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NLP models are less robust to text perturbations
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(Prabhakaran et al., 2019; Niu et al., 2020; Ribeiro et al., 2020; Moradi and Samwald, 2021) 



Different text perturbation methods
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(Milad and Matthias, EMNLP 2021)



Some perturbations are more effective than others
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(Milad and Matthias, EMNLP 2021)

Why NLP models are less robust to some perturbations than others? 



Data augmentation improves the robustness

• To improve the robustness under perturbation, it is common practice to 
leverage data augmentation. 
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Original corpus (clean data)

Perturbed data

Data Augmentation ModelTraining

We are going to have a picnic
If it is a sunny day tomorrow

If tomorrow is a sunny day, 
we are going to have a picnic

We will have a picnic if it is 
a sunny day tomorrow.



Data augmentation improves the robustness

• To improve the robustness under perturbation, it is common practice to 
leverage data augmentation. 

• How much data augmentation through the perturbation improves model 
robustness varies between models and perturbations. 

< 6 >

Why does data augmentation work better at improving the model   
robustness to some perturbations than others?



Research Questions

< 7 >

RQ1: Why NLP models are less robust to some perturbations than others? 

RQ2: Why does data augmentation work better at improving the model 
robustness to some perturbations than others?

Hypothesis: If the model is more sensitive to a certain kind of perturbation; 
the model will be less robust to the perturbation. Also, the improvement 
brought by data augmentation will be more effective. 

• Sensitivity is measured by the Learnability, which means how well the model 
can learn to identify the perturbation with a small amount of evidence. 



Learnability
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The model is more sensitive to a certain kind of perturbation.  

The model is more likely to utilize this spurious feature for prediction. 

The model can easily learn to identify this perturbation given a small amount 
of training data. 



Learnability Estimation

• STEP 1: Assign Random Labels
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Learnability Estimation

• STEP 1: Assign Random Labels
• STEP 2: Perturb a particular class
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Let Y = 0 Let Y = 1



Learnability Estimation

• STEP 1: Assign Random Labels
• STEP 2: Perturb a particular class
• STEP 3: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = accuracy on new test set – original test set
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Let Y = 0 Let Y = 1
95%



A Causal View
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• Why do we assign random labels before perturbations?

By randomly assigning pseudo labels to training examples, the only difference 
between the two pseudo groups is the existence of the perturbation.  

• Therefore, the accuracy indicates how well the model can learn to utilize the 
perturbation for prediction; or in other words, how well the model can learn to 
identify the perturbed samples.   



A Causal View
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• Why do we assign random labels before perturbations?
• Randomization decouples the effects of perturbation and other 

confounding latent features.
• Learnability is identified as a causal estimand (Average Treatment 

Effect, ATE)

Perturbation

Original label Latent feature

Predicted label



Definitions
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𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅 = 𝐴𝐴𝐴𝐴𝐴𝐴! −𝐴𝐴𝐴𝐴𝐴𝐴"

𝑥𝑥∗ is a perturbed example



Definitions
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∆#$%&_()* = 𝐴𝐴𝐴𝐴𝐴𝐴+ −𝐴𝐴𝐴𝐴𝐴𝐴!

𝑥𝑥∗ is a perturbed example



Experiments
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• We estimate robustness, post-augmentation delta, learnability on
• Four NLP models: TextRNN, BERT, RoBERTa, XLNet
• Three datasets: IMDB, YELP, QQP
• Eight perturbations



Results
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• Learnability @ p: learnability as a function of perturbation probability. 
• We use the AUC (area under curve) to measure the learnability in general.  



Results
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• Average learnability of each model–perturbation pair on IMDB dataset. 
• Different models have different learnability for different perturbations. 



Results
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High learnability: “visual_attack_letters” and “leet_letters” 
• They have strong effects on the tokenization process. 

Low learnability: “white_space_perturbation” and “duplicate_punctuations” 
• They have weaker effects on the subword level tokenization, there may already exist similar noise 

in the pretraining corpora. 



Results
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• We observe a negative correlation between learnability and robustness 
across all three datasets, validating Hypothesis 1.



Results
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• We observe a negative correlation between learnability and robustness 
across all three datasets, validating Hypothesis 1.

If a certain perturbation is more learnable for a model, the model will be less 
robust to this perturbation during test time. 



Results
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• Data augmentation with a perturbation the model is less robust to has 
more improvement on robustness (Hypothesis 2).



Results
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• Data augmentation is only more effective at improving robustness 
against perturbations that a model is more sensitive to!



Conclusion
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• We quantify how well the NLP model learns a perturbation with the 
learnability, which is grounded in the causality framework.
• We show a statistically significant inverse correlation between learnability 

and robustness.
• We provide an empirical explanation for why NLP models are less robust 

to some perturbations than others. 


