
Instructor-Centric
Source Code Plagiarism Detection

and Plagiarism Corpus

Jonathan Y. H. Poon, Kazunari Sugiyama, Yee Fan Tan, Min-Yen Kan

National University of Singapore

Introduction
Plagiarism in undergraduate courses
• 181 / 319 students admitted to committing source code

plagiarism in School of Computing, the National
University of Singapore

 [Ooi and Tan, CDTLink’05]
• 40% of 50,000 students at more than 60 universities

admitted in plagiarism
 [Jocoy and DiBiase, Review of Research in Open
 and Distance Learning’06]

2 WING, NUS

Related Work
Attribute-counting Metric Systems
 Similarity between codes is computed based on counts of

particular entities.
 [Ottenstein, SIGCSE Bulletin ’76] Unique operators and operands

 Improved approaches of [Ottenstein, SIGCSE Bulletin ‘02]
 [Donaldson et al., SIGCSE ’81] Loops
 [Grier, SIGCSE ‘81] Control statements
 [Berghel and Sallach, SIGPLAN Notices ’84] Keywords
 [Faidhi and Robinson, Comp. and Edu. ’87] Average length of

 procedure or function

3 WING, NUS

All previous work uses pairwise level detection.

Related Work
Structure Metric Systems
 Similarity between codes is computed based on code structure.
 the Minimum Match Length (MML) parameter is important.
 MOSS (Measure Of Software SImilarity) [Aiken ’94]
 YAP (Yet Another Plague) family [Wise, SIGCSE ’92, ’96]
 sim [Gitchell and Tran, SIGCSE ’99]
 JPlag [Prechelt and Malphol, Journal of Universal Comp. Sci. ’02]

4 WING, NUS

• Plagiarists can easily confuse the system by inserting
 non-functional code that are larger than MML.
• Most of the systems employ pairwise level detection.

Cluster Level Detection
 PDetect [Moussiades and Vakali, The Comp. Journal ’05]
 PDE4Java [Jadalla and Elnagar, Journal of BI and DM ’08]

Plagiarism Detection Method

5 WING, NUS

Pairwise
Comparison Submissions

Plagiarism
Clusters
Detection

Cut off
criteria

Result

Cluster

Cluster

Tokenization

Our approach focuses on how plagiarism is carried out.

Plagiarism Detection Method

6 WING, NUS

Pairwise
Comparison Submissions

Plagiarism
Clusters
Detection

Cut off
criteria

Result

Cluster

Cluster

Tokenization

Tokenization
• Parse code into four types of token N-grams

• Keyword (“class,” “void,” “int,” etc.)
• Variable (“MyClass,” “main,” “String,” etc.)
• Symbol (“{,“ “(,” “[,” etc.)
• Constant (“1,” “10,” etc.)

• Language specific (currently, support Java)
• Easily adapt to other program languages if a tokenizer for

the target language is introduced.

7 WING, NUS

Example of Parsing Code

8 WING, NUS

public class MyClass {
 public static void main(String[] args) {
 int value = 1;
 for (;value<10;value++) System.out.println(value + “”);
 }
}

[1]
[2]
[3]
[4]
[5]
[6]

Example of Parsing Code

9 WING, NUS

public class MyClass {
 public static void main(String[] args) {
 int value = 1;
 for (;value<10;value++) System.out.println(value + “”);
 }
}

[1]
[2]
[3]
[4]
[5]
[6]

Line
ID

Keyword
Tokens

[1] class

[2] void

[3] int

Line
ID

Variable
Tokens

[1] MyClass

[2] main

[2] String

Line
ID

Symbol
Tokens

[1] {

[2] (

[2] [

Line
ID

Constant
Tokens

[3] 1

[4] 10

Plagiarism Detection Method

10 WING, NUS

Pairwise
Comparison Submissions

Plagiarism
Clusters
Detection

Cut off
criteria

Result

Cluster

Cluster

Tokenization

Pairwise Comparison

11 WING, NUS

Greedy-String-Tiling Algorithm
 Find the longest substrings more than Minimum Match

Length (MML)

 [Example]
 MML=3
 ABCDEFGH
 EFGABCDH

12 WING, NUS

Greedy-String-Tiling Algorithm
 Find the longest substrings more than Minimum Match

Length (MML)

 [Example]
 MML=3
 ABCDEFGH
 EFGABCDH

13 WING, NUS

Greedy-String-Tiling Algorithm
 Find the longest substrings more than Minimum Match

Length (MML)

 [Example]
 MML=3
 ABCDEFGH
 EFGABCDH

14 WING, NUS

Example of Pairwise Comparison

15 WING, NUS

private void drawLine(Graphics g,
int xOld, int yOld, int x, int y) {

g.setColor(Color.white);
g.drawLine(xOld + 25, yOld +

25, x + 25, y + 25);
}

private void deleteLine(Graphics g,

int xOld, int yOld, int x, int y) {
 g.setColor(Color.gray);

g.drawLine(xOld + 25, yOld +
25, x + 25, y + 25);

}

private void drawSmile(Graphics g,

int xOld, int yOld) {

currentBox = ((int)
(random.nextFloat() * 4));

}

private void drawLine(Graphics g,

int xOld, int yOld, int x, int y) {
g.setColor(Color.white);
g.drawLine(xOld + 25, yOld +

25, x + 25, y + 25);
}

private void deleteLine(Graphics g,

int xOld, int yOld, int x, int y) {
 g.setColor(Color.gray);

 g.drawLine(xOld + 25, yOld +
25, x + 25, y + 25);

}

Plagiarism Detection Method

16 WING, NUS

Pairwise
Comparison Submissions

Plagiarism
Clusters
Detection

Cut off
criteria

Result

Cluster

Cluster

Tokenization

Plagiarism Clusters Detection
• DBScan [Ester at el., KDD’96]

• Groups submissions that are
 highly similar to each other.

• Performance
• More than 80 introductory programming assignments
 (over 3,600 submission pairs)
 Less than 4 seconds on average
 (on 2.8GHz Linux laptop)

17 WING, NUS

Plagiarism Corpus
• 28 student volunteers plagiarize submissions

• 2 assignments
• 4 samples per assignment to generate plagiarized version

of source code
- 56 positive examples (plagiarized submissions)
- 180 negative examples (original submissions)

18 WING, NUS

Similarity Distribution for Various Sized N-gram (MML=2)

19 WING, NUS

ORG: Original non-plagiarized submissions
PLAG: Plagiarized submissions

Our system successfully differentiates
between ORG and PLAG.

Attacks Performed by Student Volunteers
“Attacks”: plagiarism attempts
• Immutable attacks
• Size dependent attacks
• Successful attacks

20 WING, NUS

Immutable Attacks

21 WING, NUS

Type of attacks The number of
confused attacks

The number of
observed attacks

Insertion, modification or
deletion of comments

0 35

Indention, spacing or
line breaks modifications

0 38

Identifier renaming 0 41
Constant modification 0 2
Insertion, modification,
or deletion of modifiers

0 6

No change 0 0

(122 attacks in total)

Attacks that our system can protect

Identifier Renaming

22 WING, NUS

int value = 1;
 (a) Original submission

int v = 1;

(b) Plagiarized copy

Our system detect this type of plagiarism.

Size Dependent Attacks

23 WING, NUS

Type of attacks The number of
confused attacks

The number of
observed attacks

Reordering of
independent statements

6 10

 Reordering of methods 6 16

Insertion or removal of
parentheses

0 20

Inlining or refactoring of
code

13 18

(64 attacks in total)

Attacks that needs large modification

Reordering of Independent Statements

24 WING, NUS

left = tree.getLeft();
right = tree.getRight();

(a) Original submission (b) Plagiarized copy

right = tree.getRight();
left = tree.getLeft();

Our system detect this type of plagiarism.

Succesful Attacks

25 WING, NUS

Type of attacks The number of confused
attacks

The number of observed
attacks

Redundancy 8 8

Scope modification 7 7

Modification of control structures 14 14

Declaration of variables 10 10

Modification of method
parameters

1 1

Modification of import statements 2 2

Introduction of bug 1 1

Modification of temporary
variables in expressions

10 10

Modification of mathematical
operations and formulae

2 2

Structural redesign of code 5 5

(60 attacks in total)

Scope Modification

26 WING, NUS

for(int i = 0; i < 10; i++){
 int k;
 …
}

(a) Original submission (b) Plagiarized copy

Our system cannot detect this type of plagiarism.

int k;
for(int i = 0; i < 10; i++){
 …
}

User Interface Work Flow
Pairwise Comparison Interface

27 WING, NUS

Instructors overview
the code segments
with several colors.

Log System

28 WING, NUS

Instructors learn
 - suspicious pairs of students,
 - plagiarism cases.

Plagiarism Clusters

29 WING, NUS

Instructors learn suspicious
group that performs plagiarism.

Plagiarism Activities Monitoring

30 WING, NUS

Plagiarism Activities Monitoring

31 WING, NUS

Instructors learn
suspicious student pairs.

A list of the top 10 students can
help instructor in monitoring their
plagiarism activities.

Similarity Between Students

32 WING, NUS

• 038 stopped plagiarizing
053’s assignments.

• 053 started plagiarizing 063’s
and 066’s assignments.

Finding the Submissions Most Similar to the Target Student’s One
One

33 WING, NUS

target student

Instructors find the top k students
paired up with the target student “038.”

Conclusion
• Instructor-Centric Source Code Plagiarism Detection
• Improvements in “Pairwise Comparison”

• Faster processing
• Construction of “Plagiarism Corpus”

• Other researchers can enhance algorithm to detect plagiarism
of source code.

• Downloadable URL:
http://wing.comp.nus.edu.sg/downloads/SSID/PlagiarismCorpus.html

• Improvements in “Interfaces”
• Instructors can monitor students’ plagiarism activities.

34 WING, NUS

Thank you very much!

	Instructor-Centric �Source Code Plagiarism Detection �and Plagiarism Corpus
	Introduction
	Related Work
	Related Work
	Plagiarism Detection Method
	Plagiarism Detection Method
	Tokenization
	Example of Parsing Code
	Example of Parsing Code
	Plagiarism Detection Method
	Pairwise Comparison
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Example of Pairwise Comparison
	Plagiarism Detection Method
	Plagiarism Clusters Detection
	Plagiarism Corpus
	Slide Number 19
	Slide Number 20
	Immutable Attacks
	Slide Number 22
	Size Dependent Attacks
	Slide Number 24
	Succesful Attacks
	Slide Number 26
	User Interface Work Flow
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Conclusion

