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Introduction

• Goal: evaluate the empirical utility of various “topic representative

words” for topic classification

• Motivation: terms such as keyphrases and named entities are

highly indicative of particular topics

• Question: can we improve on a simple all-in bag-of-words term

representation in the context of text categorization?

• Significance: immediate applicability in NLP applications (e.g. text

filtering [Amati et al. 1997], WSD [Escudero et al. 2000], automated

authorship attribution and genre classification [Diederich et al.

2003])
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Related Work

• Different learners: naive Bayes (NB), Rocchio, Decision trees (DT),

SVMs (Dumais et al. 1998, Yang and Liu 1997, Joachims 1998)

• Different term representations: n-grams (Cavnar and Trenkle

1994), clustered words (Barker and MacCallum 1998), complex

nominals (Moschitti and Basili 2004), important sentences

(Mihalcea and Hassan 2005), keyphrases (Hulth and Megayesi

2006), ...

• Different term weights: mutual information (Lewis 1992), chi-

square (Yang and Pedersen 1997), gain ratio (Debole and Sebastiani

2003), ...
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Topic Representative Words

• Zone-based terms: previous research (Mihalcea and Hassan 2005,

Nguyen and Kan 2007) has shown that sentences in particular

“zones” (e.g. title or first sentence) contain more keyphrases

• Keyphrases: keyphrases are sets of words that capture the topic of

the document

• Domain-Specific Words (DSW): domain-variant of TF·IDF (e.g.

goods → “trade”)

• Named Entities (NEs): NEs often associated with particular

domains (e.g. Gulf,Kuwait → “oil”)
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Zone-based Terms

• Term extraction methodology:

? 1-grams from titles

? 1-grams from first sentences, as they tend to contain more

information (Mihalcea and Hassan 2005)

? Data: subset of Reuter-21578 containing 90 domains

Type F1(≥1) F2(≥2) F3(≥3)

Title words 8,622 3,878 2,357

First sentence words 11,565 5,819 3,905
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Keyphrases

• Background

? condensed summary of the document and high-quality index

terms

? a large body of study done using (a) document cohesion (b)

keyphrase cohesion, and (c) term cohesion

• Extraction: scoring using TF·IDF and relative position of words

(KEA features), then select top-N candidates according to 3

thresholds

Score = TF·IDF + (1 − first position of Wi

# of total terms
)
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• Statistics: count 1-grams as well as NPs (w/ NPs, count individual

1-grams) → 1+NP

Length T1(.02) T2(.04) T3(.06)

original 7,889 5,733 4,497

1+NP 25,343 15,257 10,679

• Performance on Keyphrase Extraction: with 100 sample documents

Precision Recall Fscore

T1 9.76% 23.85% 13.85%

T2 15.32% 15.62% 15.47%

T3 21.02% 10.86% 14.32%
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Domain-Specific Words

• Background:

? word-sense based vs. document statistics

? traditionally supervised, based on large corpus (Rigutini et al.

2006), cohesion or frequency (Drouin 2004, Park et al. 2008)

• Extraction:

? our proposed method (D1)

TFij =
nij∑
k nkj

IDFi = log(
|D|

|{d : ti ∈ d}|
)
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? Park et al. (2008) (D2)

domain specificity(w) =
cd(w)

Nd

cg(w)
Ng

• DSW verification

? over 23 domains which have at least 5 articles in both test and

training data sets

? accuracy: 40.6% vs. 36.6% for D1 and D2, respectively
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• Statistics:

Method Length T1 T2 T3

D1 original 2,918 1,573 1,157

1+NP 3,969 1,918 1,344

D2 original 3,692 2,759 2,368

1+NP 7,169 5,021 4,215

Overlap D1 D2

T1 1,612 55.24% 43.67%

T2 593 37.70% 21.49%

T3 404 34.92% 17.06%
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Named Entities

• Background:

? basic approach: unsupervised, supervised or semi-supervised

approach using models such as hidden Markov models (HMMs)

or conditional random fields (CRFs)

? shown to enhance Question-Answering (Molla et al. 2006), web

search (Sekine et al. 2002)

• Extraction:

? using NER toolkit developed by UIUC

? four entities (i.e. PER, LOC, ORG, MISC)
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• Statistics:

Length F1(≥1) F2(≥2) F3(≥3)

original 11,431 6,538 4,650

1+NP 23,440 9,883 6,234
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Data and Experimental Setup

• Data Collection

? Modified Lewis split from Reuter collection

? 7,771 training and 3,019 test documents over 90

categories/domains (topic categorization task)

• Experimental Setup

? Preprocessing: POS tagging, lemmatization, TF·IDF term

weighting

? Learner: SVM

? Baseline: using 1-gram with F3 (B3) → micro-average F-score,

78.54%

December 4, 2009 12



The Use of Topic Representative Words in Text Categorization ADCS 2009

Topic Categorization Results
Word Length T1/F1 T2/F2 T3/F3

Baseline 1 77.80% 78.09% 78.54%
Title(T) 1 78.09% 78.18% 78.18%
First(F) 1 78.18% 78.09% 77.98%
Keyphrase(K) 1 78.57% 78.07% 78.27%

1+NP 78.36% 78.24% 78.24%
Domain(D1) 1 77.00% 76.50% 74.49%

1+NP 77.00% 76.50% 74.49%
Domain(D2) 1 75.58% 73.90% 72.98%

1+NP 75.58% 73.90% 72.98%
NE(N) 1 76.91% 76.35% 75.76%

1+NP 77.06% 76.35% 76.03%
T+F+K+D1+N 1 78.54% 78.48% 78.36%

1+NP 78.66% 78.30% 78.48%
T+F+K+D2+N 1 78.60% 78.51% 78.57 %

1+NP 78.69% 78.63% 78.77%
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Word Length T1/F1 T2/F2 T3/F3

Baseline 1 77.80% 78.09% 78.54%
B3+Title 1 78.30% 78.42% 78.15%
B3+First 1 78.36% 78.21% 78.39%
B3+Keyphrase 1 78.72% 78.42% 78.60%

1+NP 78.83% 78.89% 78.69%
B3+Domain(D1) 1 78.51% 78.63% 78.51%

1+NP 78.51% 78.63% 78.51%
B3+Domain(D2) 1 78.07% 77.95% 78.27%

1+NP 78.07% 77.95% 78.27%
B3+NE 1 78.18% 78.27% 78.54%

1+NP 78.18% 78.24% 78.07%
B3+T+F+K+D1+N 1 78.80% 78.83% 78.77%

1+NP 78.95% 78.69% 78.75%
B3+T+F+K+D2+N 1 78.83% 78.80% 78.98%

1+NP 78.95% 78.89% 78.98%
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Performance on Top-10 Topics

Feature sets F-score

Baseline 89.55%

Individual 89.59%

Individual+1-gram 89.96%

All candidates 90.02%

All candidates+1-gram 90.07%
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Future Work and Summary

• Future Work

? achieve higher performance on keyphrase extraction

? investigate more reliable method to extract domain-specific words

• Individual candidates

? only keyphrases outperformed baseline

? w.r.t. frequencies, words w/ locality, keyphrases performed better

than baseline

? considering the small amount of words, domain-specific words

and NEs performed well
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• Combined features

? only keyphrases w/ BoW outperformed baselines (similar to

performance of individual methods)

• 1-gram vs. 1+NP results indicate that the added NPs produced

a slight improvement in results (cf. Hulth and Megayesi (2006))

• Our method vs. Park et al. 2008 using DSW collected by our

method performed better
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