bigram events: “melodrama’s” preceding “the”,
and “role” preceding “melodrama’s”. These bigrams are tabulated
for all of the annotated queries belonging to a certain class (e.g.,
known item query), and the resulting model is smoothed using
standard Good-Turing smoothing. The bigrams are used to construct
two sets of language models: one set of two models for two class
task and another set of nine models for the 9-point Likert-scale task.
Then, to evaluate a test query, we test its goodness of fit to the
language models by calculating its perplexity:

n
n

i ii wwwP
Perplexity ∏

=

=
1 1)..|(

1

The language model with the lowest perplexity is the model that has
the highest probability of generating the test query, and is thus the
language models’ best guess of the classification of the query.

4.2.1 Bootstrapping a language model
We construct language models using just the 320 annotated queries.
However, since the annotated corpus is small in size, the resulting
model may not generalize well to test queries (i.e., the model may
overfit the data). To address this problem of data sparsity, we need
to find comparable queries to the annotated ones to use as training
data to construct the language model.
As we have annotated instances of query type that represent sets of
queries that have the same feature values, we can use all the queries
that belong to a query type to help build the language model. This is
a semi-supervised approach that enlarges the 320 labeled instances
to over 270,000 noisily labeled queries.

4.3 Methods and Evaluation
We thus process the 320 annotated queries into the 17 features total:
the 16 basic features and a language model feature. For the language
model, we assess both using the standard supervised language
model using only the 320 annotated query instances as well as the
bootstrapped method that uses over 270,000 query instances. We
combine these features with the participant’s labels from the first
query classification task. We use a decision tree model and support
vector machines to create suitable machine learned models. We use
standard ten-fold cross-validation to perform training and testing
partitioning of the annotated data set. Although there are many
models for machine learning, we chose SVMs, as past work has
shown good performance on a wide range of tasks and decision trees
as the resulting model is readily understandable to humans. We use
the SVM and decision tree (named “J48”) algorithm implementation
in the freely-available Weka [20] machine learning package.
A majority baseline would pick the mode of both classes and would
not exhibit any correlation with the human judges, although by pure
instance accuracy, it would achieve 20% accuracy on the 9-point
scale problem (always choosing “3” (likely a known item query))
and 60% accuracy on the two class problem (not a known item
query). In this paper, we do not consider the instance accuracy of the
learner as we have a categorization problem that has a skewed
distribution. To measure performance that favors good classification
accuracy on a per-category basis, we can use macro-averaged
metrics. In our case, since we have numeric classes, we can use
correlation with human judgment, which is the metric which we will
use throughout the remainder of the paper.
We show the performance of the different learners and feature
combinations in terms of their Pearson’s R values in Table 3. For
features we use “BF” to denote the 16 basic features, “BLM” to
denote the bigram language model, and “BBLM” to denote the
bootstrapped version of the bigram language model. Note that the
language models themselves can be used without a machine learning
framework to predict the resulting class.

Table 3: Correlation of the models on the basic query task.
Pearson’s R correlation Configuration

9 point Likert Two
Class

Majority Baseline 0 0

Inter-judge Agreement .546 .411

Bigram LM only (i.e., BLM) .150 .133
Bootstrapped BLM only (i.e., BBLM) .295 .210

J48 (BF) .327 .057

J48 (BF + BLM) .438 .151

J48 (BF + BBLM) .284 .093

SVM (BF) .377 .195

SVM (BF + BLM) .318 .133

SVM (BF + BBLM) .402 .281

Performance on this task is upper bounded by human agreement and
lower bounded by the majority baseline. Inter-judge agreement as
measured by Pearson’s R is capped by .546 for the 9-point scale and
.411 for the simplified 2 class problem. Our learned models perform
at .438/.546 = 80% of human performance using decision trees with
the simple bigram language model for the 9-point scale, and at .281 /
.411 = 68% using a bootstrapped bigram language model with
SVMs in the two class problem. Also, both the simple and
bootstrapped language model features turn out to be weak predictors
of human judgment, but the bootstrapped model has a much better
correlation when used alone, possibly because it is provided with a
much larger data set for model building (albeit a noisy one). When
suitably paired with a learner, is able to improve upon the
performance of the learners using just the basic features.
An analysis of the best performing decision tree model reveals that
the language model feature is the most important for classification,
as it is at the root of the decision trees. The number of words and
whether the words of the query are capitalized are also strong
features used by the decision tree. The presence of advanced
features and publication keywords do not contribute much in the
decision tree classification performance.
Also note that the bootstrapped language model increases the
performance of the SVM-based model over the standard bigram
model, but decreases performance when used in the decision tree
learning framework. Why do the SVM and J48 classifiers react
differently to the original bigram model and the bootstrapped one?
We hypothesize that as the decision tree model uses the bigram
model features at the root, the bigram model feature has a strong
effect of the classification. Noise that has been incorporated in the
bootstrapping process has a large impact on performance. In the
SVM model, all feature values are taken in consideration
simultaneously, with the weighting determining feature importance.
As such, we believe that the SVM model may incorporate the
bootstrapped bigram model features more effectively, as the model
has a natural propensity to handle noise well.

5. QUERY CLASSIFICATION USING
SEARCH RESULTS
Thus far we have only used evidence within the query itself to
accomplish known item query discrimination. In Section 3.1, we

showed that agreement among human subjects increased when they
were allowed to examine the catalog titles returned by the OPAC.
A logical extension of the previous experiments is to leverage these
catalog results in the learning framework. Similar to the first task,
we distill four observations about how known items and the queries
that attempt to retrieve them match each other:

• The sequence of words in the item’s title overlap
significantly with the query: Matching individual words
between the item and the query is not enough. For example, the
words of the query “family in a changing society” may overlap
entirely with a title such as “Family Caregiving in a Changing
Society”, but the title is not likely to be the known item sought
(the problem here is the intervening headword “Caregiving”.
Treating the query as an unordered set of words may not be
sufficient for many cases. The sequential order of the words in
the query plays an especially important role in determining
whether a retrieved item is a known item.

• The overlap between the query and the title should be a
significant portion of the title: Titles that have all of the word
sequences found in the query are not necessarily known item
matches. Consider the query “the bible” and the item “Great
people of the Bible and how they lived”. Although the query is
fully embedded within the item’s title, it is not likely the known
item being sought after. In our observation, this is especially
true for long titles and short queries.

• First and last word sequences in the query are important to
match in the title: Consider again the query “marriage and the
family in a changing society”, and three retrieved items
“Marriage and family: change and continuity”, “Restructuring
the Chinese city: changing society, economy and space“ and
“Marriage and family in a changing society”. Here, we see that
the beginning two words (“marriage and”) and the last two
(“changing society”) are matched only in the last item. These
two positions are important to distinguish known items from
distracters.

• Publication keywords are important to match: If the known
item query has a publication specific keyword (again, words
such as “journal”, “atlas” or “guide”), they should be present in
the title as well.

Thus, if the returned titles exhibit one or more of these matching
characteristics, we have partial evidence that the query is a known
item query. Note the difference when a query retrieves no search
results (0 titles) as opposed to retrieving results that do not match
well with the query in the categories above. In the former case, we
have little evidence to change our decision (as our institution may
simply not carry the title searched for), but in the latter, we have
evidence that the search is intended to find subject material and not
known items.

5.1 Computing Overlap with Machine
Translation Metrics
Sequential matching of words between the query and the item title
are important. To model this, we adopt metrics in machine
translation (MT) that measure translation fidelity.
To evaluate an MT system, a reference translation is first created and
an automated system’s translation is compared against it. A
translation with high fidelity should match the reference in terms of
its vocabulary, word order and length. Similarly, a known item
should match a query intended to retrieve it along the same criteria.

The NIST and BLEU machine translation metrics model the
goodness of fit of a candidate translation to a reference translation.
Both metrics use a modified precision count of the number of n-
gram matches between the reference and candidate. BLEU is a
normalized score between 0 and 1 that combines n-gram fidelity at
several sizes [14], whereas NIST uses only trigram fidelity (n=3)
and seeks to maximize the score difference between different
candidate translations [12]. Both metrics also employ a length
penalty for translations that are overly long.
Given a retrieved title and the search query, we can calculate both
scores by using the title as the reference translation and the search
query as the translation. These two metrics are used to measure the
first two observations: that known item queries match the title
sought in terms of vocabulary, order and length.

5.2 Other Features
To model the final two observations, we encode separate values for
when the first and the last query bigrams are matched, the total
number of titles returned by the OPAC, and a Boolean feature that
indicates when a publication keyword in the query is matched. We
encode the total number of hits returned by the catalog as an
additional feature. A total of six features thus model the returned
item’s fit to the query.
Note that these features are created on a per search item basis, not a
per query basis. We need to propagate appropriate values to the
search queries. We take the maximum value of each feature over all
of the returned search results as the value for the query feature. This
is because a single search item that matches well with the query is
likely to be a plausible known item and thus favor the classification
of the query as a known item search.

5.3 Methods and Experiments
For our experiments, we repeat the same basic procedure as in the
original query-only judgment task. Specifically, we first process the
same 320 annotated queries and their corresponding search results
to derive the maximal matching features values for each query. We
combine the resulting feature vector with the participants’ labeling
on the second query judgment task. Again, using ten-fold cross
validation and using both SVMs and decision trees to learn models
and evaluate them. As in the previous case, the majority baseline
does not show any correlation with human judgments (R = 0).
Correlation is shown in Table 4, where “MTscores” denotes the two
machine translation score based features, “other” denotes the other
features based on our own manual analysis.
As the scores on this task are generally higher than in the previous
judgment task without the query results, this validates that the search
result information does make the task easier. We can see that both
the machine translation metrics and the other matching features both
help to improve classification accuracy. It is also encouraging to see
that their combination reinforces each other, leading to better
performance. In this task, we see that the results clearly favor the
SVM learner, with best scoring configurations using both sets of
query result features and language modeling, garnering .454 / .664 =
68% and .367 / .656 = 55% of the level of human performance on
the 9-point Likert and two class problems, respectively. Although
the percentage performance is lower than the previous task, absolute
performance is increased by using search results: by 3% and 30% in
the 9-point Likert and two class problem, respectively.

Table 4: Correlation on the query task using search results.
Configuration 9 point Likert Two Class

Majority Baseline 0 0

Inter-judge Agreement .664 .656

J48 (BF + MTscores) .297 .261

J48 (BF + others) .333 .224

J48 (BF + both) .366 .285

J48 (BF + BLM + both) .374 .269

J48 (BF + BBLM + both) .305 .257

SVM (BF + MTscores) .372 .320

SVM (BF + others) .409 .333

SVM (BF + both) .411 .334

SVM (BF + BLM + both) .454 .351

SVM (BF + BBLM + both) .447 .367

An analysis of the J48 classifier reveals that the both the machine
translation and the manually distilled search result features are the
most important features for classification. The language model
feature is less useful, only used in a few branches of the final tree.
This correlates with our expectations, as the addition these features
increases absolute correlation performance.

6. CLASSIFYING SEARCH RESULTS
The final task is to identify known items from the returned search
results. As the features that distinguish the known items from other
returned results are largely shared with the query re-judgment task,
we can perform these two classifications in parallel. We use the
search result matching features introduced in the previous re-
judgment task but calculated on a per-search result basis, rather than
on a query basis. We also introduce features that normalize the
results compared to the maximal match for the query. For example,
say a query returns 10 results, and that the maximum BLEU score
for any of the 10 results is .5. The BLEU score for a particular
search result relevant to that query might be .2. In this case, we add
the raw BLEU score as a feature and its normalized BLEU score
(.2/.5) = .4 as an additional feature. We calculate these scores for all
1,500 annotated search result instances to perform cross validation,
as noted in Section 4.1. Table 5 shows the correlation of the
different configurations to the annotations.
Table 5: Correlation on the search result classification task.

Configuration 9 point Likert Two Class

Majority Baseline 0 0

Inter-judge Agreement .763 .750

J48 (MTscores) .632 .607

J48 (others) .655 .648

J48 (both) .726 .685

SVM (MTscores) .519 .562

SVM (others) .524 .560

SVM (both) .609 .639

In this task, the decision tree classifier outperforms the SVM based
classifier in every configuration. Similar to the query re-judgment
task, we see that the machine translation features are correlated with
the task but not as strongly as our manually distilled features. The
two sets of features are complementary and reinforce each other to
yield the best performance. In this case, the decision tree classifier
yields a performance that is .726 / .763 = 95% of the level of
performance of human participants on the raw 9-point scale.

7. USING THE CLASSIFIERS
Having known item query and title classifiers allows for more
sophisticated query handling in a library catalog. For example, if a
user’s query is clearly a known item query and produces no results
in the catalog, it is clear that the item is not present in the library
catalog. Instead of ending the search in frustration for the user, the
OPAC can cooperatively help by providing useful alternatives.
These would include recommending the user to try external catalogs
(e.g., interlibrary loan) or recommending that the library purchase
the title. Note that these actions are specific to known item queries,
not unknown item and area searches, because the search implies that
the item does exist but is not owned by the library. Conversely,
when the query is a known item query and the catalog does retrieve
it, we can zoom directly to title’s entry rather than waste the user’s
time with a display of the remaining search results.
As important is the opportunity to teach the user how to use the
catalog more effectively. We can automatically “rewrite” any known
query to use advanced operators (e.g., “t:” in INNOPAC to match
only title fields) to teach users how to utilize the operators to make
more precise searches. An alternative is to direct users to alternative
title, author and subject query interfaces. Either way enhances the
literacy rate of OPAC users in a cooperative manner that does not
require explicit demonstration and time commitment, unlike formal
training.
These possibilities are shown in screen mock-ups in Figure 2. We
display these screen prototypes to show the spirit of the cooperative
model and not as finished products; suitable user interface
engineering and design would need to be done to tune the screens
appropriately.
As our models include different levels of confidence though the use
of the raw 9-point Likert scores, we can have different models of
interaction for different levels of confidence. For example, if the
system suspects that a title is the known item that the user is
searching for but is not certain, it can re-order the search results to
place the title in the first position or place circulation information as
part of the search results. Availability / circulation information is
particularly important in known item search, as it is likely that the
user will want to access or borrow the title if it is available.

8. CONCLUSION
Automatic query analysis in general is a topic of growing interest
recently. The IR community has mostly focus on topical search in
the past decade with TREC work, although there have been some
attempts in categorizing known item search in the outputs of TREC
related research as well [11][12][14]. Recently, work in the web
search community has also called attention to query analysis, as
query logs show that queries are more heterogeneous than just
topical search alone [17][18].

Figure 2: Prototype cooperative user interface for known item query handling, in successful (l) and unsuccessful (r) cases.

Known item search is an important factor in both automated library
catalogs and digital libraries. An example from [6] cites researchers
ourselves: when looking for references and citations, expert
researchers tend to look for specific papers, authors or research
groups, rather than do topical search. While known item search has
been shown to be the most straightforward and simple type of search
[19], this does not mean we cannot improve upon this and that they
are unimportant. On the contrary: as known item queries represent a
sizeable percentage of catalog queries and can easily be resolved,
providing cooperative handling for both successful and failed
known item queries can lead to better usability of library catalogs.
Our study has investigated how a system can automatically
determine whether a query is a known item query, and whether the
known item(s) exist in a library’s holdings. We have analyzed both
known item queries and the titles retrieved by them in a large
academic catalog. From this data, we have distilled a number of
characteristics that can distinguish known items queries from other
queries, and identify when the known item is correctly retrieved by
the catalog. We have demonstrated that an automatic approach can
be constructed and achieves up to 80% and 95% correlation with
human annotations, for each of the two tasks respectively. Our study
also indicates that knowledge of the queries’ search results makes
the query classification task more consistent and polarizes
judgments among human annotators. This source of information can
assist the automatic classifier as well improving performance over
approaches that examine the query alone.
While the results of our research are not perfect (in fact our study
hints that there is not likely to be 100% consensus on what queries
are known items or not), our system approaches human performance
at distinguishing queries. We believe with suitable user interface
integration, this module can help streamline the OPAC search
process and reduce user frustration.
To our knowledge, this is the first work that seeks to characterize
known item queries and identify their targets in an automated
manner. Kilgour [8] prescribes how informed library users can issue
effective known item queries, by including the author’s surname and
specific words from the title of the item. However, many users will
not have the luxury or inclination to learn best practices. As such,
we see our work as complementary to Kilgour’s in tackling the same

problem – support of known item queries – from two different
perspectives.
We have focused on cooperative strategies for OPAC searching. As
patrons are increasingly using a single search text box as the sole
user interface to a DL, we need to expend more efforts into
intelligently process their queries and to assist them with their
searches. Our work here is one step in this direction.
In future work, we plan to examine the effects of using a larger
collection of known item titles (e.g., Books in Print) to further
improve the query classifier. We also plan to study author searchers
in greater detail as this type of query also plays a large role in OPAC
searches. Additionally, in this paper, we have focused on a model
that deals with individual queries independently of others. By
associating queries with user session (by checking whether queries
close in time also use similar query keywords) in a manner similar to
[3], we hope to understand the greater context in which known item
queries are made (e.g., Are they made in batches? Do users query
for both known and unknown items in a single search session?). We
believe that the answers to these questions will have a large impact
on the path of future research in computer-supported retrieval.

9. REFERENCES
[1] B. Allen. Recall Cues in Known-Item Retrieval. J. Amer.

Society for Info. Science. 40(4). 1989. pp. 246-252
[2] M. J. Bates. Where should the person stop and the information

search interface start? Info. Proc. And Management. 26(5)
1990. pp. 575-591.

[3] J. Bollen and R. Luce. Evaluation of Digital Library Impact
and User Communities by Analysis of Usage Patterns, D-Lib
Magazine, June 2002.

[4] D. Harman (ed.) The Fourth Text REtrieval Conference
(TREC-4). NIST Special Publication 500-236. 1995.

[5] Innovative Interfaces – Innopac <http://www.iii.com/>
[6] K. Jarvelin and P. Ingwersen. Information seeking research

needs extension towards tasks and technology. Info. Research.
10(1). 2004.

Known item search:
”The trial kafka”

Item found with
high confidence

No item found

[7] F. Jelinek. Statistical Methods for Speech Recognition.
Bradford Books, 1998.

[8] F. G. Kilgour. Known-Item Online Searches Employed by
Scholars Using Surname plus First, or Last, or First and Last
Title Words, J. Amer. Society for Info. Sci. and Tech. 52(14).
2001. pp. 1203-1209.

[9] F. G. Kilgour, B. B. Moran and J. R. Barden. Retrieval
Effectiveness of Surname-Title-Word Searches for Known
Items by Academic Library Users. J. Amer. Society for Info.
Science. 50(3). 1999. pp. 265-270.

[10] R. Larson. The Decline of Subject Searching: Long-Term
Trends and Patterns of Index Use in an Online Catalog. J. of
Amer. Society for Info. Science. 42(3). 1991. pp. 197-215

[11] M.-K. Leong. Concrete Queries in Specialized Domains:
Known Item as Feedback for Query Formulation. In Proc. of
TREC-6, NIST Special Publication 500-240.

[12] National Institute of Science and Technology. Readme
documentation for the MT evaluation kit, version 10. 2003.
Available from:
http://www.nist.gov/speech/tests/mt/resources/scoring.htm

[13] P. Ogilvie and J. Callan. Combining Document
Representations for Known-Item Search. In Proc. Of SIGIR
’03. 2003.

[14] K.A.Papineni, S. Roukos, T. Ward and W. J.Zhu. Bleu: a
method for automatic evaluation of machine translation. In
Proc. of ACL ’02. 2002.

[15] F. Peng, D. Schuurmans and S. Wang. Language and Task
Independent Text Categorization with Simple Language
Models. In Proc. of HLT-NAACL ’03, 2003. pp. 110-117.

[16] A. Ratnaparkhi. A Maximum Entropy Part-Of-Speech Tagger,
In Proc. of the Empirical Methods in Natural Language
Processing Conference (EMNLP ’96). Pennsylvania, USA.
1996.

[17] D. E. Rose and D. Levinson. Understanding user goals in web
search. In Proc. Of WWW ’04. 2004. pp. 13-19.

[18] A. Spink, D. Wolfram, M. Jansen and T. Saracevic. Searching
the Web: The Public and Their Queries. J. of Amer. Society for
Info. Sci. and Tech. 52 (3). 2001. pp. 226-234.

[19] D. J. Slone, Encounters with the OPAC: On-line Searching in
Public Libraries, J. of Amer. Society for Info. Sci. and Tech. 51
(8). 2000. pp. 757-773.

[20] I. H. Witten and F. Eibe. Data Mining: Practical machine
learning tools with Java implementations, Morgan Kaufmann,
San Francisco. 2000.

