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Abstract 
Mobile phone based SMS messaging is a ubiquitous form of communication in the modern world. However, the 12-
key keypad found on many mobile phones today poses problems for text entry. As three or four letters share the 
same key, some form of disambiguation is required to determine which letter is intended by the user. The predictive 
text entry method is the most common text entry technique used in present day mobile phones. To measure the 
efficiency of text entry, we perform a task analysis to model the actions of users and develop keystroke-level and 
time-level models. A corpus of SMS messages is collected and users were video-taped to obtain timing information 
for data analysis. Based on these models, we propose methods to improve the predictive text entry method, focusing 
on remapping letters to keys and examining predictive word completion. Using the time model, we show how both 
techniques can be reinforce each other to yield a reduction of over 25% of time for message input over the standard 
predictive text entry model. 
 

1 Introduction 
Short Message Service (SMS) allows people to send or receive text messages of up to 160 characters from mobile 
phones. As mobile phones are an indispensable and ubiquitous tool of the modern citizen, the number of SMS 
messages sent has increased from approximately 4 billion in Jan 2000 to 24 billion in May 2002 (Netsize, 2003). 
Thus, it is essential to investigate and find ways to improve the efficiency of the text entry methods available.  
However, the standard 12-key keypad present on many phones poses a problem for text entry, as three or four letters 
share the same key.  A common approach to SMS text entry is the predictive text entry method.  It is a text entry 
technique to help disambiguate which letter is intended by the user.   
 
In this paper, we propose methods to improve the efficiency of predictive text entry by studying the statistical 
properties of short message service (SMS) messages in English.  We use a corpus-based approach to remap the 
letters on the keypad to reduce the number of keystrokes. We also examine a language model approach to complete 
the word that the user is currently typing.  Both of these approaches were studied in the context of a publicly-
available corpus of over ten thousand English SMS messages collected by the authors.  
 
To properly assess the efficiency of SMS input, we have developed two models to measure input efficiency. We first 
adapt the Keystroke Level Model (KLM) from previous work in usability research for use in the SMS input domain.  
We then extend the model by associating keystrokes with different semantic tasks (e.g., letter entry and symbol 
entry). These operations are given approximate times by an analysis of videotaped sessions of users performing 
SMS input.  The resulting operation-level model allows us to better approximate the time cost to input an SMS text 
message over earlier, simplistic keystroke counting model.  By using the operation level model, we show that key 
remapping combined with input text prediction can save over 25% of the estimated time needed to input messages 
using the standard predictive text entry method. 
 
After a brief discussion of text entry methods and previous work in optimizing SMS inputs, we examine the corpus 
collection procedure in Section 3.  The keystroke and time level are discussion in Section 4. We then present our 
methods for optimizing input in Section 5: first, letter remapping on the keypad by using genetic algorithms, 
followed predictive word modeling.  We conclude with a discussion of performance analysis and directions for 
future work. 

                                                
1 Please direct all correspondence to the second author, Min-Yen Kan. 



2 Background 
There are currently two main methods that are usually used on mobile phones for text entry. They are the multi-tap 
method and the predictive text entry method.  In the multi-tap method, a user taps the key that contains the letter 
repeatedly until the desired letter appears. The number of taps required depends on the position of the letter on the 
key. For example, a user can tap the 2-key once to get ‘a’, twice to get ‘b’ and thrice to get ‘c’, as shown on the 
standard keypad in Figure 1. 

 

Figure 1: Standard ISO mobile phone keypad.  Alphabetic letters are mapped to keys ‘2’ through ‘9’. 

While the multi-tap method remains popular with some users, we focus on a more advanced model of input, which 
is called predictive text input, which is featured on many phones as the default method of input.  In this method 
(e.g., Tegic’s T9 and Zi Corp’s eZiText), the user presses the key that corresponds to each letter of a word once. The 
system uses a dictionary of words to determine which of the words the key sequence matches. Like the multi-tap 
method, this entry method also suffers from problems when a key sequence is ambiguous.  For example, ‘63’ on a 
standard ISO keypad corresponds to “mno” and “def”, in which the English words “of” and “me” can be spelled.  
When multiple words share the same key sequence, users have to press a ‘Next’ key (usually ‘*’) to move to among 
the alternatives.  Most dictionary models attempt to order these sets of ambiguous words by relative frequency of 
words.  Thus, if a user presses the sequence ’63’, “of” might be indicated as the default word as this is a more 
frequently-occurring word than “me”.  In this paper, we use the term “standard dictionary” to refer to Tegic Corp.’s 
T9 dictionary, and the “standard keypad” as the mapping of alphabetic keys to the 12 number keys shown in Figure 
1, as standardized by the ISO (ISO, 1994). 
 

3 Short message service (SMS) corpus for comparative research 
As SMS messages differ greatly from standard written English (exhibiting shortenings, emoticons, etc.), it is vital to 
perform optimization of input with respect to actual messages.  For example, “of” might be a more frequent word in 
English language texts, but since SMS messages are largely interpersonal communications, an SMS corpus might 
show that “me” (typed on the ISO keypad with the same key sequence) is more common.  Any corpus-based method 
for optimizing input should therefore be done over an actual SMS collection.   
 
We thus collected a corpus of messages as part of the basic groundwork for our research. The version of the corpus 
used in this study consists of over 10,000 SMS messages, and largely originate from students attending the 
university. Contributors were aware that their messages were to be made publicly available.  To our knowledge, this 
resource represents the largest corpus of public-domain SMS messages for use in research by two magnitudes, the 
second largest being a message collection at HKU2 with about 500 messages in mixed English and Chinese. We 
encourage other text entry researchers to use this corpus as a benchmark for comparative research and evaluation, 
which can be freely accessed via the World Wide Web3. 
 
The corpus of SMS messages were collected from three different sources. In order for the corpus to have sufficient 
depth per user, messages were first collected from a small pool of 20 selected phone users on a regular basis. The 
age of these users fall between 18 and 22 and they contributed 6,167 messages altogether, about 60% of the 
messages in the corpus. Another 602 messages are collected from the Yahoo SMS chat website4, which shows the 
live SMS chat transcript of certain SMS chat rooms.  The final group of messages was collected from a larger pool 
of users of undergraduate students. This portion of the corpus focused on collecting a variety of messages over a 
larger user base.  Students were asked to send in up to 75 messages into a website collection program and received a 
small amount of compensation for their efforts.  Instructions were given to submit only conversational English 

                                                
2 http://www.hku.hk/linguist/research/bodomo/MPC/SMS_untagged.pdf.  Accessed February 2005. 
3 http://www.comp.nus.edu.sg/~rpnlpir/downloads/corpora/sms/. Released April 2004.  Accessed February 2005. 
4 http://sg.mobile.yahoo.com/sms/chat/ychat_instructions.html. Accessed April 2004. 



messages that they have sent or received from their mobile phones. They were also asked to refrain from typing in 
any repetitive messages. After filtering out the obvious noisy inputs, a total of 3,348 genuine SMS messages were 
collected from 146 individuals. This wide sample based enhances the breadth of the corpus, which helps to ensure 
that results derived from the model reflect a diverse population of users.  
 
Figure 2 shows the distribution of SMS messages collected in the corpus. Users P1 to P5 represent the specific 
phone users whom we collected SMS messages from for the in-depth sub-collection. We were unable to identify the 
remaining phone users that we collected the messages from and so we are unable to show statistics of their 
contributions in the figure. Users W1 to W45 represent those users that have contributed more than 25 messages at 
the website in the breadth portion of the collection. 

 

Figure 2: Distribution of SMS messages. Users who contributed less than 25 messages are not shown. 

4 A operation level model for SMS entry  
Previous work in benchmarking the efficiency of text entry methods have concentrated on counting the number of 
keystrokes by adapting the Keystroke Level Model (KLM) developed by Card et al. (1983).  To predict the 
execution time of a task, a list of keystroke actions performed by the user is specified and the times required by each 
action are summed together.  There have been several past works that adapt the KLM to predict multi-tap and 
predictive text entry times on mobile phones (e.g., Dunlop and Crossan, 2000; Kieras, 2001). In particular, Dunlop 
and Crossan (2000) gave estimates of average time by modelling interactions using the operations K, H and M (for 
Key press, Homing time, and Mental preparation time). In their equations, they made use of the estimated times 
given by the KLM for each operation. But the time stipulated by KLM was estimated for computer users using the 
keyboard. As the buttons on mobile phones are much smaller than those on keyboard and mobile phone users 
normally use one finger for input, the timings for pressing a button on mobile phone is unlikely to be similar to that 
of a full-sized computer keypad. Furthermore, their model does not account for punctuation mark and symbols. 
 
We adapted KLM model by constructing an approximate time-level model, which models the fact that certain 
keystrokes take a longer time to input than others.  (Pavlovych and Stuerzlinger, 2004) described a model that 
partially accounts the cognitive actions that users perform mobile text entry. We present a complementary approach 
to this goal by classifying each keystroke as one of 13 different operations.  This operation-level model (OLM) is 
shown in Table 3 and attempts to group keystrokes together that are likely to incur similar time cost.   
 
Note that the OLM described here partially accounts for spatial layout differences that are often accounted for by 
Fitts’ Law (Fitts, 1954) and the standard KLM model.  Fitts’ Law models the difficulty of moving and seeking from 
one key to another based on the intervening distance and the target key size.  We feel that our Boolean model of 
moving or repeating a key press is sufficient for time modelling and that Fitts’ Law may not model small, mobile 
interfaces well.  Furthermore, previous adaptations of the KLM have a single, unvarying mental preparation time 
which we feel does not model the differences between cognitively distinct tasks. 
 
Using the OLM, an arbitrary SMS can then be decomposed into an inventory of its operations.  Similar to previous 
work, we assume that the user makes no mistakes in entering the text, and follows the most straightforward manner 
(by choosing the method that minimizes keystrokes or time) in entering the SMS message.  We explain this process 
using a sample artificial message “Reach home @ ard 930", shown step by step in Table 2.  
 



In predictive text entry, only one key press is needed per character. Each key press is counted as an MPAlphaK 
operation, except when the current key press shares the same key as the previous one, in which case it is counted as 
an RPAlphaK operation.  

Table 1: OLM operations and descriptions.  Timing (column 3) introduced and discussed in Section 4.2. 

Operation Description Timing in secs. 
(Novice / Expert) 

1. MPAlphaK 
Move and Press 
Alphabet/Symbol/Space Key 

The action of moving and pressing a key that corresponds to a 
letter in the alphabet, a symbol or the SPACE character. 

2.17 / 0.70 

2. RPAlphaK 
Repeat Press 
Alphabet/Symbol/Space Key 

A repeat press of a key that corresponds to a letter, symbol or 
space when the user’s finger is already on the key. 

1.21 / 0.63 

3. MPNextK 
Move and Press ‘Next’ Key 

The action of moving and pressing the ‘Next’ key. 

4. RPNextK  
Repeat and Press ‘Next’ Key 

A repeated press of the ‘Next’ key. 
2.15 / 0.91 

5. MPHAlphaK 
Move and Press and Hold 
Alphabet/Symbol/Space Key 

Same as MPAlphaK except that the user holds on to the key until 
the character appears on the screen. 

6. RPHAlphaK 
Repeat Press and Hold 
Alphabet/Symbol/Space Key 

Same as RPAlphaK except that user holds on to the key until the 
character appears. 

2.27 / 1.92 

7. MPDirK  
Move and Press Directional 
Key 

The initial action of moving and pressing a directional key to 
move the cursor in the symbol table. 

8. RPDirK  
Repeat Press Directional Key 

Same as MPDirK, but for multiple repetitive presses. 
0.31 / 0.85 

9. MPSymTabK  
Move and Press Symbol 
Table Key 

This operation describes all actions that need to be performed to 
reach  the symbol table. On some phones, this is a single ‘#’ key 
press. 

3.54 / 0.84 

10. MPSelectK  
Move and Press Select Key 

The action of moving and pressing a key that confirms the user’s 
selection. This action is performed for some phone when selecting 
a symbol to insert from the symbol table. 

4.14 / 3.16 

11. MPModeK  
Move and Press Mode Key 

This operation describes the action of moving and pressing the key 
that changes the case. During text entry, users can change between 
upper-case, lower-case and automatic-case. Automatic-case is 
where the first letter of each sentence will be automatically 
capitalized. 

0.64 / 1.55 

12. Wait 
Timeout kill (for multi-tap) 

When two letters sharing the same key are entered consecutively, 
user need to wait for timeout before entering the second letter and 
after entering the first letter.  Used when a user switches to multi-
tap mode (e.g., when spelling a word not in the phone’s 
dictionary) 

2.16 / 1.35 

13. InsertWord 
Inserting or spelling a word 

Encompasses all actions that are performed by the user in order to 
insert a word into the dictionary.  Does not include keystrokes that 
actually type the sequence of keys to spell the word. 

3.58 / 3.58 

 
Thus, to enter the word “Reach” (shown as the first word in sample message in Table 2), 4 MPAlphaK operations 
and 1 RPAlphaK (for the ‘c’, as ‘a’ and ‘c’ are on the same key) operations are necessary for the standard ISO 
keypad.  The others operations MPHAlphaK, RPHAlphak, MPSymTabK, MPSelectK, MPDirK, RPDirK and 
MPModeK are calculated in a similar way.  The operations MPNextK and RPNextK describe the action of scrolling 
through the word options by user. For example, the word “home” is the second word in the word list for the 
sequence ‘4663’ on the standard keypad (“good” is the first word in the T9 model).  As such typing “home” requires 
a single MPNextK key press after the four MPAlphaK and RPAlphaK operations needed to type the sequence, as 



shown in step 3. The token “ard” is not present in the standard T9 dictionary and needs to be inserted. Therefore, the 
user will have to perform one InsertWord action and then spell the word out using the multi-tap input method, which 
results in the 5 MPAlphaK and RPAlphaK operations as shown in step 7. 

Table 2: Operators per token in typing the sample message “Reach home @ ard 930”. 

# Token Actions 
 

# Token Actions 
1 Reach 4 MPAlphaK, 1 RPAlphaK 

 

7 Ard 1 InsertWord, 3 MPAlphaK, 2 RPAlphaK 
2 SPACE 1 MPAlphaK 

 

8 SPACE 1 MPAlphaK 
3 home 3 MPAlphaK, 1 RPAlphaK, 1 MP’Next’K 

 

9 9 1 MPHAlphaK 
4 SPACE 1 MPAlphaK 

 

10 3 1 MPHAlphaK 

5 @ 
1 MPSymTabK, 1 MPDirK,  
1 MPSelectK 

 

11 0 1 MPHAlphaK 
6 SPACE 1 MPAlphaK 

 

   

 
4.1  Measuring Efficiency 
The keystroke model is a simple model used in previous work (MacKenzie, 2002) to approximate text entry 
efficiency.  This model measures efficiency of the text input interface by simply counting keystrokes.  The sample 
message “Reach home @ ard 930” requires 5+1+5+1+3+1+6+1+1+1+1 = 26 keystrokes in our processing model.  
The efficiency of any input method then found by calculating the average number of keystrokes per message.  An 
efficiency input rate can then be calculated by estimating keystrokes per time unit, yielding standard metrics such as 
characters per second or words per minute.   
 
Although the average number of keystrokes is indicative of the efficiency of a text entry method, its main problem is 
that it assumes that every operation incurs the same time cost. Previous work by Mackenzie (2002) showed an 
inverse correlation between keystrokes per character and text entry throughput.  In the process above, keystrokes 
were assigned to specific classes of operations.  To assure that this information is properly accounted for, we devise 
a model in which each operation type is assigned a different amount of time. Therefore, the time required to type a 
message, m, is calculated by: ∑

∈

×=
Actionsa

otimeonummtotalTime )()()( , where num(o) is the number of times operation o 

is performed, time(o) is the time needed to perform o.   
 
4.2 Acquiring Timing Models from Human Subjects 
A critical part of the time-level model is time(o), which needs to be determined.  We estimate these by analyzing 
videotapings of volunteers whom were asked to input sample SMS messages.    We used 5 actual messages from the 
collected corpus described in Section 3, selecting messages that would display the full breadth of operations.  We 
limited our taping sessions to five messages to keep each session under five minutes. The selected messages are 
shown in Figure 3.  Instructions were given to type the messages using one hand and to type the messages exactly as 
seen on the paper. A tutorial on how to enter input text on mobile phones was also given to participants who had no 
experience with SMS messaging. 

Figure 3: SMS messages used for acquiring timing models. 

As times for individual actions are hard to determine precisely (most actions take less than 2 seconds) and still vary 
substantially, we time the input of an entire SMS message per subject and interpolate times for each operation type, 
which we feel is more accurate.  Using the process described earlier, we associate a message’s inventory of 
operations with its time cost to create a set of linear equations.  Linear equations which share common variables are 
grouped together so that they can be solved for those variables. Because the linear equations are obtained from 
experimental data, no exact solution exists and only an approximate solution can be found.  We find the best fit 
values for the variables by minimizing the sum of squared error through standard regression analysis.  

1. U still wan me 2 reg e gown 4 u? But need ur add, IC n matric. Then e 3 measurement.  
2. Sim lim square, shop around , maybe u chk out IT mart @ #03, in front of bullet lift, look 4 jack,  
3. Matric pack, ccas & laptops  
4. Hey you on your way? I cant go in yet. =(  
5. Hey i'm going to be pretty late... 



A total of five subjects were taped, two of which had no previous experience with predictive text entry (“novices”) 
and three of which had substantial experience (“experts”).   We created separate models for each group.  The final 
timing model is shown in Table 3 in the third column.  Our model validates earlier claims concerning the difference 
between expert and novice classes of users (e.g., James and Reischel, 2001) and also recovers a shorter time for 
repeat key presses.  This difference is less notable in expert users, who are familiar with the keypad and do not need 
much cognitive effort to locate the appropriate new key (about 10% more costly).  On the other hand, novice users 
required more time and finding a new key was markedly more difficult (about 79% more costly). 
 
Due to the small number of subjects taped, the derived model timings are stable only for operations that occurred 
frequently in the input messages.  As such, some of the operations were conflated together to reach statistical 
significance.  We hope to extend this work further by taping more subjects so appropriate values for all operations 
can be established with statistical significance. 
 
4.3 Baseline performance of the Predictive Text Entry Method 
In order to compute the number of operations required for each word in each message in the standard predictive text 
entry method, we need associate each word with a number of keystrokes.  A critical component for words that share 
the same key sequence is the number of ‘Next’ key presses that are necessary to reach the word.  For example, the 
key sequence ‘6334’ spells “good” with 0 ‘Next’ key presses and “home” with 1 ‘Next’ key press.  For each unique 
word in our SMS corpus, we compiled how many ‘Next’ key presses were necessary to find the word in question.  
Words not present in the standard dictionary were noted as such.   Such words are assumed to be entered by the user 
by typing the word in multi-tap input mode and then inserting the word into the text.  Auto-capitalization support 
(where the first letter of a sentence is automatically capitalized) was assumed.  
 
With the above information we can predict the performance of the standard predictive text entry model.  Using the 
keystroke model, messages in the corpus took an average of 74.004 keystrokes to input.  A similar calculating was 
done with the multi-tap input system, yielding an average of 118.925 keystrokes. Our results show that predictive 
text input performs about one-third better than multi-tap by keystroke count.  Using the time-level model, the 
predictive and multi-tap methods take an average of 59.7 and 79.3 seconds, respectively.  These results support 
earlier findings that multi-tap is indeed slower that predictive text (MacKenzie, 2002); but differ greatly in 
magnitude of the results; we feel this is likely due to the different corpora used.  The advantage of our study is that 
we use a large corpus of actual SMS messages, but a disadvantage is that the time per operation estimates are 
derived from a very small number of users. 
 

5 Optimizing Text Entry 
To improve upon the predictive text entry we examine two approaches: 1) remapping the alphabet to the keypad to 
reduce ambiguity and 2) predictive word completion to reduce keystrokes required.  
 
5.1 Key Remapping using Genetic Algorithms 
By remapping the alphabetic characters on the keypad, we can attempt to reduce the amount of ambiguous key 
sequences.  For example, defining “6” as “mn” and moving “o” to the “7” key will disambiguate “of” and “me”, but 
may introduce other ambiguities. To try all permutations of keypads is infeasible, as there are 26C3 × 22C3 × 20C3 × 
17C3 × 14C3 × 11C4 × 7C3 × 4C4 ≈ 1.5 × 1019 possible combinations, if we keep the number of letters allocated to each 
key fixed.  A guided search is necessary.  To find a solution, we utilize genetic algorithms.  We define a mapping of 
the 26 letters to the 8 keys used for these letters as having a higher fitness, if and only if it lowers the average time-
level model estimate for the messages in the corpus.  By creating many permutations the standard keypad, we can 
evaluate whether any improve performance.  Keypads that show a performance improvement are then used in 
subsequent iterations to search for even better keypads.   
 
Using this model, we swap positions of letters on the keypad.  This is done by randomly picking a subset of 2 or 4 
letters and swapping their positions.  A swap4 mutation is illustrated in Figure 4. A position of a letter is encoded 
just by the number key it is assigned to, as predictive text input treats the letters on each key as an unordered set.  In 
our OLM, letter swapping can change the number of ‘Next’ key presses needed to type words (i.e., MPNextK and 
RPNextK).  The swap can also switch a keystroke from a move + press to a repeat press (i.e., from MPAlphaK to 
RPAlphaK).  Other operation counts are unaffected by the keypad mapping.  As such, a good fitness function 
measures the average time cost with respect to these four operations. 
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Figure 4: A (l) parent keypad, and derived (r) child keypad after a swap4 mutation.  Swapped letters are highlighted.  
The child keypad is in the equivalence set of optimal keypads for our paper. 

Note that the number of ‘Next’ key presses for each word in the corpus changes with every keypad variant.  As 
letters have shifted, different key sequences will lead to a change in the ambiguous sequences.  As such the standard 
number of ‘Next’ key presses that was derived from the standard dictionary cannot be applied.  Instead, we use the 
frequency of the tokens in the SMS corpus to assign the ordering among ambiguous sequences: more frequent 
tokens are ordered before less frequent ones. 
 
Using this asexual genetic algorithm, we produce 100 mutated keypads per iteration, keeping the 10 that have the 
least time cost.  After 131 iterations, no changes in the ten top keypads were observed.  Figure 4(r) shows one of the 
ten resulting keypads.  The average time cost was reduced by 21% in the expert model and by 13% in the novice 
model.  The difference is likely attributed to the large difference in cost ratio of the MPAlphaK and RPAlphaK 
operations in the two models: the reduction in the number of ‘Next’ key presses is partially negated by needing to 
move to another key in the novice model.   
 
In a complementary study, Dinesh Tulsidas (2002) also examined remapping of keys for predictive input text.  His 
work examined spatial layout optimization in conjunction with ambiguity reduction.  The spatial component tries to 
optimize the mapping to lessen movement time between keys as governed by Fitts’ law.  While we do not have a 
spatial component in our model, our OLM accounts for these differences as move or repeated key presses as 
previously stated.  Also, whereas our work computes the actual operations needed to input a SMS message, 
Tulsidas’ model uses an approximation based on word length. 
 
5.2 Predictive word completion 
Many mobile input interfaces also include a word completion system, in which a partially completed word can be 
completed to the full word intended by the user.  ZiCorp is one such corporation that uses word completion in its 
input method, eZiText5.  While most current generation systems that do word completion predict words based only 
on the current sequence typed so far, mobile devices have increasingly larger capacity to hold language models. As 
such we examine a next generation approach that examines current word prediction that uses the previous word that 
was keyed by the user, in addition to the current key sequence typed so far. 
 
To motivate this approach, consider a user writing the message “Meet at home later”.  Assuming the standard ISO 
keypad, a user who has typed the first two words and is keying the sequence for “home” (‘4663’) in will be shown 
“i", “in”, “inn”, “good” as the keys are typed, with “home” finally entered after a ‘Next’ key press.  However, a 
corpus analysis can reveal that “home” is the most likely word being typed, even when only three letters have been 
typed, based on the previous word, “at”.   
 
In language modeling terms, we combine the letter n-gram model with a bigram word model to make a prediction.  
That is, we select the word with the highest conditional probability given the joint evidence from the typed sequence 
and previous word: 

∑ ∈

=
)(

),(

),(
),|(

keyseqwordsw
wprevWordC

curWordprevWordC
keySeqprevWordcurWordP                   (Equation 1) 

                                                
5 http://www.zicorp.com/ezitext.htm, retrieved February 2005. 



where prevWord, curWord and keyseq are the previous word entered, current word being entered, and the partial key 
sequence that has been entered thus far. words(k) is a function that returns the set of words which have key 
sequences starting with k and C(x,y) is the count of the word bigram (x,y) in the corpus.  Counts are again estimated 
from the collected SMS corpus. All word completion choices can thus be ordered by their probability.   
 
As word completion can take up a sizeable area of a phone user interface, we limit when word completion 
suggestions appear to the user and only select a single candidate to suggest, different from other commercial 
implementations.  Four conditions govern whether suggestions are shown, to limit suggestion to high probability 
candidates: 
 

1. Given a previous word, prevWord, and a key sequence, keySeq, a word, curWord, is predicted only when:  
(i) P(curWord | prevWord, keySeq), calculated by Equation 1, is greater than the threshold of 0.5;  and  
(ii) C(prevWord,curWord) must be greater than 2.  

2. Given a previous word and a set of words, W, which share the same partial key sequence, keyseq, and for 
all w∈W in which condition 1 holds, then the word that is predicted is given by:  

curWord = argmax P(w | prevWord, keqSeq)                                 (Equation 2) 
If more than one w∈W such that P(w | prevWord, keySeq) is maximized, then the w with the longest word 
length is predicted. 

3. If a given key sequence, k, codes for at least one complete word then all possible completions of keyseq are 
suggested according to their probability as calculated by Equation 1.   

4. Word completion is only can only be active after the first letter of a word has been entered. That is, when 
keyseq is non-null. This is done so as to make the prediction more accurate, because one key press greatly 
narrows down the possible completions. 

 
By following these conditions we can predict when word completion will suggest a completion during the 
processing of the OLM on a message, using the standard ISO keypad.  To accept the suggestion, the user can press 
‘0’ for a space or ‘1’ for punctuation, which completes the word and types the appropriate space or punctuation. 
Consider the example of a user who wants to type in “meet at home later” and who already has keyed in “meet at ”.  
If keying the sequence ‘64’ leads the sequence completion “home” to satisfy the conditions above, the user types ‘0’ 
to key in a space and accept the word completion, saving a single keystroke.  This keystroke combines the semantics 
of both an AlphaK and NextK keystroke, and ideally would be modeled as a new operation in the OLM.  As it is not 
possible estimate this operation without a working system, we model this keystroke as the MPNextK operation 
which implicitly includes verification (mental preparation) time. 
 
Assuming that the word completion candidate is always chosen when it is the desired candidate in message, we can 
use the OLM to derive the number of operations needed to code an arbitrary message, in which the number of 
operations for key sequence entry and ‘Next’ key presses are reduced.  It is then straightforward to calculate the 
average time cost per message in the corpus, resulting in a time savings of 18% and 13% for the expert and novice 
models, respectively.   
 
The improvement due to completion is slightly less than what was achieved from key remapping.  Additionally, the 
figure is smaller than previous reports on word completion in other mobile applications.  For example, PDA input of 
Japanese using word completion was shown to increase input rate over 60% (Masui, 1998).  This discrepancy is 
largely due to the fact that SMS messages contain many words that are shortenings that do not benefit significantly 
from completion.  This highlights the need to do testing on actual SMS corpora. 
 
Can the two approaches of key remapping and word completion be combined to achieve additional cost savings?  
The answer is yes: we can start from one of the final keypad configurations from the remapping process and then 
calculate what additional savings occur when completion suggests the correct word.  This is achieved by re-
computing the probability function given in Equation 1.  Only the keyseq variable has been changed, so the 
denominator needs to be recomputed; the bigram word model in the numerator is the same.  Combining the two 
techniques together further reduces the cost in both keystroke and time level models to 21.8% and 28.6% from the 
baseline, respectively.  The result shows a further reduction of around 7% over the using word completion or 
remapping alone.   
 



6 Discussion 
Table 3 summarizes our findings, showing the average number of seconds per message using the OLM to derive 
average input times for each of the input methods described in Section 5. 

Table 3: Average seconds per message by entry methods, from the time-level model.  Auto-capitalization included. 

Average Expert Model Novice Model 

Entry Method 

Avg. Std. 
Dev.  

Improv
ement  

Avg. Std. 
Dev. 

Improv
ement  

Avg. Std. 
Dev.  

Improv
ement  

Baseline  74.00 51.1 - 59.79 42.1 - 149.56 103.1 - 
Remapping Letters  62.35  43.2 15.7% 47.17 33.3 21.1% 128.77 89.7 13.9%  
Word Completion  63.54  46.5 14.1% 48.74 36.5 18.5% 129.37 94.3 13.5% 
Combination  57.87  42.4 21.8% 42.68 30.9 28.6% 120.24  86.4 19.6% 

 
We state the average, standard deviation and the percentage improvement of the text entry method over the baseline 
of each of the different text entry techniques. Results are given for a combined model as well as for separate novice 
and expert user models.  The time model for the expert user reduces the average time required to type a message by 
21.1% for the remapped keypad and 18.5% for predictive word completion. A combination of both techniques 
further reduces the average time, with a 28.6% improvement over the baseline. Using the combination of both 
techniques, an expert user would on average use 30.9 seconds to type a message and a novice user, 86.4 seconds. 
 
The remapped keypad generally performs better than predictive word completion. This may be because we adopt a 
conservative strategy for completion, as we only suggest the most probable word and we start predicting only after 
the first key has been entered. From the tables, we can also see that the gains from these two techniques overlap as 
the resulting gain from the combination of both is less than the total gains from both techniques. This is likely 
because both techniques reduce the same type of operations (‘Next’ key presses).  
 
6.1 On cognitive load 
The results given in these tables do not take into account the increase in cognitive load as a result of using these 
improvement techniques.  We are aware of this limitation, which has been a problem largely undealt with in 
previous work as well.  Researchers at York University have recently adapted a KLM to account for verification 
times (Pavlovych and Stuerzlinger, 2004), which model the cognitive load a user requires to verify that a correct 
word or letter has been typed.  This is a promising approach which can be incorporated in our model as an additional 
operation type. 
 
We conjecture how cognitive load will affect the performance figures in Table 3. Actual performance gains would 
likely be less than reported in the table, as the cognitive load for using a remapped keypad and word completion are 
higher than in the standard predictive text model.  More specifically, for the remapped keypad, the novice model 
times for the MPAlphaK and RPAlphaK operations are likely to increase, as the user has to visually scan the entire 
keypad for the next letter.  Expert user times will not be affected much; as such users can easily recall the remapping 
through repeated use and will be able to touch type without needing to scan the keyboard.   
 
The impact of cognitive load on word completion is different.  The word completion model outlined here is based on 
the current letters of the word being typed as well as the previous word.  The fact that the model uses two sources of 
prior evidence makes it more difficult for an expert user to predict when a completion will be suggested.  Also, 
expert users check the screen to verify their input less often than their novice counterparts and are more likely to 
miss a suggestion.  As such, we hypothesize that experts are less likely to benefit from word completion and will 
ignore the suggestion capability for many words.   On the other hand, as novices verify their input often, they are 
more likely to benefit from this technique.   We can mitigate this seeming “non-determinism” of the prediction by 
removing the bigram word model from the prior evidence, but this will lower the predictive power of the model.  

 

Table 4 summarizes our hypotheses with respect to cognitive load. 
 
 



 

Table 4: Hypothesized impact of cognitive load on the time savings for the input methods studied. 

Input method Expert Model Novice Model 
Key Remapping Similar to model Significantly reduced 
Word Completion Significantly reduced Similar to model 
Combined Reduced Reduced 

 

7 Conclusion 
We have presented two methods to improve predictive text input for mobile input devices: by remapping the letters 
to different keys and by predictive word completion.  We predict the two methods’ utility in reducing input time 
necessary for keying messages, which show that both methods enhance performance separately by about 15%.  
When the two techniques are applied together, an average decrease of 20% in necessary input time was observed.   
 
In order to compute these figures, we developed an operation-level model (OLM) which decomposes the input of an 
SMS message into an inventory of operations.  Operations group keystrokes that are likely similar in their execution 
time. Similar to the KLM for computer users, the OLM describes the different types of actions that users carry out 
when doing mobile text entry.  When the OLM is suitably paired with timing estimates for each operator, an input 
time can be predicted for an arbitrary message.  We estimated OLM operation times from videotape analysis of 
expert and novice users of predictive text entry and compute hypothesized average input times for a large (over 10K 
messages), publicly-available SMS corpus which we have collected.  A key distinction in our work is the application 
of statistical methods on this corpus of actual SMS messages rather than on other full text corpora. 
 
At present, the modelling assumes that users do not make any mistakes during input.  In future work, we plan to 
extend this work to model mistakes and cognitive load of users through usability testing, following (James and 
Reischel, 2001).  We also plan to refine the time estimates for operations in the proposed OLM by observing 
additional subjects as they key in input messages.  We can then check whether the hypothesized times correlate well 
with actual times. 
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