
Optimizing predictive text entry
for short message service on mobile phones1

Yijue How

School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543

howyijue@gmail.com

Min-Yen Kan

School of Computing
National University of Singapore

3 Science Drive 2, Singapore 117543
kanmy@comp.nus.edu.sg

Abstract
Mobile phone based SMS messaging is a ubiquitous form of communication in the modern world. However, the 12-
key keypad found on many mobile phones today poses problems for text entry. As three or four letters share the
same key, some form of disambiguation is required to determine which letter is intended by the user. The predictive
text entry method is the most common text entry technique used in present day mobile phones. To measure the
efficiency of text entry, we perform a task analysis to model the actions of users and develop keystroke-level and
time-level models. A corpus of SMS messages is collected and users were video-taped to obtain timing information
for data analysis. Based on these models, we propose methods to improve the predictive text entry method, focusing
on remapping letters to keys and examining predictive word completion. Using the time model, we show how both
techniques can be reinforce each other to yield a reduction of over 25% of time for message input over the standard
predictive text entry model.

1 Introduction
Short Message Service (SMS) allows people to send or receive text messages of up to 160 characters from mobile
phones. As mobile phones are an indispensable and ubiquitous tool of the modern citizen, the number of SMS
messages sent has increased from approximately 4 billion in Jan 2000 to 24 billion in May 2002 (Netsize, 2003).
Thus, it is essential to investigate and find ways to improve the efficiency of the text entry methods available.
However, the standard 12-key keypad present on many phones poses a problem for text entry, as three or four letters
share the same key. A common approach to SMS text entry is the predictive text entry method. It is a text entry
technique to help disambiguate which letter is intended by the user.

In this paper, we propose methods to improve the efficiency of predictive text entry by studying the statistical
properties of short message service (SMS) messages in English. We use a corpus-based approach to remap the
letters on the keypad to reduce the number of keystrokes. We also examine a language model approach to complete
the word that the user is currently typing. Both of these approaches were studied in the context of a publicly-
available corpus of over ten thousand English SMS messages collected by the authors.

To properly assess the efficiency of SMS input, we have developed two models to measure input efficiency. We first
adapt the Keystroke Level Model (KLM) from previous work in usability research for use in the SMS input domain.
We then extend the model by associating keystrokes with different semantic tasks (e.g., letter entry and symbol
entry). These operations are given approximate times by an analysis of videotaped sessions of users performing
SMS input. The resulting operation-level model allows us to better approximate the time cost to input an SMS text
message over earlier, simplistic keystroke counting model. By using the operation level model, we show that key
remapping combined with input text prediction can save over 25% of the estimated time needed to input messages
using the standard predictive text entry method.

After a brief discussion of text entry methods and previous work in optimizing SMS inputs, we examine the corpus
collection procedure in Section 3. The keystroke and time level are discussion in Section 4. We then present our
methods for optimizing input in Section 5: first, letter remapping on the keypad by using genetic algorithms,
followed predictive word modeling. We conclude with a discussion of performance analysis and directions for
future work.

1 Please direct all correspondence to the second author, Min-Yen Kan.

2 Background
There are currently two main methods that are usually used on mobile phones for text entry. They are the multi-tap
method and the predictive text entry method. In the multi-tap method, a user taps the key that contains the letter
repeatedly until the desired letter appears. The number of taps required depends on the position of the letter on the
key. For example, a user can tap the 2-key once to get ‘a’, twice to get ‘b’ and thrice to get ‘c’, as shown on the
standard keypad in Figure 1.

Figure 1: Standard ISO mobile phone keypad. Alphabetic letters are mapped to keys ‘2’ through ‘9’.

While the multi-tap method remains popular with some users, we focus on a more advanced model of input, which
is called predictive text input, which is featured on many phones as the default method of input. In this method
(e.g., Tegic’s T9 and Zi Corp’s eZiText), the user presses the key that corresponds to each letter of a word once. The
system uses a dictionary of words to determine which of the words the key sequence matches. Like the multi-tap
method, this entry method also suffers from problems when a key sequence is ambiguous. For example, ‘63’ on a
standard ISO keypad corresponds to “mno” and “def”, in which the English words “of” and “me” can be spelled.
When multiple words share the same key sequence, users have to press a ‘Next’ key (usually ‘*’) to move to among
the alternatives. Most dictionary models attempt to order these sets of ambiguous words by relative frequency of
words. Thus, if a user presses the sequence ’63’, “of” might be indicated as the default word as this is a more
frequently-occurring word than “me”. In this paper, we use the term “standard dictionary” to refer to Tegic Corp.’s
T9 dictionary, and the “standard keypad” as the mapping of alphabetic keys to the 12 number keys shown in Figure
1, as standardized by the ISO (ISO, 1994).

3 Short message service (SMS) corpus for comparative research
As SMS messages differ greatly from standard written English (exhibiting shortenings, emoticons, etc.), it is vital to
perform optimization of input with respect to actual messages. For example, “of” might be a more frequent word in
English language texts, but since SMS messages are largely interpersonal communications, an SMS corpus might
show that “me” (typed on the ISO keypad with the same key sequence) is more common. Any corpus-based method
for optimizing input should therefore be done over an actual SMS collection.

We thus collected a corpus of messages as part of the basic groundwork for our research. The version of the corpus
used in this study consists of over 10,000 SMS messages, and largely originate from students attending the
university. Contributors were aware that their messages were to be made publicly available. To our knowledge, this
resource represents the largest corpus of public-domain SMS messages for use in research by two magnitudes, the
second largest being a message collection at HKU2 with about 500 messages in mixed English and Chinese. We
encourage other text entry researchers to use this corpus as a benchmark for comparative research and evaluation,
which can be freely accessed via the World Wide Web3.

The corpus of SMS messages were collected from three different sources. In order for the corpus to have sufficient
depth per user, messages were first collected from a small pool of 20 selected phone users on a regular basis. The
age of these users fall between 18 and 22 and they contributed 6,167 messages altogether, about 60% of the
messages in the corpus. Another 602 messages are collected from the Yahoo SMS chat website4, which shows the
live SMS chat transcript of certain SMS chat rooms. The final group of messages was collected from a larger pool
of users of undergraduate students. This portion of the corpus focused on collecting a variety of messages over a
larger user base. Students were asked to send in up to 75 messages into a website collection program and received a
small amount of compensation for their efforts. Instructions were given to submit only conversational English

2 http://www.hku.hk/linguist/research/bodomo/MPC/SMS_untagged.pdf. Accessed February 2005.
3 http://www.comp.nus.edu.sg/~rpnlpir/downloads/corpora/sms/. Released April 2004. Accessed February 2005.
4 http://sg.mobile.yahoo.com/sms/chat/ychat_instructions.html. Accessed April 2004.

messages that they have sent or received from their mobile phones. They were also asked to refrain from typing in
any repetitive messages. After filtering out the obvious noisy inputs, a total of 3,348 genuine SMS messages were
collected from 146 individuals. This wide sample based enhances the breadth of the corpus, which helps to ensure
that results derived from the model reflect a diverse population of users.

Figure 2 shows the distribution of SMS messages collected in the corpus. Users P1 to P5 represent the specific
phone users whom we collected SMS messages from for the in-depth sub-collection. We were unable to identify the
remaining phone users that we collected the messages from and so we are unable to show statistics of their
contributions in the figure. Users W1 to W45 represent those users that have contributed more than 25 messages at
the website in the breadth portion of the collection.

Figure 2: Distribution of SMS messages. Users who contributed less than 25 messages are not shown.

4 A operation level model for SMS entry
Previous work in benchmarking the efficiency of text entry methods have concentrated on counting the number of
keystrokes by adapting the Keystroke Level Model (KLM) developed by Card et al. (1983). To predict the
execution time of a task, a list of keystroke actions performed by the user is specified and the times required by each
action are summed together. There have been several past works that adapt the KLM to predict multi-tap and
predictive text entry times on mobile phones (e.g., Dunlop and Crossan, 2000; Kieras, 2001). In particular, Dunlop
and Crossan (2000) gave estimates of average time by modelling interactions using the operations K, H and M (for
Key press, Homing time, and Mental preparation time). In their equations, they made use of the estimated times
given by the KLM for each operation. But the time stipulated by KLM was estimated for computer users using the
keyboard. As the buttons on mobile phones are much smaller than those on keyboard and mobile phone users
normally use one finger for input, the timings for pressing a button on mobile phone is unlikely to be similar to that
of a full-sized computer keypad. Furthermore, their model does not account for punctuation mark and symbols.

We adapted KLM model by constructing an approximate time-level model, which models the fact that certain
keystrokes take a longer time to input than others. (Pavlovych and Stuerzlinger, 2004) described a model that
partially accounts the cognitive actions that users perform mobile text entry. We present a complementary approach
to this goal by classifying each keystroke as one of 13 different operations. This operation-level model (OLM) is
shown in Table 3 and attempts to group keystrokes together that are likely to incur similar time cost.

Note that the OLM described here partially accounts for spatial layout differences that are often accounted for by
Fitts’ Law (Fitts, 1954) and the standard KLM model. Fitts’ Law models the difficulty of moving and seeking from
one key to another based on the intervening distance and the target key size. We feel that our Boolean model of
moving or repeating a key press is sufficient for time modelling and that Fitts’ Law may not model small, mobile
interfaces well. Furthermore, previous adaptations of the KLM have a single, unvarying mental preparation time
which we feel does not model the differences between cognitively distinct tasks.

Using the OLM, an arbitrary SMS can then be decomposed into an inventory of its operations. Similar to previous
work, we assume that the user makes no mistakes in entering the text, and follows the most straightforward manner
(by choosing the method that minimizes keystrokes or time) in entering the SMS message. We explain this process
using a sample artificial message “Reach home @ ard 930", shown step by step in Table 2.

In predictive text entry, only one key press is needed per character. Each key press is counted as an MPAlphaK
operation, except when the current key press shares the same key as the previous one, in which case it is counted as
an RPAlphaK operation.

Table 1: OLM operations and descriptions. Timing (column 3) introduced and discussed in Section 4.2.

Operation Description Timing in secs.
(Novice / Expert)

1. MPAlphaK
Move and Press
Alphabet/Symbol/Space Key

The action of moving and pressing a key that corresponds to a
letter in the alphabet, a symbol or the SPACE character.

2.17 / 0.70

2. RPAlphaK
Repeat Press
Alphabet/Symbol/Space Key

A repeat press of a key that corresponds to a letter, symbol or
space when the user’s finger is already on the key.

1.21 / 0.63

3. MPNextK
Move and Press ‘Next’ Key

The action of moving and pressing the ‘Next’ key.

4. RPNextK
Repeat and Press ‘Next’ Key

A repeated press of the ‘Next’ key.
2.15 / 0.91

5. MPHAlphaK
Move and Press and Hold
Alphabet/Symbol/Space Key

Same as MPAlphaK except that the user holds on to the key until
the character appears on the screen.

6. RPHAlphaK
Repeat Press and Hold
Alphabet/Symbol/Space Key

Same as RPAlphaK except that user holds on to the key until the
character appears.

2.27 / 1.92

7. MPDirK
Move and Press Directional
Key

The initial action of moving and pressing a directional key to
move the cursor in the symbol table.

8. RPDirK
Repeat Press Directional Key

Same as MPDirK, but for multiple repetitive presses.
0.31 / 0.85

9. MPSymTabK
Move and Press Symbol
Table Key

This operation describes all actions that need to be performed to
reach the symbol table. On some phones, this is a single ‘#’ key
press.

3.54 / 0.84

10. MPSelectK
Move and Press Select Key

The action of moving and pressing a key that confirms the user’s
selection. This action is performed for some phone when selecting
a symbol to insert from the symbol table.

4.14 / 3.16

11. MPModeK
Move and Press Mode Key

This operation describes the action of moving and pressing the key
that changes the case. During text entry, users can change between
upper-case, lower-case and automatic-case. Automatic-case is
where the first letter of each sentence will be automatically
capitalized.

0.64 / 1.55

12. Wait
Timeout kill (for multi-tap)

When two letters sharing the same key are entered consecutively,
user need to wait for timeout before entering the second letter and
after entering the first letter. Used when a user switches to multi-
tap mode (e.g., when spelling a word not in the phone’s
dictionary)

2.16 / 1.35

13. InsertWord
Inserting or spelling a word

Encompasses all actions that are performed by the user in order to
insert a word into the dictionary. Does not include keystrokes that
actually type the sequence of keys to spell the word.

3.58 / 3.58

Thus, to enter the word “Reach” (shown as the first word in sample message in Table 2), 4 MPAlphaK operations
and 1 RPAlphaK (for the ‘c’, as ‘a’ and ‘c’ are on the same key) operations are necessary for the standard ISO
keypad. The others operations MPHAlphaK, RPHAlphak, MPSymTabK, MPSelectK, MPDirK, RPDirK and
MPModeK are calculated in a similar way. The operations MPNextK and RPNextK describe the action of scrolling
through the word options by user. For example, the word “home” is the second word in the word list for the
sequence ‘4663’ on the standard keypad (“good” is the first word in the T9 model). As such typing “home” requires
a single MPNextK key press after the four MPAlphaK and RPAlphaK operations needed to type the sequence, as

shown in step 3. The token “ard” is not present in the standard T9 dictionary and needs to be inserted. Therefore, the
user will have to perform one InsertWord action and then spell the word out using the multi-tap input method, which
results in the 5 MPAlphaK and RPAlphaK operations as shown in step 7.

Table 2: Operators per token in typing the sample message “Reach home @ ard 930”.

Token Actions

Token Actions
1 Reach 4 MPAlphaK, 1 RPAlphaK

7 Ard 1 InsertWord, 3 MPAlphaK, 2 RPAlphaK
2 SPACE 1 MPAlphaK

8 SPACE 1 MPAlphaK
3 home 3 MPAlphaK, 1 RPAlphaK, 1 MP’Next’K

9 9 1 MPHAlphaK
4 SPACE 1 MPAlphaK

10 3 1 MPHAlphaK

5 @
1 MPSymTabK, 1 MPDirK,
1 MPSelectK

11 0 1 MPHAlphaK
6 SPACE 1 MPAlphaK

4.1 Measuring Efficiency
The keystroke model is a simple model used in previous work (MacKenzie, 2002) to approximate text entry
efficiency. This model measures efficiency of the text input interface by simply counting keystrokes. The sample
message “Reach home @ ard 930” requires 5+1+5+1+3+1+6+1+1+1+1 = 26 keystrokes in our processing model.
The efficiency of any input method then found by calculating the average number of keystrokes per message. An
efficiency input rate can then be calculated by estimating keystrokes per time unit, yielding standard metrics such as
characters per second or words per minute.

Although the average number of keystrokes is indicative of the efficiency of a text entry method, its main problem is
that it assumes that every operation incurs the same time cost. Previous work by Mackenzie (2002) showed an
inverse correlation between keystrokes per character and text entry throughput. In the process above, keystrokes
were assigned to specific classes of operations. To assure that this information is properly accounted for, we devise
a model in which each operation type is assigned a different amount of time. Therefore, the time required to type a
message, m, is calculated by: ∑

∈

×=
Actionsa

otimeonummtotalTime)()()(, where num(o) is the number of times operation o

is performed, time(o) is the time needed to perform o.

4.2 Acquiring Timing Models from Human Subjects
A critical part of the time-level model is time(o), which needs to be determined. We estimate these by analyzing
videotapings of volunteers whom were asked to input sample SMS messages. We used 5 actual messages from the
collected corpus described in Section 3, selecting messages that would display the full breadth of operations. We
limited our taping sessions to five messages to keep each session under five minutes. The selected messages are
shown in Figure 3. Instructions were given to type the messages using one hand and to type the messages exactly as
seen on the paper. A tutorial on how to enter input text on mobile phones was also given to participants who had no
experience with SMS messaging.

Figure 3: SMS messages used for acquiring timing models.

As times for individual actions are hard to determine precisely (most actions take less than 2 seconds) and still vary
substantially, we time the input of an entire SMS message per subject and interpolate times for each operation type,
which we feel is more accurate. Using the process described earlier, we associate a message’s inventory of
operations with its time cost to create a set of linear equations. Linear equations which share common variables are
grouped together so that they can be solved for those variables. Because the linear equations are obtained from
experimental data, no exact solution exists and only an approximate solution can be found. We find the best fit
values for the variables by minimizing the sum of squared error through standard regression analysis.

1. U still wan me 2 reg e gown 4 u? But need ur add, IC n matric. Then e 3 measurement.
2. Sim lim square, shop around , maybe u chk out IT mart @ #03, in front of bullet lift, look 4 jack,
3. Matric pack, ccas & laptops
4. Hey you on your way? I cant go in yet. =(
5. Hey i'm going to be pretty late...

A total of five subjects were taped, two of which had no previous experience with predictive text entry (“novices”)
and three of which had substantial experience (“experts”). We created separate models for each group. The final
timing model is shown in Table 3 in the third column. Our model validates earlier claims concerning the difference
between expert and novice classes of users (e.g., James and Reischel, 2001) and also recovers a shorter time for
repeat key presses. This difference is less notable in expert users, who are familiar with the keypad and do not need
much cognitive effort to locate the appropriate new key (about 10% more costly). On the other hand, novice users
required more time and finding a new key was markedly more difficult (about 79% more costly).

Due to the small number of subjects taped, the derived model timings are stable only for operations that occurred
frequently in the input messages. As such, some of the operations were conflated together to reach statistical
significance. We hope to extend this work further by taping more subjects so appropriate values for all operations
can be established with statistical significance.

4.3 Baseline performance of the Predictive Text Entry Method
In order to compute the number of operations required for each word in each message in the standard predictive text
entry method, we need associate each word with a number of keystrokes. A critical component for words that share
the same key sequence is the number of ‘Next’ key presses that are necessary to reach the word. For example, the
key sequence ‘6334’ spells “good” with 0 ‘Next’ key presses and “home” with 1 ‘Next’ key press. For each unique
word in our SMS corpus, we compiled how many ‘Next’ key presses were necessary to find the word in question.
Words not present in the standard dictionary were noted as such. Such words are assumed to be entered by the user
by typing the word in multi-tap input mode and then inserting the word into the text. Auto-capitalization support
(where the first letter of a sentence is automatically capitalized) was assumed.

With the above information we can predict the performance of the standard predictive text entry model. Using the
keystroke model, messages in the corpus took an average of 74.004 keystrokes to input. A similar calculating was
done with the multi-tap input system, yielding an average of 118.925 keystrokes. Our results show that predictive
text input performs about one-third better than multi-tap by keystroke count. Using the time-level model, the
predictive and multi-tap methods take an average of 59.7 and 79.3 seconds, respectively. These results support
earlier findings that multi-tap is indeed slower that predictive text (MacKenzie, 2002); but differ greatly in
magnitude of the results; we feel this is likely due to the different corpora used. The advantage of our study is that
we use a large corpus of actual SMS messages, but a disadvantage is that the time per operation estimates are
derived from a very small number of users.

5 Optimizing Text Entry
To improve upon the predictive text entry we examine two approaches: 1) remapping the alphabet to the keypad to
reduce ambiguity and 2) predictive word completion to reduce keystrokes required.

5.1 Key Remapping using Genetic Algorithms
By remapping the alphabetic characters on the keypad, we can attempt to reduce the amount of ambiguous key
sequences. For example, defining “6” as “mn” and moving “o” to the “7” key will disambiguate “of” and “me”, but
may introduce other ambiguities. To try all permutations of keypads is infeasible, as there are 26C3 × 22C3 × 20C3 ×
17C3 × 14C3 × 11C4 × 7C3 × 4C4 ≈ 1.5 × 1019 possible combinations, if we keep the number of letters allocated to each
key fixed. A guided search is necessary. To find a solution, we utilize genetic algorithms. We define a mapping of
the 26 letters to the 8 keys used for these letters as having a higher fitness, if and only if it lowers the average time-
level model estimate for the messages in the corpus. By creating many permutations the standard keypad, we can
evaluate whether any improve performance. Keypads that show a performance improvement are then used in
subsequent iterations to search for even better keypads.

Using this model, we swap positions of letters on the keypad. This is done by randomly picking a subset of 2 or 4
letters and swapping their positions. A swap4 mutation is illustrated in Figure 4. A position of a letter is encoded
just by the number key it is assigned to, as predictive text input treats the letters on each key as an unordered set. In
our OLM, letter swapping can change the number of ‘Next’ key presses needed to type words (i.e., MPNextK and
RPNextK). The swap can also switch a keystroke from a move + press to a repeat press (i.e., from MPAlphaK to
RPAlphaK). Other operation counts are unaffected by the keypad mapping. As such, a good fitness function
measures the average time cost with respect to these four operations.

1 2

EGP

3

CDQ

4

LIVZ

5

HNRX

6

KMO

7

BSY

8

JTU

9

AFW

1 2

EGP

3

CDR

4

HIVZ

5

LNQX

6

KMO

7

BSY

8

JTU

9

AFW

1 2

EGP

3

CDQ

4

LIVZ

5

HNRX

6

KMO

7

BSY

8

JTU

9

AFW

1 2

EGP

3

CDR

4

HIVZ

5

LNQX

6

KMO

7

BSY

8

JTU

9

AFW

Figure 4: A (l) parent keypad, and derived (r) child keypad after a swap4 mutation. Swapped letters are highlighted.
The child keypad is in the equivalence set of optimal keypads for our paper.

Note that the number of ‘Next’ key presses for each word in the corpus changes with every keypad variant. As
letters have shifted, different key sequences will lead to a change in the ambiguous sequences. As such the standard
number of ‘Next’ key presses that was derived from the standard dictionary cannot be applied. Instead, we use the
frequency of the tokens in the SMS corpus to assign the ordering among ambiguous sequences: more frequent
tokens are ordered before less frequent ones.

Using this asexual genetic algorithm, we produce 100 mutated keypads per iteration, keeping the 10 that have the
least time cost. After 131 iterations, no changes in the ten top keypads were observed. Figure 4(r) shows one of the
ten resulting keypads. The average time cost was reduced by 21% in the expert model and by 13% in the novice
model. The difference is likely attributed to the large difference in cost ratio of the MPAlphaK and RPAlphaK
operations in the two models: the reduction in the number of ‘Next’ key presses is partially negated by needing to
move to another key in the novice model.

In a complementary study, Dinesh Tulsidas (2002) also examined remapping of keys for predictive input text. His
work examined spatial layout optimization in conjunction with ambiguity reduction. The spatial component tries to
optimize the mapping to lessen movement time between keys as governed by Fitts’ law. While we do not have a
spatial component in our model, our OLM accounts for these differences as move or repeated key presses as
previously stated. Also, whereas our work computes the actual operations needed to input a SMS message,
Tulsidas’ model uses an approximation based on word length.

5.2 Predictive word completion
Many mobile input interfaces also include a word completion system, in which a partially completed word can be
completed to the full word intended by the user. ZiCorp is one such corporation that uses word completion in its
input method, eZiText5. While most current generation systems that do word completion predict words based only
on the current sequence typed so far, mobile devices have increasingly larger capacity to hold language models. As
such we examine a next generation approach that examines current word prediction that uses the previous word that
was keyed by the user, in addition to the current key sequence typed so far.

To motivate this approach, consider a user writing the message “Meet at home later”. Assuming the standard ISO
keypad, a user who has typed the first two words and is keying the sequence for “home” (‘4663’) in will be shown
“i", “in”, “inn”, “good” as the keys are typed, with “home” finally entered after a ‘Next’ key press. However, a
corpus analysis can reveal that “home” is the most likely word being typed, even when only three letters have been
typed, based on the previous word, “at”.

In language modeling terms, we combine the letter n-gram model with a bigram word model to make a prediction.
That is, we select the word with the highest conditional probability given the joint evidence from the typed sequence
and previous word:

∑ ∈

=
)(

),(

),(
),|(

keyseqwordsw
wprevWordC

curWordprevWordC
keySeqprevWordcurWordP (Equation 1)

5 http://www.zicorp.com/ezitext.htm, retrieved February 2005.

where prevWord, curWord and keyseq are the previous word entered, current word being entered, and the partial key
sequence that has been entered thus far. words(k) is a function that returns the set of words which have key
sequences starting with k and C(x,y) is the count of the word bigram (x,y) in the corpus. Counts are again estimated
from the collected SMS corpus. All word completion choices can thus be ordered by their probability.

As word completion can take up a sizeable area of a phone user interface, we limit when word completion
suggestions appear to the user and only select a single candidate to suggest, different from other commercial
implementations. Four conditions govern whether suggestions are shown, to limit suggestion to high probability
candidates:

1. Given a previous word, prevWord, and a key sequence, keySeq, a word, curWord, is predicted only when:
(i) P(curWord | prevWord, keySeq), calculated by Equation 1, is greater than the threshold of 0.5; and
(ii) C(prevWord,curWord) must be greater than 2.

2. Given a previous word and a set of words, W, which share the same partial key sequence, keyseq, and for
all w∈W in which condition 1 holds, then the word that is predicted is given by:

curWord = argmax P(w | prevWord, keqSeq) (Equation 2)
If more than one w∈W such that P(w | prevWord, keySeq) is maximized, then the w with the longest word
length is predicted.

3. If a given key sequence, k, codes for at least one complete word then all possible completions of keyseq are
suggested according to their probability as calculated by Equation 1.

4. Word completion is only can only be active after the first letter of a word has been entered. That is, when
keyseq is non-null. This is done so as to make the prediction more accurate, because one key press greatly
narrows down the possible completions.

By following these conditions we can predict when word completion will suggest a completion during the
processing of the OLM on a message, using the standard ISO keypad. To accept the suggestion, the user can press
‘0’ for a space or ‘1’ for punctuation, which completes the word and types the appropriate space or punctuation.
Consider the example of a user who wants to type in “meet at home later” and who already has keyed in “meet at ”.
If keying the sequence ‘64’ leads the sequence completion “home” to satisfy the conditions above, the user types ‘0’
to key in a space and accept the word completion, saving a single keystroke. This keystroke combines the semantics
of both an AlphaK and NextK keystroke, and ideally would be modeled as a new operation in the OLM. As it is not
possible estimate this operation without a working system, we model this keystroke as the MPNextK operation
which implicitly includes verification (mental preparation) time.

Assuming that the word completion candidate is always chosen when it is the desired candidate in message, we can
use the OLM to derive the number of operations needed to code an arbitrary message, in which the number of
operations for key sequence entry and ‘Next’ key presses are reduced. It is then straightforward to calculate the
average time cost per message in the corpus, resulting in a time savings of 18% and 13% for the expert and novice
models, respectively.

The improvement due to completion is slightly less than what was achieved from key remapping. Additionally, the
figure is smaller than previous reports on word completion in other mobile applications. For example, PDA input of
Japanese using word completion was shown to increase input rate over 60% (Masui, 1998). This discrepancy is
largely due to the fact that SMS messages contain many words that are shortenings that do not benefit significantly
from completion. This highlights the need to do testing on actual SMS corpora.

Can the two approaches of key remapping and word completion be combined to achieve additional cost savings?
The answer is yes: we can start from one of the final keypad configurations from the remapping process and then
calculate what additional savings occur when completion suggests the correct word. This is achieved by re-
computing the probability function given in Equation 1. Only the keyseq variable has been changed, so the
denominator needs to be recomputed; the bigram word model in the numerator is the same. Combining the two
techniques together further reduces the cost in both keystroke and time level models to 21.8% and 28.6% from the
baseline, respectively. The result shows a further reduction of around 7% over the using word completion or
remapping alone.

6 Discussion
Table 3 summarizes our findings, showing the average number of seconds per message using the OLM to derive
average input times for each of the input methods described in Section 5.

Table 3: Average seconds per message by entry methods, from the time-level model. Auto-capitalization included.

Average Expert Model Novice Model

Entry Method

Avg. Std.
Dev.

Improv
ement

Avg. Std.
Dev.

Improv
ement

Avg. Std.
Dev.

Improv
ement

Baseline 74.00 51.1 - 59.79 42.1 - 149.56 103.1 -
Remapping Letters 62.35 43.2 15.7% 47.17 33.3 21.1% 128.77 89.7 13.9%
Word Completion 63.54 46.5 14.1% 48.74 36.5 18.5% 129.37 94.3 13.5%
Combination 57.87 42.4 21.8% 42.68 30.9 28.6% 120.24 86.4 19.6%

We state the average, standard deviation and the percentage improvement of the text entry method over the baseline
of each of the different text entry techniques. Results are given for a combined model as well as for separate novice
and expert user models. The time model for the expert user reduces the average time required to type a message by
21.1% for the remapped keypad and 18.5% for predictive word completion. A combination of both techniques
further reduces the average time, with a 28.6% improvement over the baseline. Using the combination of both
techniques, an expert user would on average use 30.9 seconds to type a message and a novice user, 86.4 seconds.

The remapped keypad generally performs better than predictive word completion. This may be because we adopt a
conservative strategy for completion, as we only suggest the most probable word and we start predicting only after
the first key has been entered. From the tables, we can also see that the gains from these two techniques overlap as
the resulting gain from the combination of both is less than the total gains from both techniques. This is likely
because both techniques reduce the same type of operations (‘Next’ key presses).

6.1 On cognitive load
The results given in these tables do not take into account the increase in cognitive load as a result of using these
improvement techniques. We are aware of this limitation, which has been a problem largely undealt with in
previous work as well. Researchers at York University have recently adapted a KLM to account for verification
times (Pavlovych and Stuerzlinger, 2004), which model the cognitive load a user requires to verify that a correct
word or letter has been typed. This is a promising approach which can be incorporated in our model as an additional
operation type.

We conjecture how cognitive load will affect the performance figures in Table 3. Actual performance gains would
likely be less than reported in the table, as the cognitive load for using a remapped keypad and word completion are
higher than in the standard predictive text model. More specifically, for the remapped keypad, the novice model
times for the MPAlphaK and RPAlphaK operations are likely to increase, as the user has to visually scan the entire
keypad for the next letter. Expert user times will not be affected much; as such users can easily recall the remapping
through repeated use and will be able to touch type without needing to scan the keyboard.

The impact of cognitive load on word completion is different. The word completion model outlined here is based on
the current letters of the word being typed as well as the previous word. The fact that the model uses two sources of
prior evidence makes it more difficult for an expert user to predict when a completion will be suggested. Also,
expert users check the screen to verify their input less often than their novice counterparts and are more likely to
miss a suggestion. As such, we hypothesize that experts are less likely to benefit from word completion and will
ignore the suggestion capability for many words. On the other hand, as novices verify their input often, they are
more likely to benefit from this technique. We can mitigate this seeming “non-determinism” of the prediction by
removing the bigram word model from the prior evidence, but this will lower the predictive power of the model.

Table 4 summarizes our hypotheses with respect to cognitive load.

Table 4: Hypothesized impact of cognitive load on the time savings for the input methods studied.

Input method Expert Model Novice Model
Key Remapping Similar to model Significantly reduced
Word Completion Significantly reduced Similar to model
Combined Reduced Reduced

7 Conclusion
We have presented two methods to improve predictive text input for mobile input devices: by remapping the letters
to different keys and by predictive word completion. We predict the two methods’ utility in reducing input time
necessary for keying messages, which show that both methods enhance performance separately by about 15%.
When the two techniques are applied together, an average decrease of 20% in necessary input time was observed.

In order to compute these figures, we developed an operation-level model (OLM) which decomposes the input of an
SMS message into an inventory of operations. Operations group keystrokes that are likely similar in their execution
time. Similar to the KLM for computer users, the OLM describes the different types of actions that users carry out
when doing mobile text entry. When the OLM is suitably paired with timing estimates for each operator, an input
time can be predicted for an arbitrary message. We estimated OLM operation times from videotape analysis of
expert and novice users of predictive text entry and compute hypothesized average input times for a large (over 10K
messages), publicly-available SMS corpus which we have collected. A key distinction in our work is the application
of statistical methods on this corpus of actual SMS messages rather than on other full text corpora.

At present, the modelling assumes that users do not make any mistakes during input. In future work, we plan to
extend this work to model mistakes and cognitive load of users through usability testing, following (James and
Reischel, 2001). We also plan to refine the time estimates for operations in the proposed OLM by observing
additional subjects as they key in input messages. We can then check whether the hypothesized times correlate well
with actual times.

8 References
Card, S.K., Moran, T.P. and Newell, A. (1983). The Psyschology of Human-Computer Interaction, Lawrence

Erlbaum, Hillsdale, New Jersey, USA.
Dunlop, M.D. and Crossan, A. (2000). Predictive Text Entry methods for mobile phones. Personal Technologies,

pp. 134-143.
Fitts, P.M. (1954) The information capacity of the human motor system in controlling the amplitude of movement,

J. of Experimental Psychology, 47. pp. 381-391.
ISO/IEC 9995-8. (1994). Information systems – Keyboard layouts for text and office systems – Part 8: Allocationg

of letters to keys of a numeric keypad, International Organization for Standardization.
James, C.L. and Reischel, K.M. (2001). Text input for mobile devices: Comparing model predictions to actual

performance. In Proc. Of CHI 2001. pp. 365-371.
Kieras, D. (2001). Using the Keystroke-Level Model to Estimate Execution Times. University of Michigan.
MacKenzie, I.S. (2002). KSPC (Keystrokes per Character) as a Characteristic of Text Entry Techniques, In Proc. Of

4th Int’l Symp. On HCI with Mobile Devices, Springer, Germany, pp. 195-210.
Masui, T. (1998). An Efficient Text Input Method for Pen-based Computers. In Proc. Of CHI 1998.
Netsize (2003). European SMS guide, February 2003.
Pavlovych, A. and Stuerzlinger, W. (2004). Model for non-Expert Text Entry Speed on 12-Button Phone Keypads,

In Proc. Of CHI 2004.
Silfverberg, M., Mackenzie, I.S. and Korhonen, P. (2000). Predicting text entry speeds on mobile phones. In

Proceedings of the ACM Conference on Human Factors in Computing Systems – CHI 2000, New York : ACM,
2000, pp. 9-16.

Tulsidas, D. (2002). Optimal Predictive Text Layout for Mobile Phones, Master’s thesis, Imperial College of
Science, Technology and Medicine. September.

