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• from a linguistic perspective   

 

Q: What makes a tweet worth sharing? 
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• Something we know 

 

 

 

 

 

 

– Social network effects exert marked influence on retweeting 

    (Wu et al., 2011; Recuero et al., 2011) 
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Motivation  
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• Something we want to know 

 

 

 

 

 

 

Q: Are there specific linguistic signals that mark a tweet as 

valuable and worthy of sharing? 
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Tasks 
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1. Linguistically Motivated Tweet Classification 

– The specific function of the individual tweet  

 

1. Analysis of Linguistic Feature 

– Linguistic features of tweets  

 

1. Retweetability 
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Literature Review  
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• Manual Classification 

– Naaman et al., 2010 

 9 genres classification 

  3379 tweets sampled from 350 users 

  Objective 

 Q: How does the message type relate to other variables?  

 Q: How does users’ content related to user characteristics? 

 

 Limited scale analysis 

 No automatic classifier  

Information  Sharing Questions to followers 

Self Promotion Presence Maintenace 

Opinions/Complaints Anecdote me 

Statements and Random Thoughts Anecdote others 

Me now 
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Literature Review  

Aobo Wang, Tao Chen and Min-Yen Kan 6 

• Automatic Classification 

– Sriram et al. 2010 

 5 genres classification scheme 

 Supervised method using Naïve Bayes Classifier 

 5407 manually labeled tweets 

 Domain-specific features from  

 author’s profile (e.g., # of followers, # of favorites ) 

 lexicon of tweets  (e.g., #hashtags, URLs) 

 metadata (time phrases). 

 

 

Opinions 

Events  

News 

Deals 

Private 

Messages 
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Literature Review  
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• Automatic Classification 

– Ramage et al. 2010 

 Semi-supervised method, indirect tweet level classification 

 

1. Unsupervised labelling tweets with topic label 

 Get topic labels with LDA as Topic Set A 

 Treat Hashtag, Emoticons, and Social Signal (@user) as Topic Set B  

2. Manually classify the Set A+B into 4 genres. 

3. Train Labeled LDA classification model with the Set A+B topic labels 

 

 We know little about the linguistic features of tweets. 

 Classify tweets based on the functions of tweets using linguistic 

features. 
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Hypothesis   

• Tweets with particular function will be used when 

users have corresponding motivations of tweeting.   

 

• People’s motivations in posting tweets determine 

their writing styles. 

 

• Such styles can be characterized by the content and 

linguistic features of tweets. 

 

– “I am presenting in Salon now.” 
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Data Set Collection  

• More than 9 million tweets crawled by Twitter Stream API 

• Pre-processing 

– Exclude tweets with URLs from our current study 

– Break the hashtags into separate words 

   (e.g., #growingup → growing up) 

– Tokenizing on emoticons, usernames (@user) and “RT if”-

like (“retweet if”) syntax patterns. 
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Data Annotation  
• Classification scheme and Example tweets 

 

 

 

 

 

 

 

 

 

 

 

• Collect Labels through Amazon’s Mechanical Turk 

– 860 tweets in total  

– Fleiss’ kappa : Level-1=0.79; Level-2=0.43 
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Level-1 Level-2 Motivation Example 
Corpus 

count (%) 

Opinion 

Abstract 
Present opinions  towards 

abstract objects 

God will lead us all to the right person for our lives. Have 

patience and trust him. 
291 (33.8%) 

Concrete  
Present opinions towards 

concrete objects 

i feel so bad for nolan. Cause that poor kid gets blamed for 

everything,  and he’s never even there. 
99 (11.5%) 

Joke  Tell jokes for fun 
Hi.  I’m a teenager  & I speak 3 languages: English, Sar- 

casm, & Swearing (; #TeenThings 
86 (10.0%) 

Update 
Myself Update my current status first taping day for #growingup tomorrow!  So excited. :) 168 (19.6%) 

Someone Update others’ current status My little sister still sleep ... 66 (7.7%) 

Interaction Seek interactions with others. #Retweet If you’re #TeamFollowBack 81 (9.4%) 

Fact Transfer information 
Learnt yesterday:  Roman Empire spent 75% of GDP on 

infrastructure.  Roads, aqueducts, etc. 
23 (2.7%) 

Deals Make deal 
Everybody hurry! Get to Subway before they stop serving 

LIMITED TIME ONLY item ’avocados’. 
29 (3.4%) 

Others Other motivations. Ctfu Lmfao At Kevin Hart ;) 17 (2.0%) 
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Method  

• Labeled LDA Classification 

– Tweet level classification on Level 1 

– 5-fold validation 

– Feature selection 

 Content 

 Discourse relations 

 Hashtags 

 Ineraction Lexical patterns 

 Named Entities 

 Tense 

• Incremental training  
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Classification Result  
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• Weighted average F-1 Score 

 

 

 

 

 

 

 

 

 

 

Opinion 
45% 

Interaction 
28% 

Update 
21% 

Others 
7% 

• Distribution 

Level-1 Level-2 

C (baseline) .625 .413 

CD .637 .432 

CH .629 .415 

CI .642 .422 

CN .611 .409 

CT .635 .427 

CDHIT .670 .451 
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Tasks 
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1. Linguistically Motivated Tweet Classification 
– The specific function of the individual tweet  

– More than 9 million tweets 

 

1. Analysis of Linguistic Features 
– Linguistic features of tweets  

– More than 1.5 million retweets 

 

1. Retweetability 
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Emoticons and Sentiment  

• :) → positive :( → negative  

– Read et al. 2005, Go et al. 2009, Alexander et al. 2010 

 

 Q: Do emoticons actually indicate sentiment of message? 
– Randomly select 200 posts with smilies and 200 posts with frownies 

– Label their sentiment manually 

– Evaluate Go et al. (2009)’s API on our annotated corpus 

 

 

 

 

 

 

 

 

 Use emoticons carefully to detect sentiment 
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Positive Neutral Negative 

Retweets with :) 55 (27.5%) 140 (70%) 5 (2.5%) 

Retweets with :( 9 (4.5%) 118 (59%) 73(36.5%) 

Predicted Positive 43 30 0 

Predicted Neutral 11 206 12 

Predicted Negative 7 29 62 

Mistake  

neutral posts for 

emotional ones 

Majority is 

neutral tweets 
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Named Entities 
 Q: What types of NEs do people mention in their tweets? 

– Extract NEs by UW Twitter NLP Tools (Ritter et al., 2011) 

– Select the top 100 correctly recognized NEs 

– Manually categorize NEs against their 10 classes scheme  

(defined by Ritter et al. 2011) 

 

 

 

 

 

 

 

 

 

 Person Names are dominating. 

 Geographical locations are less often mentioned in Opinion 
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Class Opinion Update Interaction 

PERSON 41.2% 44.7% 38.8% 

GEO-LOC 7.8% 28.9% 25.4% 

COMPANY 15.7% 6.6% 10.4% 

PRODUCT 5.9% 5.3% 6.0% 

SPORTS-TEAM 2.0% 5.3% 1.5% 

MOVIE 7.8% 5.3% 7.5% 

TV-SHOW 3.9% 0.0% 3.0% 

OTHER 15.7% 3.9% 7.5% 
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Q: Any patterns to how people 

form hashtags?  

 

 

 

 

 

 

 

 

 

 

 

 

 

Hashtags 
Q: Any positional preference for 

embedding hashtags? 
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Position Example Tweets % 

End Success is nothing without someone 

you love to share it with. #TLT  

69.1 

Goodmorning Tweethearts....wishing u 

all blessed and productive day! 

#ToyaTuesday 

 

Middle I just saw the #Dodgers listed on 

Craig’s List. 

20.7 

Beginning #ihateit when random people poke 

you on facebook 

8.9 

 Enders: peak at around 3 or 11 → Twitter slang, time and location 

 Middlers: peak at around 7 → Single keyword  

 Beginners: peak at around 11 → subject+verb+object 
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Discourse Relation and Sentence Similarity 
• Discourse Relation 

– End-to-end discourse parser by  

   Lin et al. (2010)  

– PDTB-styled discoure relations  

  (Prasad et al. 2008) 

 

 Five most frequent relations 
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• Sentence Similarity  

– Example:  

“On Twitter people follow those they 

wish they knew. On Facebook people 

follow those they used to know.” 

 

– Computed by Syntactic Tree Matching 

model (Wang et al. 2009) 

 

• Higher Sentence Similarity  

 Common in Opinions  

 More sentimental 

 Be retweeted more often 

 

 

 

 

 

 

 



Web IR / NLP Group 

Tasks 
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• Linguistically Motivated Tweet Classification 
–The specific function of the individual tweet 

–More than 9 million tweets 

 

• Analysis of Linguistic Feature 
–Linguistic features of tweets 

–More than 1.5 million retweets 

 

• Retweetability 
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Literature Review  
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• Previous work 
– Retweet rate prediction using GLM; Suh et al., (2010) 

– Retweet probability prediction using CRF; Peng et. Al (2011) 

– Retweet volume prediction using Logistic Regression; Hong et al.(2011)  

 

• Previously Examined Feature Sets 
– Author’s profile  

(e.g., # of followers/followees/friends; activity of self/friend), 

– Tweet metadata  
(e.g., time interval,# of previously retweeted, # of favorited tweets)  

– Twitter-specific features  
(URL , Hashtags, @user) 
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What does the tweet itself contribute to its retweetability? 

– Surface level features 
 Presence of hashtags, @user, quotation, 3 hashtag positions 

 Tweet length, hashtag counts  

– Linguistic features 
 Presence of  16 types of discourse relations; 10 NE types; Verb tenses; 

    3 sentiment polarity strengths 

 Sentence similarity value 

 

• Whether a tweet is shared with others is best understood by 

modeling each function independently? 

 Level-1 functions: Opinion, Interaction, Updates, Others 

 

 Tweet content is not factored 
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Experiment   

• Task Definition  

– RTpF = # of Retweets / Followers count 

– Given the content of a tweet, perform a multi-class classification that predicts its 

range of RTpF ratio.  

 

 

 

 

 

 

 

– Non-retweets (“N”, RTpF = 0),  

– Low (“L”, RTpF < 0.1), 

– High (“H”, RTpF > 0.1) 
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Rank=49 

(RTpF=0.1) 

Inflection 

point 
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Experiment   

• Data Set 

–Selected  from 9 million dataset 

–Balanced data size of three RTpF classes. 

 

• Method 

–Logistic Regression model in Weka3 

–10-fold cross validation 
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Result  

• Individual regression models 

• Aggregate models for all three classes 
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Class F1 

Opinion 0.57 

Update 0.54 

Interaction 0.53 

All w/o L-1 class 0.42 

All w/ L-1 class 0.52 

Independent models  

perform better than 

combined model 

The usage of Level-1 

feature improves 

performance  



Web IR / NLP Group 

Observation and Remarks  
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• Opinion 

 

 

 

 

 

 

 

 

 

– Beautiful sentence structure 

– Avoid complex conjoined components 

– Make your words originally 

Salient 

Features 

Weight Example Tweets RTpF 

Sentence 

Similarity 

10.34 “twitter is where people vent to vent, facebook is where people 

vent to get attentionn” 

0.84 

Conjunction -21.09 “#Cancer #Scorpio and #Pisces will become quiet and 

withdrawn when things get tough and they need to think.” 

0.10 

Quotation -19.2 “If you obey all the rules, you miss all the fun - Katharine 

Hepburn”  

 

0.22 
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Observation and Remarks  
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• Update 

 

 

 

 

 

– Shows the least bias towards any particular feature 

– Prefers present tenses to past tense 

 

 

 

 

 

 

 

Salient 

Features 

Weight Example Tweets RTpF 

Past -5.2 “I fell for your personality, and your looks were just a bonus” 0.08 

Present 1.3 “Lying in bed, wondering if its worth it to get up”  

 

0.17 
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Observation and Remarks  
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• Interaction 
–“--->R E T W E E T<--- If you want more followers #TeamFollowBack | #TFB | 

#InstantFollowBack | #500ADay | #MustFollow  @iTweetHeavyTGOD” 

 

 

 

 

 

 

– Keep direct and simple while interacting with specific friends 

– In the form of question answering or voting  

 

 

 

 

Salient Features Weight 

Sentence Similarity -55.33 

Hashtag Count 5.34 
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Observation and Remarks  
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• Globally 

 

 

 

 

 

 

– Hashtags are positive triggers 

– L-1 Class features are important  

 

Class Salient Feature Weight 

All w/o -1 class Hashtag Count 22.03 

All w/ L-1 class Sentence Similarity 

 

9.8 
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Conclusion  

• Understanding and classify the function of the tweet is 

interesting in its own right.  

 

• It is also useful in predicting the retweetability. 

 

• Release 

– A corpus of 860 annotated tweets  

– Functional classifier  

– Online demo 

– http://wing.comp.nus.edu.sg/tweets/  

 

• Tweets containing URLs and the features from social network 

perspective will be taken into consideration in future work. 
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http://wing.comp.nus.edu.sg/tweets/
http://wing.comp.nus.edu.sg/tweets/
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