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Abstract

We consider cost-sensitive attribute value acquisition in classification problems, where missing attribute
values in test instances can be acquired at some cost. We examine this problem in the context of the sup-
port vector machine, employing a generic, iterative framework that aims to minimize both acquisition and
misclassification costs. Under this framework, we propose an attribute value acquisition algorithm that is
driven by the expected cost savings of acquisitions, and for this we propose a method for estimating the
misclassification costs of a test instance before and after acquiring one or more missing attribute values. In
contrast to previous solutions, we show that our proposed solutions generalize to support vector machines
that use arbitrary kernels. We conclude with a set of experiments that show the effectiveness of our proposed
algorithm.

1 Introduction
Supervised classification involves a training phase, where labeled instances are collected and used to build a
classifier; and a testing or classification phase, where the classifier determines the labels of new and unseen
instances. In many real life problems, it is possible to control the quality of the training data but not that of
the testing data. In particular, test instances often contain missing attribute values that hinders the classification
task, but missing values can be acquired at some cost. As an example, consider the medical diagnosis of a
patient. The doctor can order various tests such as blood tests and chest X-rays to acquire more information
about the patient to make a more informed diagnosis, but each test comes at some monetary cost. In such cost-
sensitive attribute value acquisition or cost-sensitive acquisition problems, the objective is to acquire attribute
values in such a way to minimize both attribute acquisition and misclassification costs of the test instances.

Here, we propose a new, iterative framework for cost-sensitive attribute value acquisition for the support
vector machine based classification. To the best of our knowledge, there has been no work on extending
support vector machine classification to handle cost-sensitive attribute value acquisition, although prior work
has investigated it in other learning models such as decision trees. This is an important contribution as support
vector machines show consistently good performance over a wide range of problem classes.

Our proposed framework is illustrated in Figure 1: a process that acquires attribute values in an iterative
manner. Starting with a (possibly empty) set of known attribute values A, we acquire missing attribute values
A′ and add them iteratively to A. Once a termination condition is satisfied, no more attributes are acquired and
a final classification is performed on A. To apply this framework, we need to specify three parts:
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Figure 1: General iterative framework for solving classification problems with missing attribute values.

1. The classification algorithm.

2. An algorithm for selecting the set A′ to acquire.

3. The termination condition.

This acquisition framework generalizes most related work in Section 2 and trivially embodies algorithms that
do not consider attribute value acquisition – simply by setting the termination condition to be always be true
and not looping at all. In this work, we will assume that the classification algorithm is the support vector
machine, and focus on the second and third parts of the framework.

To keep the exposition easy to follow, we have purposefully taken on several assumptions that are minor
and easily removed from our cost-sensitive acquisition algorithm. First, we assume that this framework is
applied separately for each test instance, and that only one attribute value is acquired per iteration. Second, we
apply our algorithm in the context of the standard two-class support vector machine. Finally, we also assume
that the attribute acquisition and misclassification costs are known a priori, but note that we do not assume
uniform costs for misclassifying instances of different classes. Following [Ling et al., 2006], our objective is
to minimize the sum of the acquisition and misclassification costs.

Our main contribution is to provide a realization of this framework for support vector machines, something
that is not seen in the published literature as far as we know. We develop an approach for estimating the
misclassification cost of a test instance with missing attribute values, before and after acquiring a particular
subset of these missing values. A key part of our contribution is a method that can be applied to arbitrary
kernels, unlike previous work on linear classifiers that deals with missing attribute values in test instances.

We first review related work in Section 2. Section 3 is a preliminaries section that gives a brief overview on
support vector machines, as well as introduce the notation we will use for the remainder of this work. To build
up our cost-sensitive algorithm, we first explain in Section 4 how to compute expected misclassification costs
for a test instance with missing attribute values as-is as well as the same instance with a subset of its missing
attribute values acquired. Armed with these expected misclassification costs, We propose a cost-sensitive
acquisition algorithm for the support vector machine classifier in Section 5 that specifies the second and third
parts that are needed in the iterative acquisition framework. We evaluate our proposed algorithm in Section 6,
before concluding this paper.

2 Related Work
There is a significant amount of related work dealing with classification problems involving missing values in
data. [Turney, 2000] described various kinds of costs, of which the most pertinent are attribute acquisition costs
and (mis)classification costs. For a problem where correct classifications incur a cost as well, [Greiner et al.,
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2002] showed that it can be transformed into an equivalent problem where correct classifications incur zero cost,
hence in this work we assume that no cost is incurred when a test instance is classified correctly. [Elkan, 2001]
argued that cost-sensitive classification, where unequal misclassification costs are assigned for different classes,
should be applied in situations such as when the class distribution is imbalanced. [Ling et al., 2004] extended
the notion of cost-sensitive classification to include acquisition of missing attribute values in test instances,
resulting in the problem we consider here. In this section, we shall focus more on algorithms handling missing
values in test instances, as well as algorithms for support vector machines.

[Saar-Tsechansky and Provost, 2007] treated the underlying classifier as a black box, and proposed training
a classification model on each (selected) subset of the input attributes. Test instances would then be classified
using the models corresponding to its known attribute values. However, this method does not consider the
possibility of acquiring missing attribute values. The active feature-value acquisition framework of [Saar-
Tsechansky et al., 2009] may be seen as an extension of [Saar-Tsechansky and Provost, 2007], except that it
is targeted at missing values in training data. A special case of active feature-value acquisition is applied to
selective acquisition of missing attribute values in test instances [Kanani and Melville, 2008]. [Ji and Carin,
2007] formulated a partial observable Markov decision process to deal with cost-sensitive attribute value acqui-
sition when the classifier is a hidden Markov model. For Naı̈ve Bayes classifiers, [Chai et al., 2004] proposed
classifying test instances by simply ignoring missing attribute values.

Cost-sensitive decision tree classifiers have received the most attention by researchers. [Greiner et al., 2002]
proposed an algorithm for building a cost-sensitive decision tree and analyzed its theoretical properties under a
probably approximately correct learning framework. [Turney, 1995] proposed using genetic algorithms, while
[Zubek and Dietterich, 2002] uses Markov decision processes to generate candidate decision trees. On the
other hand, [Davis et al., 2006] and [Ling et al., 2004] proposed the building of a single decision tree from
the training data. [Ling et al., 2006] proposed a lazy tree formulation that improved on [Ling et al., 2004] in
decision tree construction. Some of these methods generate many candidate models and have efficiency issues,
while others generate only a single classification model and are efficient.

Relatively fewer works have dealt with missing values when support vector machines and other linear clas-
sifiers are considered. Training instances of a support vector machine can be weighted by their misclassification
costs such that the trained support vector machine is sensitive to different misclassification costs of different
classes [Osuna et al., 1997]. [Smola and Vishwanathan, 2005] and [Pelckmans et al., 2005] both builds (kernel-
ized) support vector machines that handles missing values in training data (as opposed to test data), and does not
consider the option of acquiring missing values. [Globerson and Roweis, 2006] and [Dekel and Shamir, 2008]
proposed linear classifiers that are robust to missing attribute values during classification time, with [Dekel and
Shamir, 2008] using a linear programming formulation which improves on [Globerson and Roweis, 2006] and
is the current state-of-the-art. However, both linear classifiers 1) require the number of missing attribute values
to be supplied during training, 2) does not consider acquisition of missing attribute values, and 3) cannot easily
be kernelized. To the best of our knowledge, there is no support vector machine classifier that also considers
the cost-sensitive acquisition of missing attribute values during classification time. Our aim is to fill in this gap
by proposing such an algorithm for the support vector machine, which can be applied to any kernel satisfying
Mercer’s condition.

3 Preliminaries and Notation
In this section, we first give a brief overview of support vector machines and introduce our notation at the
same time. For a more detailed introduction to support vector machines, we refer the reader to tutorials such
as [Osuna et al., 1997] and [Burges, 1998].

3.1 Background on Support Vector Machines
Let us first ignore the issue of missing attribute values and assume all attribute values are known. Consider a
classification problem where instances have n numeric attributes. A kernel function (that satisfies the Mercer’s
condition) is a function K : Rn × Rn → R that can be expressed as K(xi,x) = 〈Φ(xi),Φ(x)〉, where
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Φ : Rn → F is a feature map from the attribute space Rn to some feature space F . For a user-selected kernel
function K(·, ·), a support vector machine is a linear classifier in the feature space, i.e., it maps an instance
x ∈ Rn to a class in {−1,+1} via y = sign[f(x)], where the decision function f(·) is defined as:

f(x) = 〈w,Φ(x)〉+ b (1)

Training a support vector machine involves learning the weight vector w ∈ F and bias b ∈ R. Given
training data D = {(xi, yi)}Ni=1, where each xi is a training instance and yi being its class, a support vector
machine can be trained by solving the following (primal) quadratic optimization problem:

Minimize
1

2
〈w,w〉+ C

N∑
i=1

εi (2)

Subject to ∀i ∈ {1, . . . , N} yi(〈w,Φ(xi)〉+ b) ≥ 1− εi
∀i ∈ {1, . . . , N} εi ≥ 0

Geometrically, a support vector machine is designed to maximize the margin ρ = 2
‖w‖2 . The constant C

specifies the amount of misclassifications allowed for the training instances, and can either be user-specified
or determined through cross-validation. Instead of solving the above primal problem directly, it is often more
convenient to solve the dual optimization problem instead:

Maximize
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈Φ(xi),Φ(xj)〉 (3)

Subject to ∀i ∈ {1, . . . , N} 0 ≤ αi ≤ C
N∑
i=1

αiyi = 0

The optimal solutions of the primal and dual problems are related by:

w =

N∑
i=1

αiyiΦ(xi) (4)

Commonly used kernels include the following:

• Linear kernel: K(xi,x) = 〈xi,x〉.

• Polynomial kernel: K(xi,x) = (〈xi,x〉+ 1)
d.

• Radial basis function (RBF) kernel: K(x′i,x) = exp
(
−‖x

′
i−x

′‖22
2σ2

)
.

The linear kernel corresponds to the identity feature map Φ(x) = x. However, when the training data is non-
linearly separable, a nonlinear feature map Φ(·) whose feature space F is a high or infinite dimensional space
is employed. Examples of nonlinear kernel includes the polynomial kernel and the RBF kernel. In such cases,
often the kernel function K(·, ·) is specified directly, leaving Φ(·) and F implicitly defined. This leaves the
weight vector w implicitly defined as well. However, this is not a difficulty because we can train the support
vector machine by solving the dual formulation (after substituting 〈Φ(xi),Φ(xj)〉 with K(xi,xj)). At the
same time, Equation 4 implies that we can express the decision function as:

f(x) =

N∑
i=1

αiyiK(xi,x) + b (5)
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Also, Equation 4 implies that:

‖w‖22 = 〈w,w〉 =
N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj) (6)

which means that the margin ρ can be computed as usual.

3.2 Posterior Probability of Classification
A trained support vector machine can be extended to provide the posterior probability that a test instance
belongs to a class [Platt, 2000]. Let p+(x) and p−(x) be the probabilities that a test instance x belongs to the
positive and negative class respectively. Then we can fit a sigmoid function as follows:

p+(x) =
1

1 + exp(Af(x) +B)
(7)

where the parameters A and B are to be learned from the training data. We can then compute p−(x) =
1− p+(x).

3.3 Classifying an Instance with Missing Attribute Values
We now consider the classification of a test instance x ∈ Rn with missing attribute values and without acquiring
any of them. The attribute values of x can be partitioned into a setM(x) of known (or observed) attribute values
and a set M(x) of missing attribute values, such that {x1, . . . , xn} is the disjoint union of M(x) and M(x).
We assume that prior to classification time, a set of fixed constants x′1, . . . , x

′
n is already defined and computed.

When classifying a test instance x with some of its attribute values missing, and without acquiring any of its
missing values, we can impute (i.e., replace) each missing attribute value xk ∈ M(x) with the constant x′k
before computing f(x). Here, we assume that these fixed constants are independent of the test instance x,
but we do not impose on the exact semantics of these fixed constants. Typically, x′k can be the mean value
of the kth attribute of the training instances, or simply be the zero value. This simple approach is widely
used in related work (e.g., [Globerson and Roweis, 2006] and [Dekel and Shamir, 2008]) as well as support
vector machine implementations (e.g., the sequential minimal optimization (SMO) classifier of Weka [Witten
and Frank, 2005]). Although imputing missing attribute values with fixed constants is not necessarily the best
approach, imputation methods is not the focus of this work and we leave improvements in this area as future
work. Thus, we simply used mean value imputation in our experiments. Similarly, for the computation of the
sigmoid function, any missing attribute values of an instance are also replaced with the fixed constants before
computing its posterior probability.

4 Computing Expected Misclassification Costs
Consider a test instance x and A′ ⊆ M(x), a subset of its missing attribute values. Let x + A′ denote the test
instance x with A′ acquired. We define the following:

• E[mc(x)] is the expected misclassification cost of x.

• E[mc(x +A′)] is the expected misclassification cost of x after acquiring A′.

The aim of this section is to give a way for computing the quantitiesE[mc(x)] andE[mc(x+A′)] for arbitrary
x and A′. These quantities are two of the key quantities that drive our cost-sensitive acquisition algorithm,
which we describe in the next section.

In this section, we first construct the computation of E[mc(x)] and E[mc(x + A′)] for an arbitrary ker-
nel. Then, we give an interpretation for the linear kernel, and explain how these quantities can be computed
efficiently in O(n) time, linear in the number of attributes.

We first define w′(x), the weight vector w modified by the missing values of x.

5



Definition 1. Let x be a test instance. Let x′i be the training instance xi with the attributes that are missing in
the test instance x replaced by fixed constants, i.e.,

x′ik =

{
xik if xk ∈M(x)
x′ik otherwise

(8)

The modified weight vector w′(x) is defined such that:

‖w′(x)‖22 = 〈w′(x),w′(x)〉 =
N∑
i=1

N∑
j=1

αiαjyiyjK(x′i,x
′
j) (9)

�

For the instance x+A′, we define its modified weight vector w′(x+A′) by takingM(x+A′) =M(x)∪A′.
Also, notice that Equation 9 is defined in a manner that is analogous to Equation 6.

The quantity ‖w′(x)‖2 can be interpreted as the amount of information that is remaining from ‖w′‖2 after
taking into account of information that is lost due to the missing attribute values. This aspect will be made
obvious when an interpretation for w′(x) for the linear kernel is made later.

Definition 2. The uncertainty factor for a test instance x is defined by:

u(x) =
‖w′(x)‖2
‖w‖2

(10)

�

Empirically, we found that ‖w′(x)‖2 ≤ ‖w′‖2 is almost always satisfied, which means that we almost
always have 0 ≤ u(x) ≤ 1. These inequalities are always satisfied when the linear kernel is used.

We now explain the computation for E[mc(x)], the estimated misclassification cost for a test instance x
with missing attribute values. Let mc+ and mc− be the misclassification cost for misclassifying a positive and
negative instance, respectively. Suppose the support vector machine classifies x to be positive, i.e., f(x) ≥ 0.
Then according to the sigmoid function of Equation 7, the posterior probability of x belonging to the positive
class is p+(x). However, the computation of p+(x) does not take missing attribute values into account. Hence,
the certainty of the classification is reduced by the uncertainty factor u(x), i.e., meaning that the certainty of
is now u(x) · p+(x). Thus the uncertainty of the classification is 1 − u(x) · p+(x). Hence, we compute the
expected misclassification cost as (1−u(x) ·p+(x)) ·mc−. Similarly, if the support vector machine classifies x
to be negative, then we compute the expected misclassification cost as (1−u(x) ·p−(x)) ·mc+. The following
definition summarizes the computation of the expected misclassification cost of an test instance x.

Definition 3. Let mc+ and mc− be the misclassification cost for misclassifying a positive and negative in-
stance, respectively. The expected misclassification cost of a test instance x is defined as:

E[mc(x)] =

{
(1− u(x) · p+(x)) ·mc− if f(x) ≥ 0
(1− u(x) · p−(x)) ·mc+ otherwise (11)

�

Again, it is straightforward to modify the above definition for E[mc(x +A′)]:

E[mc(x +A′)] =

{
(1− u(x +A′) · p+(x)) ·mc− if f(x) ≥ 0
(1− u(x +A′) · p−(x)) ·mc+ otherwise (12)

The inequality ‖w′(x)‖2 ≤ ‖w′(x + A′)‖2 always holds for the linear kernel and should hold most of
the time for nonlinear kernels. If this inequality holds, then we also have u(x) ≥ u(x + A′), and hence
E[mc(x)] ≥ E[mc(x + A′)]. In other words, the acquisition of missing attribute values should lead to a
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decrease in expected misclassification cost. By this token, the difference of E[mc(x)] and E[mc(x+A′)] can
be exploited to determine how useful it is to acquire A′. This difference is the key element for constructing the
cost-sensitive acquisition algorithm in the next section.

Earlier, we mentioned that the quantity ‖w′(x)‖2 can be interpreted as the amount of information remaining
after taking into account the information that is lost from the missing attribute values. In the following, we will
make this interpretation obvious in the context of the linear kernel. As this quantity will be computed many
times in the cost-sensitive acquisition algorithm, we also suggest a way to compute it efficiently when a non-
linear kernel is used.

4.1 Modified Weight Vector for Linear Kernel
Recall that the linear kernel is K(xi,x) = 〈xi,x〉, whose feature map is Φ(x) = x. For a support vector
machine that uses a linear kernel, its decision function can be simplified as follows:

f(x) =

n∑
k=1

wkxk + b (13)

If we assume that the attribute values in both training and test instances have been appropriately normalized to
the same scale, then the magnitude of the weight wk of each attribute xk indicates the relevance or importance
of that attribute. Thus, if the missing attribute values of a test instance has weights of large magnitude, then its
classification would be highly uncertain.

For a test instance x, we can define its modified weight vector explicitly as w′(x) = (w′1(x), . . . , w
′
n(x)),

where

w′k(x) =

{
wk if xk ∈M(x)
0 otherwise

(14)

Theorem 1. When the linear kernel is used, both the modified weight vectors w′(x) as defined by Equation 9
and Equation 14 compute the same value for ‖w′(x)‖2, i.e.,

‖w′(x)‖22 =
∑

k:xk∈M(x)

w2
k (15)

Proof. When the linear kernel is used, we have that for two training instances xi and xj , K(xi,xj) =
〈xi,xj〉 =

∑
k:xk∈M(x) x

′
ik +

∑
k:xk∈M(x) xik. Note that the first term on the right hand side is a constant.

For w′(x) as defined by Equation 9, we have

‖w′(x)‖22 =
∑

k:xk∈M(x)

N∑
i=1

N∑
j=1

αiαjyiyjx
′
ikx
′
jk +

∑
k:xk∈M(x)

N∑
i=1

N∑
j=1

αiαjyiyjxikxjk (16)

From the dual formulation of the support vector machine,
∑N
i=1 αiyi = 0, and thus the first term on the right

hand side of Equation 16 is zero. Also, when the linear kernel is used, we have w =
∑N
i=1 αiyixi, which

implies wk =
∑N
i=1 αiyixik. Therefore, the second term on the right hand side of Equation 16 becomes∑

k:xk∈M(x) w
2
k. Hence, Equation 15 is satisfied.

For w′(x) as defined by Equation 14, it is easy to see that Equation 15 is satisfied as well. �

The above theorem states that we can compute ‖w′(x)‖2 using the form of w′(x) that is explicitly defined
in Equation 14. As this explicit form of w′(x) is formed by zeroing the weights of w corresponding to the
missing attribute values of x, the quantity ‖w′(x)‖2 =

∑
k:xk∈M(x) w

2
k has a particularly intuitive interpreta-

tion. It is less than ‖w‖2 =
∑N
k=1 w

2
k and represents the amount of useful information remaining after taking

into account the missing attribute values of x.
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Given the explicit representation of the modified weight vector w′(x) for the linear kernel, we can see that
computing ‖w′(x)‖, and hence E[mc(x)], incurs O(n) time, linear in the number of attributes. The same can
be said for the computation of E[mc(x +A′)] as well.

A final remark we make is that this method for computing E[mc(x)] and E[mc(x + A′)] can be applied
to any linear classifier whose decision function is of the form Equation 13. It is not necessary for the linear
classifier to be a support vector machine.

4.2 Modified Weight Vector for Nonlinear Kernel
The main challenge for the computation of ‖w′(x)‖2 for a nonlinear kernel is that it requires O(M2n) time to
compute using Equation 6 requires O(M2n) time, where M is the number of support vectors in the support
vector machine. This makes our proposed acquisition algorithm of computationally expensive during classifi-
cation time as many computations of expected misclassification costs may be required. This is especially so
when M is large and when the test instance x has many missing attribute values, which are typical character-
istics for large datasets. Using Equation 6 to compute ‖w′(x)‖2 will make our proposed acquisition algorithm
impractical for these cases.

One approach around the problem of computational complexity is to reduce the number of support vectors
in the trained support vector machine. This approach has been studied in papers such as [Burges, 1996], [Lin
and Lin, 2003], [Apolloni et al., 2004], and [Nguyen and Ho, 2005]. However, we choose to use another
approach that allows us to compute ‖w′(x)‖2 in O(n) time, linear in the number of attributes. This approach
approximates the computation of the kernel function K(x′i,x

′
j) using “weak kernels” [Fung et al., 2007]. Let

Kk(x
′
i,x
′
j) be the kernel function computed using only the kth attribute of x′i and x′j . For example, ifK(x′i,x

′
j)

is the radial basis function (RBF) kernel defined by K(x′i,x
′
j) = exp

(
−‖x

′
i−x

′
j‖

2
2

2σ2

)
, then Kk(x

′
i,x
′
j) =

exp
(
−‖x

′
ik−x

′
jk‖

2
2

2σ2

)
. Then we approximate the computation of K(x′i,x

′
j) by:

K(x′i,x
′
j) ≈

n∑
k=1

γkKk(x
′
i,x
′
j) (17)

where the constants γ1, . . . , γn are to be determined. Thus, Equation 9 becomes:

‖w′(x)‖22 = 〈w′(x),w′(x)〉 ≈
n∑
k=1

γktk(x) (18)

where:

tk(x) =

N∑
i=1

N∑
j=1

αiαjyiyjKk(x
′
i,x
′
j) (19)

Note that each of the tk(x) terms can take on only one of two possible values, which depends on whether
xk ∈ M(x), i.e., whether the kth attribute in the test instance x is known or missing. This allows us to
precompute these terms during training, by selecting a subset of missing patterns out of the 2n possible patterns
and computing their corresponding actual ‖w′(x)‖22 values, and determining the values of γ1, . . . , γn using
a standard linear regression algorithm. Subsequently, during classification time, when we need to estimate
‖w′(x)‖2 for a test instance x with missing values, we use these precomputed approximations. The same
precomputed approximations can also be used to compute ‖w′(x + A′)‖2 for any A′. In this way, each
computation of ‖w′(x)‖2 or ‖w′(x + A′)‖2, and hence E[mc(x)] or E[mc(x + A′)], takes only O(n) time,
linear in the number of attributes. In this work, we always use this approximation when computing expected
misclassification costs for a support vector machine using a nonlinear kernel.
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5 A Cost-sensitive Attribute Value Acquisition Algorithm
Given a method for computingE[mc(x)] andE[mc(x+A′)] efficiently, we are now in a position to describe an
algorithm that uses a trained support vector machine to perform cost-sensitive attribute value acquisition under
the framework of Figure 1. This algorithm defines the attribute value selection algorithm and the termination
condition, the second and third parts in the iterative framework.

Note that the expression E[mc(x)]−E[mc(x+A′)] gives the expected decrease in misclassification cost,
and the aim here is to minimize the total cost of acquisitions and misclassifications. Hence, we define the
following.

Definition 4. Consider a test instance x and A′ ⊆ M(x), a subset of its missing attribute values. Let ac(A′)
be the acquisition cost of the attribute values A′, which is assumed to be given in the cost-sensitive acquisition
problem. The expected reduction in total cost for acquiring A′ is defined by:

E[rc(A′)] = (E[mc(x)]− E[mc(x +A′)])− ac(A′) (20)

�

Our cost-sensitive attribute value acquisition algorithm is driven by the expected reduction in total cost that
can be achieved by acquiring missing attribute values in test instances. This approach follows that of [Ling
et al., 2006]. Here, we consider a strategy of sequentially acquiring one attribute value in each iteration,
until there is no more attribute value xk with positive E[rc({xk})]. This acquisition algorithm is shown in
Algorithm 1.

Algorithm 1 Cost-sensitive attribute value acquisition algorithm.
Input: A test instance x

1: loop
2: Select the attribute value xk ∈M(x) with the maximum E[rc({xk})]
3: if E[rc({xk})] ≤ 0 then
4: break
5: x← x + {xk} {Acquire the attribute value xk}
6: Classify x

We note that it is possible to employ batch acquisition strategies. However, as our focus in this work is the
computation of E[mc(x)] and E[mc(x+A′)], thereby facilitating the construction of a cost-sensitive attribute
value acquisition algorithm for a trained support vector machine, therefore we leave batch acquisition strategies
as future work.

6 Evaluation
In this section, we establish empirically the effectiveness of our proposed support vector machine based benefit
function. As this evaluation is difficult to perform directly, we perform this evaluation indirectly through our
proposed cost-sensitive attribute value acquisition algorithm.

To establish the above goal, we compared our cost-sensitive acquisition algorithm against a baseline that
randomly acquires a proportion (25%, 50%, or 75%) of the missing attribute values in each test instance. This
evaluation is performed separately on support vector machines with three different kernels: linear, polyno-
mial, and radial basis function (RBF). The classifiers are made sensitive to imbalanced misclassification costs
by modifying the primal optimization problem, by replacing the

∑N
i=1 εi part of the objective function with∑N

i=1 λiεi, where λi is a weight proportional to the misclassification cost of the training instance xi [Osuna
et al., 1997].

We performed the experiments using ten commonly used datasets from the UCI machine learning repository
[Asuncion and Newman, 2007], all of which consists of entirely numeric or binary attributes. All datasets

9



Dataset Description Attributes Instances Class distribution

ECOLI Protein localization sites 8 336 143 / 193
GLASS Glass identification 9 214 51 / 163
HEART Cleveland heart disease 13 303 139 / 164
HEPATITIS Hepatitis domain 34 351 126 / 225
IONOSPHERE Ionosphere radar data 34 351 126 / 225
PIMA Pima Indians diabetes 8 768 268 / 500
SONAR Sonar signals, mines versus rocks 60 208 97 / 111
SPAM Emails spam detection 20 4601 1813 / 2788
THYROID Thyroid disease 20 3772 284 / 3488
WDBC Wisconsin diagnostic breast cancer 30 569 212 / 357

Table 1: Summary of the datasets.

with more than two classes were converted into two-class problems by merging classes. By convention, the
minority class is set to be the positive class. A summary of the datasets is given in Table 1. For each dataset, we
normalized the instances such that each attribute is supported on [−1,+1] with mean 0, and split each dataset
into equal-sized training and testing sets with the same class distribution in each set. Following [Ling et al.,
2006], we used the training set as-is, and randomly mark a proportion (20%, 40%, 60%, 80%, or 100%) of the
attribute values in the testing set as missing. At classification time, all unacquired missing attribute values of a
(normalized) test instance are replaced by the zero value before its class is determined. We follow the protocol
of [Ling et al., 2006] and set the misclassification costs of a positive instance and a negative instance to be 600
and 200 respectively. Where available, we used the acquisition costs supplied in [Turney, 1995]; and for the
remainder of the datasets, we set the acquisition cost of each attribute to be a random number between 1 and
100. The evaluation measure is the total cost of acquisitions and misclassifications.

In our experiments, we used the LIBSVM implementation for support vector machines [Chang and Lin,
2001]. When training a classifier, five-fold cross validation is used to perform parameter tuning. For each
acquisition algorithm and classifier combination, we repeated the training and testing process 20 times, and
record the average total cost per test instance. The results of our experiments are shown in Figure 2 for the
linear kernel, Figure 3 for the polynomial kernel, and Figure 4 for the RBF kernel.

The results show that generally, in all datasets, our cost-sensitive acquisition algorithm can achieve a much
lower total cost compared to randomly acquiring a proportion of attribute values, especially when a greater
proportion of attribute values is missing. We found that our cost-sensitive acquisition algorithm may incur ac-
quisition costs greater or lesser than that of random acquisition, but our acquisition algorithm generally makes
suitable trade-offs between acquisitions and misclassifications, allowing total costs to be minimized. We per-
formed one-tail Wilcoxon signed-rank tests comparing the average total costs of our cost-sensitive acquisition
algorithm versus each of the three random acquisition algorithms. The statistical significance tests were per-
formed separately for each of the three kernels (linear, polynomial, and RBF) and each of the five proportions
of missing attribute values (20%, 40%, 60%, 80%, and 100%). The results of the significance tests are shown in
Table 2, which indicates that the differences are statistically significant in all classifiers. For the vast majority
of the forty-five cases, we record a significant difference at the p < 0.01 level, although four of them were
significant only at the p < 0.05 or p < 0.10 level. The statistical significance is seen for all of the linear,
polynomial, and RBF kernels.

In summary, our experiments have established that our acquisition algorithm is effective, when compared
to random acquisition.

7 Conclusion
In this paper, we described a general iterative framework for solving the cost-sensitive attribute value acquisi-
tion problem. We proposed a realization of the framework when the classifier is the support vector machine
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Figure 2: Average total cost per test instance for the linear kernel. Error bars indicate one standard deviation.
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Figure 3: Average total cost per test instance for the polynomial kernel. Error bars indicate one standard
deviation.
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Figure 4: Average total cost per test instance for the RBF kernel. Error bars indicate one standard deviation.
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Acquisition algorithm Proportion of missing attribute values

20% 40% 60% 80% 100%

Linear kernel

Random (25%) p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01
Random (50%) p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01
Random (75%) p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

Polynomial kernel

Random (25%) p < 0.05 p < 0.05 p < 0.01 p < 0.01 p < 0.01
Random (50%) p < 0.01 p < 0.05 p < 0.01 p < 0.01 p < 0.01
Random (75%) p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

RBF kernel

Random (25%) p < 0.10 p < 0.01 p < 0.01 p < 0.01 p < 0.01
Random (50%) p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01
Random (75%) p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

Table 2: p-values of the one-tail Wilcoxon signed-rank tests between our cost-sensitive acquisition algorithm
and random acquisition.

by computing the expected reduction in total costs for acquiring attribute values. A key part in our algorithm
is a method for estimating the expected misclassification cost of a test instance with missing attribute values
using the weight vector of the support vector machine. Another key aspect in our paper is the generalization of
our algorithms such that they can be applied to support vector machines with arbitrary kernels, and not merely
limited to linear support vector machines. Our experiments show that our cost-sensitive acquisition algorithm
is effective on linear classifiers as well as support vector machines using the RBF kernel.
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