Overview 000	Related Work	Corpus Study	Candidate Selection	Features	Evaluation	Conclusion

Re-examining Automatic Keyphrase Extraction Approaches in Scientific Articles

Su Nam Kim and Min-Yen Kan

The University of Melbourne National University of Singapore

Multiword Expression Workshop August 6th 2009

Overview ●○○	Related Work	Corpus Study	Candidate Selection	Features	Evaluation 00000	Conclusion
Over	view (I)					
	(.)					

Goal: automatically extract keyphrases to represent the topic of articles

Keyphrases: Words which represent the topic of articles Difficulties:

- identify term vs. non-term (candidate selection)
- dealing with variations (candidate selection)
- specification vs. generalization (ranking candidates)

Overview o●o	Related Work	Corpus Study	Candidate Selection	Features	Evaluation 00000	Conclusion 00
Over	view (II)					

Significance used for many NLP applications

- semantic metadata for summarization (Barzilay:1997, Lawrie:2001, DÁvanzo:2005)
- document indexing (Gutwin:1999)
- document clustering (Zhang:2004, Hammouda:2005)
- document summarization (Berger:2000, Buyukkokten:2001)

Overview ○○●	Related Work	Corpus Study	Candidate Selection	Features	Evaluation 00000	Conclusion
Outli	ne					

- 2 Related Work
- Corpus Study
- 4 Candidate Selection

5 Features

Overview 000	Related Work ●○	Corpus Study	Candidate Selection	Features	Evaluation 00000	Conclusion
Relat	ed Work	(I)				

- KEA (Frank:1999, Witten:1999, Medelyan:2006)
 - TF * IDF, first occurrance of word
 - domain specific (index as candidates)
- GenEx (Turney:1999, 2000)
 - 9 different syntactic features such as length, frequency of stem etc., decision tree induction
- Textract (Park:2004)
 - domain-specific cohesion (Damerau:1993) & term cohesion (Dice:1945)
- (Barker:2000)
 - using length, frequency & head noun frequency

Overview 000	Related Work ○●	Corpus Study	Candidate Selection	Features 000000	Evaluation 00000	Conclusion
Relat	ed Work	(11)				

- Turney:2003 Keyphrase cohesion (among top N and the remaining, check keyphrase cohesion)
- Tomokiyo:2003 using information loss between foreground & background data based on 1 vs. n-gram models
- Nguyen:2007 using lingistic features such as section, POS sequence
- Fung:1998 automatic keyphrase extraction in Chinese and Japanese
- Wan:2008 referring clustered documents as domain info

Overview 000	Related Work	Corpus Study ●○	Candidate Selection	Features 000000	Evaluation 00000	Conclusion

Nature of Keyphrases

- form: simplex nouns or noun phrases (NPs)
- NPs as keyphrases: nouns with adjective(s), occasionally adverbs or other POSs (e.g. *dynamically allocated task*)
- can contain hypens (e.g. *sensor-grouping, multi-agent system*) and apostrophes (e.g. *Bayes' theroem, agent's goal*)
- length observation: few 3-term noun sequences are longer than 3-term NPs (Paukkeri:2008)
- many forms contain prepositions (e.g. *quality of service, incentive for cooperation*)
- few forms in conjunctive form (e.g. *behavioral and evolution and extrapolation*)
- can occur as abbreviations (e.g. POMDP = partially observable Markov decision process)

Overview 000	Related Work	Corpus Study ○●	Candidate Selection	Features	Evaluation 00000	Conclusion
Keyp	hrase Va	ariation				

- word order fixed (e.g. service quality \neq quality service)
- word adjacency fixed (e.g. quality serivce ≠ quality ... service)
- morphological variation allowed (e.g. quality/qualities/...)
- lexical semantics allowed, but costly to check (e.g. multiagent behavior = multiagent action/manner)
- string overlap allowed (e.g. grid computing = grid computing algorithm)

Overview	Related Work	Corpus Study	Candidate Selection	Features	Conclusion
			•0		

Candidate Selection: Approaches

- Issues: length, frequency, form, variation
- Aim: generalization with maximum coverage
- KEA uses the index words as candidates (Food & Agriculture domain)
- GenEx uses 1 3 sequence words
- Textract uses regular expressions to extract noun sequences
- Nguyen & Kan uses regular expressions to extract both noun sequences and simple NP w/ preposition, of (i.e. NN of NN)

Overview	Related Work	Corpus Study	Candidate Selection	Features	Conclusion
			00		

Candidate Selection: Proposed

Rule
(Rule1) Frequency heuristic
freq \geq 2 for simplex words vs. freq \geq 1 for NPs
(Rule2) Length heuristic
up to length 3 for NPs in non-of-PP form vs. up to length 4 for NPs in of-PP form
(synchronous concurrent program vs. model of multiagent interaction)
(Rule3) of-PP form alternation
(e.g. number of sensor = sensor number,
history of past encounter = past encounter history)
(Rule4) Possessive alternation
(agent's goal = goal of agent, security's value = value of security)
(Rule5) Noun Phrase = (NN NNS NNP NNPS JJ JJR JJS)*(NN NNS NNP NNPS)
(complexity, effective algorithm, grid computing, distributed discovery architecture)
(Rule6) Noun Phrase IN Noun Phrase
(quality of service, sensitivity of VOIP traffic, VOIP traffic ,
simplified instantiation of zebroid, simplified instantiation)

Overview 000	Related Work	Corpus Study	Candidate Selection	Features ●ooooo	Evaluation 00000	Conclusion
Featu	ure Engir	neering				

- Document Cohesion: How likely keyphrases are correlated with the document
- Keyphrase Cohesion: Whether keyphrases share the same or similar semantics
- Term Cohesion: High if the components make up a likely keyphrases (Church & Hanks 1989)
- Other features

Use convention of "U"("S") to denote features more suited for (un)supervised approaches.

"*" also marks modified features not directly reported in previous work.

Overview	Related Work	Corpus Study	Candidate Selection	Features	Conclusion
				000000	

1. Document Cohesion (I)

• F1: TF*IDF (S,U) Frank:1999, Witten:1999

- (F1a) TF*IDF
- (F1b*) TF including counts of substrings
- (F1c*) TF of substring as a separate feature
- (F1d*) normalized TF by candidate types (i.e. simplex words vs. NPs)
- (F1e*) normalized *TF* by candidate types as a separate feature
- (F1f*) *IDF* using GOOGLE N-GRAM

Overview 000	Related Work	Corpus Study	Candidate Selection	Features oo●ooo	Evaluation 00000	Conclusion

1. Document Cohesion (II)

- F2: First Occurrence (*S*,*U*) Frank:1999, Witten:1999
- F3: Section Information (*S*,*U*) Nguyen:2007, abstract, introduction, conclusion, section head, title and/or references
- F4*: Additional Section Information
 - (F4a*) section, 'related/previous work'
 - (F4b*) counting substring occurring in key sections
 - (F4c*) section TF across all key sections
 - (F4d*) weighting key sections according to the portion of keyphrases found
- F5*: Last Occurrence (S,U)

Overview 000	Related Work	Corpus Study	Candidate Selection	Features ooo●oo	Evaluation 00000	Conclusion

2. Keyphase Cohesion

- F6*: Co-occurrence of Another Candidate in Section (S,U)
- F7*: Title overlap (S)
 - (F7a*) co-occurrence (Boolean) in title collocation
 - (F7b*) co-occurrence (TF) in title collection
- F8: Keyphrase Cohesion (S,U) Turney:2003

Overview 000	Related Work	Corpus Study	Candidate Selection	Features oooo●o	Evaluation	Conclusion
3 Te	rm Cohe	sion				

• F9: Term Cohesion (S,U)

- (F9a) term cohesion by Park:2004
- (F9b*) normalized *TF* by candidate types (i.e. simplex words vs. NPs)
- (F9c*) applying different weight by candidate types
- (F9d*) normalized *TF* and different weighting by candidate types

Overview 000	Related Work	Corpus Study	Candidate Selection	Features ooooo●	Evaluation 00000	Conclusion
4 Ot	her Feat	ures				

- F10: Acronym (S) Nguyen:2007
- F11: POS sequence (S) Hulth:2006
- F12: Suffix sequence (S) Nguyen:2007
- F13: Length of Keyphrases (S,U) Barker:2000

Overview 000	Related Work	Corpus Study	Candidate Selection	Features	Evaluation ●0000	Conclusion
Evalı	Jation					

• Exact Matching Scheme:

number of matching keywords in top N_{th}

- partial matching doesn't receive credits
- very limited variation of keyphrases (e.g. A of $\mathsf{B} > \mathsf{B} \mathsf{A})$
- Semantic Similarity (Jamasz:2004)
 - using terabyte corpus to measure the Top candidates and keyphrases
 - require large corpus to measure it
- Domain Specific Thesaurus (Medelyan:2006)
 - using Agrovoc (thesaurus: food & agriculture), check similar words
- Wikipedia InterLink (Paukkeri:2008)
 - using the interlink among the multilingual documents

Overview 000	Related Work	Corpus Study	Candidate Selection	Features	Evaluation o●ooo	Conclusion
Exne	rimental	Setun				

- Targets
 - test proposed candidate selection & length heuristics & alternation
 - test features over supervised vs. unsupervised approaches
- Simulated Systems
 - KEA: (Frank:1999,Witten:1999) (S,U), TF*IDF(F1), First occurrence(F2)
 - N&K: (Nguyen:2007) (S), TF*IDF(F1), First occurrence(F2), Section information(F3), Acronym(F10), POS sequence(F11), Suffix sequence(F12)
 - Baseline: modified N&K. remove Acronym(F10), POS sequence(F11), Suffix sequence(F12) and add additional section information(F4a) (S,U)

Overview	Related Work	Corpus Study	Candidate Selection	Features	Evaluation	Conclusion
					00000	

Results: Candidate Selection

Method	Features	С	Fifteen				
			Match	Precision	Recall	F-score	
All	KEA	U	0.13	0.88%	0.86%	0.87%	
Candidates		S	1.84	12.24%	12.03%	12.13%	
	N&K	S	2.54	16.93%	16.64%	16.78%	
	baseline	U	2.20	14.64%	14.39%	14.51%	
		S	2.44	16.24%	15.96%	16.10%	
Length<=3	KEA	U	0.13	0.88%	0.86%	0.87%	
Candidates		S	1.84	12.24%	12.03%	12.13%	
	N&K	S	2.62	17.49%	17.19%	17.34%	
	baseline	U	2.20	14.64%	14.39%	14.51%	
		S	2.40	16.00%	15.72%	15.86%	
Length<=3	KEA	U	0.07	0.48%	0.47%	0.47%	
Candidates		S	1.87	12.45%	12.24%	12.34%	
+ Alternation	N&K	S	2.88	19.20%	18.87%	19.03%	
	baseline	U	2.37	15.79%	15.51%	15.65%	
		S	2.69	17.92%	17.61%	17.76%	

Table: Performance on Proposed Candidate Selection

 Best Features: F1c:TF of substring as a separate feature, F2:first occurrence, F3:section information, F4d:weighting key sections, F5:last occurrence, F6:co-occurrence of another candidate in section, F7b:title overlap, F9a:term cohesion by (Park:2004), F13:length of keyphrases

Features	С	Fifteen			
		Match	Prec.	Recall	F-score
Best	U	2.61	.174	.171	.173
	S	3.15	.210	.206	.208
Best	U	2.61	.174	.171	.173
w/o TF*IDF	S	3.12	.208	.204	.206

Table: Performance on Feature Engineering

Overview 000	Related Work	Corpus Study	Candidate Selection	Features 000000	Evaluation oooo●	Conclusion 00
Expe	riment (I	V)				

А	Method	Feature
+	S	F1a,F2,F3,F4a,F4d,F9a
	U	F1a,F1c,F2,F3,F4a,F4d,F5,F7b,F9a
-	S	F1b,F1c,F1d,F1f,F4b,F4c,F7a,F7b,F9b-d,F13
	U	F1d,F1e,F1f,F4b,F4c,F6,F7a,F9b-d
?	S	F1e,F10,F11,F12
	U	F1b

Table: Performance on Each Feature

Overview 000	Related Work	Corpus Study	Candidate Selection	Features	Evaluation 00000	Conclusion ●○
Conclusion						

We have explored two issues for MWE in scientific articles:

Candidate Selection

- subject to the performances directly
- maximum coverage as well as standard method needed
- explored heuristics (i.e. length, frequency, alternation)

Peature Engineering

- tested features w.r.t. supervised vs. unsupervised approaches
- steady study but need to be improved for NLP applications, especially unsupervised approaches

- 2010 will feature a shared task on keyphrase extraction
- We look forward to your participation on the task!
- http://semeval2.fbk.eu/semeval2.php?location=tasks