

Improved Temporal Relation Classification

using Dependency Parses and Selective Crowdsourced Annotations

Jun-Ping Ng and Min-Yen Kan

COLING - 13 Dec 2012

Thursday, December 13, 12

Temporal Relations?

Two top aides to Netanyahu, political advisor Uzi Arad and Cabinet Secretary Danny Naveh, **left** for Europe on <u>Sunday</u>, apparently to **investigate** the Syrian issue, the newspaper said.

Temporal Relations?

OVERLAP

Two top aides to Netanyahu, political advisor Uzi Arad and Cabinet Secretary Danny Naveh, **left** for Europe on <u>Sunday</u>, apparently to **investigate** the Syrian issue, the newspaper said.

Temporal Relations?

OVERLAP

Two top aides to Netanyahu, political advisor Uzi Arad and Cabinet Secretary Danny Naveh, **left** for Europe on <u>Sunday</u>, apparently to **investigate** the Syrian issue, the newspaper said.

Goal

Be able to classify event-temporal (E-T) relations within a sentence

Outline

- Brief look at state-of-the-art
- Proposed Approach
 - Reducing size of feature space
 - Smart acquisition of data via crowdsourcing
- Error Analysis

State-of-the-art

- Shared tasks TempEval-1 and TempEval-2 held in conjunction with SemEval in 2007 and 2010.
- State-of-the-art systems in TempEval-2 achieve around 65% accuracy
- Work with dataset from TempEval-2 to facilitate benchmarking and comparisons

Data Sparsity

- Features typically employed include
 - lexical cues
 - context
 - sentence structure
- Training set consists of around 959 instances

Proposal

- Reduce dimensionality of feature space
- Increase amount of annotated data available

A Kernel Hypothesis

... left for Europe on <u>Sunday</u> ...

A Kernel Hypothesis

A Kernel Hypothesis

...went to America on Monday..

...**partied** at home on <u>Wednesday</u>..

Convolution Kernels

- Allows us to capture structure similarities easily
- Tree structure used as feature for support vector machines (SVM)
- No need to flatten structure representation into a set of real number features

Comparisons

System	Accuracy
ConvoDep	67.4%
TRIOS	65.0%
JU_CSE	63.0%
NCSU_indi	63.0%
NCSU_joint	63.0%
TRIPS	63.0%
USFD2	63.0%

Trained on TempEval-2 training set, Tested on TempEval-2 testing set

Comparisons

System	Accuracy
ConvoDep	67.4%
TRIOS	65.0%
JU_CSE	63.0%
NCSU_indi	63.0%
NCSU_joint	63.0%
TRIPS	63.0%
USFD2	63.0%

Precision	0.828
Recall	0.512
FI	0.523

Trained on TempEval-2 training set, Tested on TempEval-2 testing set

Getting More Data

- Crowdsourcing is a cheap, efficient avenue for large scale data annotation
- But temporal annotations are not trivial
- We want to investigate
 - the quality of crowdsourced temporal annotations
 - effective ways to gather the annotations

Task Setup

- Crowdsourcing via Crowdflower
 - Data validation to improve data quality
- Raw data collected from news articles
 - Event and time expressions extracted during pre-processing

Is It Useful?

- Collected initial dataset of 1000 instances
- Trained SVM classifier with convolution kernels

Is It Useful?

System	Accuracy	FI	Precision	Recall
ConvoDep	67.4%	0.523	0.828	0.512
CF-1000	65.2%	0.525	0.578	0.535
CF-1000 + TE	71.7%	0.615	0.726	0.598

Tested on TempEval-2 testing set

- Are we able to collect less data but still remain effective?
- Insight Instances are not equally hard

- Are we able to collect less data but still remain effective?
- Insight Instances are not equally hard

Two top aides to Netanyahu, political advisor Uzi Arad and Cabinet Secretary Danny Naveh, **left** for Europe on <u>Sunday</u>, apparently to investigate the Syrian issue, the newspaper **said**.

- Are we able to collect less data but still remain effective?
- Insight Instances are not equally hard

Two top aides to Netanyahu political advisor Uzi Arad and Cabinet Secretary Danny Naveh, **left** for Europe on <u>Sunday</u>, apparently to investigate the Syrian issue, the newspaper **said**.

- Are we able to collect less data but still remain effective?
- Insight Instances are not equally hard

Two top aides to Netanyahu, political advisor Uzi Arad and Cabinet Secretary Danny Naveh, **left** for Europe on <u>Sunday</u>, apparently to investigate the Syrian issue, the newspaper **said**.

Easy Level-0 Instances

• Level-0 instances are much easier to get correct

Accuracy (%)						
Level-0 (59) Level-1 (47) Level-2 (21) Level-3 (10) Level-4 (1						
84.5	66.0	42.9	30.0	100.0		

Tested on TempEval-2 testing set

Selective Annotation

 Dropping Level-0 instances does not lead to drop in performance

System	Accuracy	FJ	Precision	Recall
ConvoDep	67.4%	0.523	0.828	0.512
CF-NoLevel0	73.2%	0.639	0.659	0.643
CF-Full	73.2%	0.641	0.660	0.647

Tested on TempEval-2 testing set

Annotation Savings

 Level-0 instances form up to 37% of the annotated data

Analysis

- Why missing out on 37% of training instances causes no drop in performance?
- How to approach performance upperbound?

Performance Breakdown

• Classifier does better on OVERLAP relations

System	Overlap		Before		After				
System	Р	R	FI	Р	R	FI	Р	R	FI
CF-NoLevel0	0.72	0.96	0.82	0.56	0.45	0.50	0.70	0.52	0.60
CF-Full	0.72	0.95	0.81	0.57	0.40	0.47	0.70	0.60	0.64

Label Distribution

 Level-0 instances contain less AFTER and BEFORE instances

	Distribution of Labels (%)				
Lader	Level-0	Level-I	Level-2		
AFTER	10.1	21.2	23.6		
BEFORE	5.I	13.7	16.1		

Label Distribution

 Level-0 instances contain less AFTER and BEFORE instances

Labal	Distribution of Labels (%)				
Lader	Level-0	Level-I	Level-2		
AFTER	10.1	21.2	23.6		
BEFORE	5.1	13.7	16.1		

Confusion Matrix

• BEFORE mis-classified as AFTER

	Predicted Label				
Actual Ladel	OVERLAP	BEFORE	AFTER		
OVERLAP	78	2			
BEFORE	7	9	4		
AFTER	13	0	14		

Confusion matrix for CF-NoLevel0

Confusion Matrix

• BEFORE mis-classified as AFTER

	Predicted Label				
Actual Ladel	OVERLAP	BEFORE	AFTER		
OVERLAP	78	2			
BEFORE	7	9	4		
AFTER	13	0	4		

Confusion matrix for CF-NoLevel0

Missing Feature

He **added** that final guidelines published in early <u>November</u> will determine whether the bank is in compliance.

Round Up

- Improved event-temporal relation classification
 - By reducing input feature space
 - By increasing amount of annotated data
 - Demonstrated efficacy of crowdsourced annotations
 - Proposed an optimization to reduce the annotation effort required

Thank you! Questions?

Dataset can be downloaded at http://wing.comp.nus.edu.sg/~junping/etrcc/page/index.html

Breakdown of Data

	Relative size of partition (%)					
Data Set	Level-0	Level-I	Level-2	Others		
TempEval-2 Training	40.9	35.2	15.1	8.8		
TempEval-2 Testing	41.4	34.3	15.7	8.6		
CF-Full	37.0	34.3	17.5	11.2		