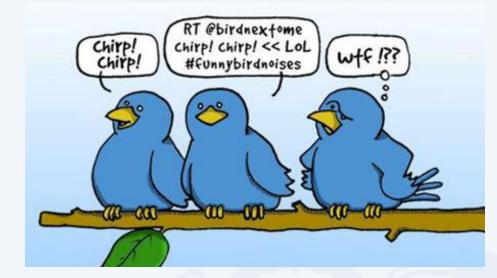


Re-tweeting from a Linguistic Perspective

Aobo Wang, Tao Chen and Min-Yen Kan 7/06/2012



Web IR / NLP Group

Introduction

WILL STREET

NUS Libraries @NUSLibraries Prosperous state, prosperous old? :growing social stratification among elderly Singaporeans - free "Ebook" from ARI j.mp/Mijl5c Expand Reply Retweet Favorite

Q: What makes a tweet worth sharing?

from a linguistic perspective

Introduction

Something we know

 – Social network effects exert marked influence on retweeting (Wu et al., 2011; Recuero et al., 2011)

Web IR / NLP Group

Motivation

Something we want to know

Q: Are there specific linguistic signals that mark a tweet as valuable and worthy of sharing?

Tasks

1. Linguistically Motivated Tweet Classification

- The specific function of the individual tweet

Analysis of Linguistic Feature Linguistic features of tweets

1. Retweetability

- Manual Classification
 - Naaman et al., 2010
 - 9 genres classification
 - ➤ 3379 tweets sampled from 350 users
 - > Objective
 - Q: How does the message type relate to other variables?
 - Q: How does users' content related to user characteristics?
- Limited scale analysis
- No automatic classifier

Information Sharing	Questions to followers
Self Promotion	Presence Maintenace
Opinions/Complaints	Anecdote me
Statements and Random Thoughts	Anecdote others
Me now	

Automatic Classification

- Sriram et al. 2010
- ➤ 5 genres classification scheme
- Supervised method using Naïve Bayes Classifier
- ➢ 5407 manually labeled tweets
- Domain-specific features from
 - > author's profile (e.g., # of followers, # of favorites)
 - Iexicon of tweets (e.g., #hashtags, URLs)
 - metadata (time phrases).

Opinions
Events
News
Deals
Private
Messages

Automatic Classification

- Ramage et al. 2010
- Semi-supervised method, indirect tweet level classification
- 1. Unsupervised labelling tweets with topic label
 - Get topic labels with LDA as Topic Set A
 - > Treat Hashtag, Emoticons, and Social Signal (@user) as Topic Set B
- 2. Manually classify the Set A+B into 4 genres.
- 3. Train Labeled LDA classification model with the Set A+B topic labels
- We know little about the linguistic features of tweets.
- Classify tweets based on the functions of tweets using linguistic features.

Hypothesis

- Tweets with particular function will be used when users have corresponding motivations of tweeting.
- People's motivations in posting tweets determine their writing styles.
- Such styles can be characterized by the content and linguistic features of tweets.

- "I am presenting in Salon now."

Data Set Collection

- More than 9 million tweets crawled by Twitter Stream API
- Pre-processing
 - Exclude tweets with URLs from our current study
 - Break the hashtags into separate words

(e.g., #growingup \rightarrow growing up)

 Tokenizing on emoticons, usernames (@user) and "RT if"like ("retweet if") syntax patterns.

Data Annotation

Classification scheme and Example tweets

Level-1	Level-2	Motivation	Example	Corpus count (%)
	Abstract	Present opinions towards abstract objects	God will lead us all to the right person for our lives. Have patience and trust him.	291 (33.8%)
Opinion	Concrete	Present opinions towards concrete objects	i feel so bad for nolan. Cause that poor kid gets blamed for everything, and he's never even there.	99 (11.5%)
Joke		Tell jokes for fun	Hi. I'm a teenager & I speak 3 languages: English, Sar- casm, & Swearing (; #TeenThings	86 (10.0%)
Undete	Myself	Update my current status	first taping day for #growingup tomorrow! So excited. :)	168 (19.6%)
Update Someone		Update others' current status	My little sister still sleep	66 (7.7%)
Interaction		Seek interactions with others.	#Retweet If you're #TeamFollowBack	81 (9.4%)
Fact		Transfer information	Learnt yesterday: Roman Empire spent 75% of GDP on infrastructure. Roads, aqueducts, etc.	23 (2.7%)
Deals		Make deal	Everybody hurry! Get to Subway before they stop serving LIMITED TIME ONLY item 'avocados'.	29 (3.4%)
Others		Other motivations.	Ctfu Lmfao At Kevin Hart ;)	17 (2.0%)

- Collect Labels through Amazon's Mechanical Turk
 - 860 tweets in total
 - Fleiss' kappa : Level-1=0.79; Level-2=0.43

Method

Labeled LDA Classification

- Tweet level classification on Level 1
- 5-fold validation
- Feature selection
 - Content
 - Discourse relations
 - Hashtags
 - Ineraction Lexical patterns
 - Named Entities
 - Tense
- Incremental training

Web IR / NLP Group

Classification Result

• Weighted average F-1 Score

	Level-1	Level-2
C (baseline)	.625	.413
CD	.637	.432
СН	.629	.415
CI	.642	.422
CN	.611	.409
СТ	.635	.427
CDHIT	.670	.451

Distribution Others 7% Update 21% Opinion 45% Interaction 28%

•

Tasks

1. Linguistically Motivated Tweet Classification

- The specific function of the individual tweet
- More than 9 million tweets

1. Analysis of Linguistic Features

- Linguistic features of tweets
- More than 1.5 million retweets

1. Retweetability

Emoticons and Sentiment

- :) \rightarrow positive :(\rightarrow negative
 - Read et al. 2005, Go et al. 2009, Alexander et al. 2010

Q: Do emoticons actually indicate sentiment of message?

- Randomly select 200 posts with smilies and 200 posts with frownies
- Label their sentiment manually - Evaluate Go et al. (2009)'s API on our annotated corpus **Majority is** neutral tweets **Positive Negative** Neutral Retweets with :) 55 (27.5%) 140 (70%) 5 (2.5%) 118 (59%) Retweets with :(9 (4.5%) 73(36.5%) **Mistake Predicted Positive** 43 30 0 neutral posts for 11 Predicted Neutral 206 12 emotional ones 7 **Predicted Negative** 62 29
- Use emoticons carefully to detect sentiment

Named Entities

Q: What types of NEs do people mention in their tweets?

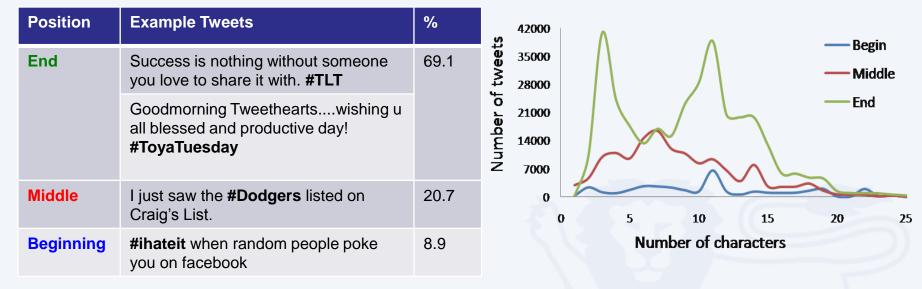
- Extract NEs by UW Twitter NLP Tools (Ritter et al., 2011)
- Select the top 100 correctly recognized NEs

 Manually categorize NEs against their 10 classes scheme (defined by Ritter et al. 2011)

Class	Opinion	Update	Interaction
PERSON	41.2%	44.7%	38.8%
GEO-LOC	7.8%	28.9%	25.4%
COMPANY	15.7%	6.6%	10.4%
PRODUCT	5.9%	5.3%	6.0%
SPORTS-TEAM	2.0%	5.3%	1.5%
MOVIE	7.8%	5.3%	7.5%
TV-SHOW	3.9%	0.0%	3.0%
OTHER	15.7%	3.9%	7.5%

Person Names are dominating.

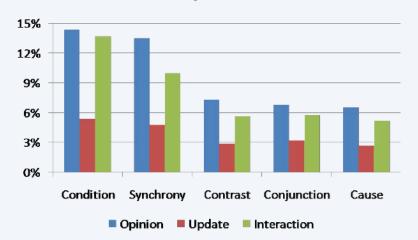
Geographical locations are less often mentioned in Opinion


Web IR / NLP Group

Hashtags

Q: Any positional preference for embedding hashtags?

Q: Any patterns to how people form hashtags?



- > Enders: peak at around 3 or $11 \rightarrow$ Twitter slang, time and location
- \blacktriangleright Middlers: peak at around 7 \rightarrow Single keyword
- > Beginners: peak at around $11 \rightarrow subject+verb+object$

Discourse Relation and Sentence Similarity

- Discourse Relation
 - End-to-end discourse parser by Lin et al. (2010)
 - PDTB-styled discoure relations (Prasad et al. 2008)

Five most frequent relations

- Sentence Similarity
 - Example:

"On Twitter people follow those they wish they knew. On Facebook people follow those they used to know."

 Computed by Syntactic Tree Matching model (Wang et al. 2009)

- Higher Sentence Similarity
 - Common in Opinions
 - More sentimental
 - Be retweeted more often

Tasks

Linguistically Motivated Tweet Classification

-The specific function of the individual tweet

- -More than 9 million tweets
- Analysis of Linguistic Feature

–Linguistic features of tweets–More than 1.5 million retweets

Retweetability

Previous work

- Retweet rate prediction using GLM; Suh et al., (2010)
- Retweet probability prediction using CRF; Peng et. AI (2011)
- Retweet volume prediction using Logistic Regression; Hong et al.(2011)

Previously Examined Feature Sets

- Author's profile

>(e.g., # of followers/followees/friends; activity of self/friend),

- Tweet metadata

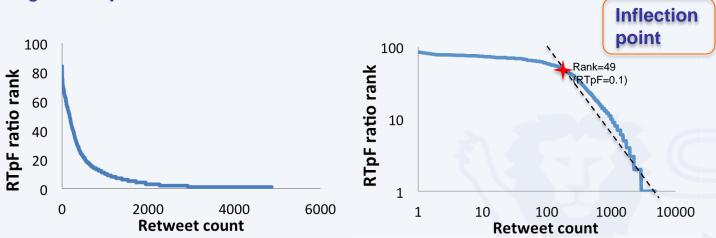
>(e.g., time interval,# of previously retweeted, # of favorited tweets)

- Twitter-specific features
 - ➤(URL, Hashtags, @user)

What does the tweet itself contribute to its retweetability?

- Surface level features
 - > Presence of hashtags, @user, quotation, 3 hashtag positions
 - Tweet length, hashtag counts
- Linguistic features
 - Presence of 16 types of discourse relations; 10 NE types; Verb tenses; 3 sentiment polarity strengths
 - > Sentence similarity value
- Whether a tweet is shared with others is best understood by modeling each function independently?

Level-1 functions: Opinion, Interaction, Updates, Others


Tweet content is not factored

Experiment

Task Definition

- RTpF = # of Retweets / Followers count
- Given the content of a tweet, perform a multi-class classification that predicts its range of **RTpF** ratio.

- Non-retweets ("N", RTpF = 0),
- Low ("L", RTpF < 0.1),
- High ("H", RTpF > 0.1)

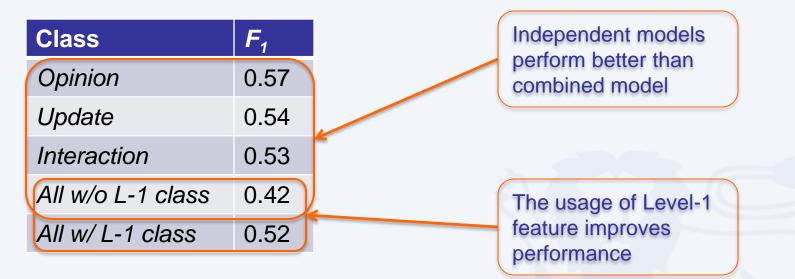
Experiment

Data Set

-Selected from 9 million dataset

-Balanced data size of three RTpF classes.

Method


-Logistic Regression model in Weka3

-10-fold cross validation

Result

- Individual regression models
- Aggregate models for all three classes

Opinion

Salient Features	Weight	Example Tweets	RTpF
Sentence Similarity	10.34	<i>"twitter is where people vent to vent, facebook is where people vent to get attentionn"</i>	0.84
Conjunction	-21.09	<i>"#Cancer #Scorpio and #Pisces will become quiet and withdrawn when things get tough and they need to think."</i>	0.10
Quotation	-19.2	<i>"If you obey all the rules, you miss all the fun - Katharine Hepburn"</i>	0.22

- Beautiful sentence structure
- Avoid complex conjoined components
- Make your words originally

• Update

Salient Features	Weight	Example Tweets	RTpF
Past	-5.2	"I fell for your personality, and your looks were just a bonus"	0.08
Present	1.3	"Lying in bed, wondering if its worth it to get up"	0.17

- Shows the least bias towards any particular feature
- Prefers present tenses to past tense

Interaction

-"--->R E T W E E T<--- If you want more followers #TeamFollowBack | #TFB | #InstantFollowBack | #500ADay | #MustFollow @iTweetHeavyTGOD"

Salient Features	Weight
Sentence Similarity	-55.33
Hashtag Count	5.34

- Keep direct and simple while interacting with specific friends

- In the form of question answering or voting

• Globally

Class	Salient Feature	Weight
All w/o -1 class	Hashtag Count	22.03
All w/ L-1 class	Sentence Similarity	9.8

- Hashtags are positive triggers
- L-1 Class features are important

Conclusion

- Understanding and classify the function of the tweet is interesting in its own right.
- It is also useful in predicting the retweetability.

Release

- A corpus of 860 annotated tweets
- Functional classifier
- Online demo
- http://wing.comp.nus.edu.sg/tweets/
- Tweets containing URLs and the features from social network perspective will be taken into consideration in future work.

Re-tweeting from a Linguistic Perspective

Thank you very much!

Aobo Wang, Tao Chen and Min-Yen Kan 07/06/2012

Supported by the Singapore National Research Foundation