

WING-NUS at SemEval-2017 Task 10: Keyphrase Identification and Classification as Joint Sequence Labeling

Animesh Prasad and Min-Yen Kan

School of Computing, National University of Singapore

Introduction

≻ Tasks:

- ≻ Keyphrases Identification (Subtask A)
- Typing among one of three types: Materials, Process and Task (Subtask B)

> Challenges:

- Keyphrases occur more densely in the given excerpts compared against standard set of 5-25 keyphrases over an entire document
- Keyphrases overlap significantly. e.g. equally sized blocks and sequences of optimal walks of a growing length in weighted digraph
- Determining the keyphrase type depends on the context. e.g. oxidation test and assessment of the corrosion condition type depends on the context.

Setup	Р	R	F ₁	
Joint	0.55	0.38	0.45	
Unified	0.49	0.40	0.44	

Subtask B performance for *Joint* versus *Unified* models, as assessed on *Dev*. Best performance is **bolded**.

Setup	Туре	Р	R	F ₁
	Material	0.61	0.36	0.45
Joint	Process	0.45	0.34	0.39
	Task	0.29	0.12	0.17
	Micro Average	0.51	0.32	0.40
	Material	0.50	0.28	0.36
Unified	Process	0.29	0.23	0.26
	Task	0.22	0.07	0.11
	Micro Average	0.37	0.22	0.28

Proposed Technique

> Features

- > Token(T), lowercased token
- > 1 to 4 character n-gram from beginning and end of the token
- ➤ POS of the token
- Orthographic features like capitalization, alpha/numeric?, ASCII?, quoted?, hyphenated?, math operators?
- ≻ Occurrence in title

≻ Model

First Order Conditional Random Field

Experiments

Features Ablation

- Model performance over different feature ablation, as evaluated on *Dev*. Best performance is **bolded**.
- Most of the contributions come from character n-gram and previous tokens output label

	Subtask A			Subtask B		
Features	Р	R	F ₁	Р	R	F ₁
All	0.55	0.38	0.45	0.51	0.32	0.40
All-(T,T _{lower})	0.49	0.34	0.40	0.44	0.26	0.34
All-(T _{n-gram})	0.53	0.33	0.40	0.46	0.25	0.33
All-(T _{POS})	0.55	0.36	0.43	0.50	0.30	0.37

Joint modeling leverages more rich contextual information, outperforms individual expert systems

Results

Official Scores

End to end scores on Test

Туре	Р	R	F ₁
Material	0.40	0.40	0.40
Process	0.37	0.26	0.30
Task	0.13	0.07	0.09
Micro Average*	0.26	0.29	0.27

Subtask-wise scores on Test

Subtask	Р	R	F ₁	
А	0.51	0.42	0.46	
В	0.37	0.31	0.33	

> Significant drop in F₁ for certain type with skewer test distribution

Discussions

All-(Torthographic)	0.55	0.37	0.44	0.51	0.31	0.38
All-(T _{in-title})	0.55	0.39	0.46	0.51	0.32	0.39
All-(T-1 _{output})	0.30	0.39	0.34	0.26	0.32	0.29

> Model Configurations

- We explore three configurations Joint: Performing both Subtask A and B jointly Unified: Expert model for keyphrase identification (Subtask A) by collapsing all keyphrase types in one canonical type Individual: Expert model for each keyphrase type
- Subtask A performance for *Joint* versus *Unified* models, as assessed on *Dev*. Best performance is **bolded**.

- Feature based CRF model performs close to reported best performance on precision, with a difference of 0.04
- Lower recall by around 0.10 is caused by systematic modeling error that CRF incurs because of overlapping annotations which is further exacerbated by strict evaluation

> Future Directions

<u>animesh@comp.nus.edu.sq</u>

- Using semantic features to learn the context dependent typing of the keyphrases
- Using deep learning based models using word embeddings, though our primary attempt didn't give better result than feature based models, due to high class imbalance

