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Abstract

The survey propagation (SP) algorithm has been shown
to work well on large instances of the random 3-SAT
problem near its phase transition. It was shown that
SP estimates marginals over covers, using joker states
to represent clusters of configurations. The SP-y algo-
rithm generalizes SP to work on the Max-SAT problem,
but the cover interpretation of SP does not generalize
to SP-y. Recently, a relaxed survey propagation (RSP)
algorithm has been proposed for inference in Markov
random fields (MRF). RSP for MRFs assigns zero prob-
ability to joker states, and hence the cover interpretation
is also inapplicable. We adapt RSP to solve Max-SAT
problems, and show that it has an interpretation of es-
timating marginals over covers violating a minimum
number of clauses. This naturally generalizes the cover
interpretation of SP. Empirically, we show that RSP out-
performs SP-y and other state-of-the-art solvers on ran-
dom as well as benchmark instances of Max-SAT.

Introduction
The 3-SAT problem is the archetypical NP-complete prob-
lem, and the difficulty of solving random 3-SAT instances
has been shown to be related to the clause to variable ratio,
α=M/N , whereM is the number of clauses andN the num-
ber of variables. There exists a critical value αc ≈ 4.267:
random 3-SAT instances with α < αc are generally satis-
fiable, while instances with α > αc are not. In statisti-
cal mechanics language, one says that there exists a phase
transition for the 3-SAT problem at αc. Instances close to
the phase transition are generally hard to solve using local
search algorithms (Braunstein, Mezard, and Zecchina 2005).

The survey propagation (SP) algorithm (Braunstein,
Mezard, and Zecchina 2005) was derived in statistical me-
chanics, and has been shown to work well on random 3-SAT
problems near its phase transition. In SP, variables can take
on joker states, thus allowing SP to reason over clusters of
configurations. Maneva et al. (2004) showed that SP can be
viewed as a sum-product belief propagation algorithm, and it
estimates marginals of covers over satisfiable configurations.
Kroc et al. (2007) recently showed the existence of covers
in large satisfiable 3-SAT instances near its phase transition.
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In statistical mechanics, SP can be derived as a special case
of the SP-y algorithm, with y taken to∞. For finite values
of y, the SP-y algorithm deals with the Max-SAT problem
of minimizing the number of violated constraints (Battaglia,
Kolar, and Zecchina 2004). However, the sum-product view
of SP does not generalize to SP-y.

Recently, the relaxed survey propagation (RSP) (Chieu,
Lee, and Teh 2007) algorithm generalizes the application of
SP to general Markov random fields, and RSP was shown
to work well on binary networks with mixed couplings.
The RSP algorithm involves a transformation of the original
MRF into a relaxed MRF, via a weighted Max-SAT conver-
sion. In the transformation, a parameter vector y was intro-
duced. It was shown that RSP estimates the marginals on the
original MRF, regardless (to a large extent) of y, allowing y
to be optimized for better convergence of the RSP algorithm.
This flexibility enables RSP to outperform other algorithms
for energy minimization over binary networks with mixed
couplings. However, the joker states of SP have zero proba-
bility in RSP (Lemma 2 in (Chieu, Lee, and Teh 2007)), and
the cover interpretation of SP was lost on RSP for MRFs.

Although RSP was obtained via a weighted Max-SAT
conversion of an MRF, the weighted Max-SAT objective is
modified if y 6= 0, and RSP as it was formulated in (Chieu,
Lee, and Teh 2007) was not directly applicable to weighted
Max-SAT problems. In this paper, we show that by taking
y = y1, (y is a scalar), the RSP algorithm can be used
to solve Max-SAT problems. With this formulation, joker
states are present, and RSP and SP-y are similar in many
ways. However, while the notion of covers for SP does not
generalize to SP-y, we show in Theorem 2 that RSP returns
marginals over covers of configurations that violate a mini-
mum number of constraints. Empirically, we show that RSP
outperforms other state-of-the-art solvers on random Max-
3-SAT, as well as on benchmark Max-SAT instances.

Survey propagation

In this section, we give a brief review of the SP-y algorithm
and its derivation from the cavity method, using factor graph
notation (Kschischang, Frey, and Loeliger 2001). Our aim
in developing SP-y in this section is to show the similarities
between SP-y and RSP.



Preliminaries
The SAT problem consists of a set of boolean variables con-
strained by a boolean function in conjunctive normal form,
which can be treated as a set of clauses. Each clause is a set
of literals (a variable or its negation), and is satisfied if one
of them evaluates to 1. It is represented by (V,C), where V
is the set of boolean variables, and C the set of clauses. For
a clause a ∈ C, we denote C(a) as the set of variables in
the clause a, and for a variable i ∈ V , we denote C(i) as the
set of clauses that contain i. The SAT problem consists of
finding a configuration that satisfies all the clauses.

The Max-SAT problem consists of finding a configuration
that minimizes the number of unsatisfied clauses. It can be
represented as an energy minimization problem. Defining
the Max-SAT energy as E =

∑
a

∏
j∈C(a)

1
2 (1 + Ja,jsj),

a boolean variable xi ∈ {0, 1}, is related to the spin si ∈
{−1,+1} by si = (−1)xi . The coupling Ja,i equals +1
(resp. −1) if the variable xi appears non negated (resp.
negated) in the clause a. In this form, the energy of a con-
figuration equals the number of clauses violated by the con-
figuration. Minimum energy configurations are equivalent
to maximum-a-posteriori configurations in the Boltzmann-
Gibbs distribution P (x) = 1

Z exp(−E(s)). In the fac-
tor graph representation (Kschischang, Frey, and Loeliger
2001), each factor is a clause in the Max-SAT problem.

The cavity method
The cavity method (at zero temperature) (Mezard and Parisi
2003) derives update equations by considering the consis-
tencies between a system with N spins and a system with
N+1 spins when the (N+1)th spin, s0, is added. The main
assumption behind the cavity method is that in the large N
limit, the neighboring spins of s0 are uncorrelated (locally
“tree-like”). In the cavity approach, warning messages are
sent from each factor (or clause) a to a neighboring variable
i, denoted as ua→i, and from each variable i to a neighbor-
ing factor a, denoted as hi→a (see Figure 1). The warn-
ing messages ua→i takes values in {−1, 0,+1}. The case
ua→i = +1 (resp. -1) correspond to a warning from a clause
a to a variable si that the variable si should take the value
-1 (resp. +1). ua→i = 0 means si is free to take +1 or -1.
Under this perspective, the messages hi→a simply tabulates
incoming warnings from neighboring factors of si:

hi→a =
∑

b∈C(i)−a

ub→i. (1)

The message ua→i takes the value Ja,i only if all other
neighboring variables of a are going to violate a. Otherwise,
it takes the value 0:

ua→i({hj→a}) = Ja,i
∏

j∈C(a)\i

θ(Ja,jhj→a), (2)

where θ(x) = 0 if x < 0, and θ(x) = 1 if x ≥ 0.
In statistical mechanics, a ground state is a cluster of con-

figurations of equal energy, related to each other by single
spin flip moves, which are locally stable, in the sense that
the energy cannot be decreased by any flip of a finite num-
ber of spins. (In statistical mechanics, physicists are inter-
ested in the case where N → ∞). SP-y is derived under a

a

i ua→i

j1 j2

b1 b3 b4

hj1→a

ub1→i ub2→i ub3→i

hj1→a

b2 b5

ub4→i ub5→i

: factors

: variables

Figure 1: Warning messages between factor/variable nodes.

framework of assumptions called “one-step replica symme-
try breaking”, where we assume that there are many local
ground states (LGS). Under this framework, two important
assumptions are made (Mezard and Parisi 2003)
Assumption 1. For a problem with N spins, denote ε =
E/N as the energy density, and η(ε) the number of LGS at
the energy density ε. Assume that these LGS are distributed
according to an exponential distribution:

η(ε) ≈ exp(NΣ(ε)) (3)
where Σ(ε) is called the complexity.

Defining g(y) = yΦ(y), the Legendre transform for Σ(ε),
Σ(ε) = min

y
εy − yΦ(y), (4)

yΦ(y) = min
ε
εy − Σ(y), (5)

and the minimization condition yields

ε = Φ(y) + y
dΦ(y)
dy

, (6)

y =
dΣ(ε)
dε

. (7)

Assumption 2. (section 4.4 in (Mezard and Parisi 2003))
There is a unique global ground state (GGS), U, where
Σ(ε = U/N) = 0, and

ε = Φ(y) (8)
dΦ(y)
dy

= 0. (9)

Equations 8 and 9 result from 4 and 6 respectively. When
using the SP-y algorithm, y should be selected to satisfy
Equation 9. It has been established that in the satisfiable re-
gion, we should select y →∞. In the unsatisfiable region, y
takes on a finite value (Battaglia, Kolar, and Zecchina 2004).

The update equations for SP-y are

Pj→a(h) =
∑

{ub→i}→h

∏
b∈C(j)\a

Qb→j(ub→j) exp(−yδE)(10)

Qa→i(u) =
∑

{hj→a}→u

∏
j∈C(a)\i

Pj→a(hj→a), (11)

where the notation {ub→i} → h denotes the set of {ub→i}
that gives rise to the message h by Equation 1. Similarly
for the notation {hj→a} → u. The term δE in Equation 10
measures the change in energy when a new spin is added.
In the Max-SAT problem, δE corresponds to the number of
violated constraints. Hence, in the notations of (Battaglia,
Kolar, and Zecchina 2004), a penalty term of exp(−2y) is
multiplied into the distribution for each violated constraint.
Battaglia et al. (2004) formulated an efficient algorithm for
performing the SP-y updates for solving Max-SAT.



Relaxed Survey Propagation
In the following, given a Max-SAT problem, we set up an al-
ternative MRF, on which we run the sum-product algorithm.
In Theorem 1, we show that this formulation generalizes the
sum-product interpretation of SP given in (Maneva, Mossel,
and Wainwright 2004), and in the main theorem (Theorem
2), we show that running the sum-product belief propaga-
tion on this MRF estimates marginals over covers of con-
figurations violating a minimum number of constraints, (i.e.
min-covers defined in Definition 7).

In survey propagation, in addition to the values {0, 1},
variables can take a third value, * (joker state), signifying
that the variable is free to take either 0 or 1, without violating
any clause. This corresponds to a “no-warning” message
(e.g. ua→i = 0) in notations of the previous section. In this
section, we assume that variables xi take values in {0, 1, ∗}.
Definition 1. (Maneva, Mossel, and Wainwright 2004) A
variable xi is constrained by the clause a ∈ C if it is the
unique satisfying variable for a (all other variables vio-
late a). Define CONi,a(xC(a)) = δ(xi is constrained by a),
where δ(P ) equals 1 if P is true, and 0 otherwise.

We introduce the scalar y in the following definition:
Definition 2. An assignment x is invalid for clause a if and
only if all variables are unsatisfying except for exactly one
for which xi = ∗. (In this case, xi cannot take * as it is
constrained). Define

VALa(xC(a)) =

 1 if xC(a) satisfies a
exp(−y) if xC(a) violates a

0 if xC(a) is invalid
(12)

The term exp(−y) is the penalty for violating a clause.
Definition 3. (Maneva, Mossel, and Wainwright 2004) De-
fine the parent set Pi of a variable xi to be the set of clauses
for which xi is the unique satisfying variable, (i.e. the set of
clauses constraining xi).

We now construct another MRF Gs = (Vs, Fs) as fol-
lows: variables λi ∈ Vs are of the form λi = (xi, Pi), where
xi are variables in the Max-SAT problem. We define vari-
able and clause compatibilities as in (Maneva, Mossel, and
Wainwright 2004). The single variable compatibilities (Ψi)
are:

Ψi(λi = {xi, Pi}) =

{
ω0 if Pi = ∅, xi 6= ∗
ω∗ if Pi = ∅, xi = ∗
1 for any other valid (xi, Pi)

, (13)

where ω0 + ω∗ = 1. The clause compatibilities (Ψa) are:
Ψa(λa = {xk, Pk}k∈C(a)) = VALa(xC(a))

×
∏
k∈C(a) δ((a ∈ Pk) = CONa,k(xC(a))),

(14)

where δ is defined in Definition 1. The single-variable com-
patibilities Ψk(λk) are defined so that when xk is uncon-
strained (i.e. Pk = ∅), Ψk(λk) takes the values ω∗ or ω0 de-
pending on whether xk equals *. The clause compatibilities
introduce the penalties into the joint distribution. Since the
values of {xk}k determines uniquely the values of {Pk}k,

P (x) = P ({xk, Pk}k) ∝ ωn0
0 ωn∗∗

∏
a∈UNSAT(x)

exp(−y), (15)

where n0 is the number of unconstrained variables in x, and
n∗ the number of variables taking ∗.

Maneva et al. (2004) formulated the SP-ρ algorithm,
which, for ρ = 1, is equivalent to the SP algorithm in
(Braunstein, Mezard, and Zecchina 2005). Comparing RSP
and SP-ρ, we have (Chieu, Lee, and Teh 2007):

Theorem 1. By taking y → ∞, RSP is equivalent to SP-ρ
(Maneva, Mossel, and Wainwright 2004), with ρ = ω∗.

Proof. RSP and SP-ρ differ only in Definition 2, and with
y →∞ in RSP, their definitions become identical.

Taking y to infinity correspond to disallowing violated
constraints, and SP-ρ was formulated for satisfiable SAT
problems, where all clauses must be satisfied.

The update equations of RSP is given in Figure 2. In the
worst case in a densely connected factor graph, each itera-
tion of updates can be performed in O(MN) time, where N
is the number of variables, and M the number of clauses.

Covers in Max-SAT
In this section, we discuss the concept of covers. First, we
define a partial order on the set of all valid assignments
(defined in Definition 2) as follows (Maneva, Mossel, and
Wainwright 2004)

Definition 4. Let x and y be two valid assignments. We
write x ≤ y if ∀i, (1) xi = yi or (2) xi = ∗ and yi 6= ∗.

This partial order defines a lattice, and Maneva et al.
(2004) showed that SP is a “peeling” procedure that peels
a satisfying assignment to its minimal element in the lattice.
A cover is a minimal element in the lattice. In the SAT re-
gion, Kroc et al. (2007) defined covers as follows:

Definition 5. A cover is an assignment x ∈ {0, 1, ∗}N such
that

1. every clause has at least one satisfying literal, or at least
two literals with value * under x, and

2. x has no unconstrained variables assigned 0 or 1.

The SP algorithm was shown to return marginals over
covers (Maneva, Mossel, and Wainwright 2004). In prin-
ciple, there are two kinds of covers: true covers which cor-
respond to satisfying configurations, and false covers which
do not. Kroc et al. (2007) showed empirically that the num-
ber of false covers is negligible for SAT instances. For RSP,
we introduce the notion of v-cover:

Definition 6. A v-cover is an assignment x ∈ {0, 1, ∗}N
such that

1. there are exactly v clauses violated by the configuration,
2. violated clauses do not contain variables assigned *,
3. satisfied clauses have at least one satisfying literal, or at

least two literals with value * under x, and
4. x has no unconstrained variables assigned 0 or 1.

Starting from any configuration violating v clauses, we
can “peel” it down to its v-cover by considering all variables
in violated clauses as “frozen”, and peeling only variables
that do not appear in violated clauses.



Ms
a→i =

∏
j∈C(a)\{i}

Ruj→a (16)

Mu
a→i =

 ∏
j∈C(a)\{i}

(Ruj→a +R∗j→a) +
∑

k∈C(a)\{i}

(Rsk→a −R∗k→a)
∏

j∈C(a)\{i,k}

Ruj→a

 + (e−y − 1)
∏

j∈C(a)\{i}

Ruj→a (17)

M∗a→i =
∏

j∈C(a)\{i}

(Ruj→a +R∗j→a)−
∏

j∈C(a)\{i}

Ruj→a (18)

Rsi→a =
∏

β∈Cu
a (i)

Mu
β→i

 ∏
β∈Cs

a(i)

(Ms
β→i +M∗β→i)

 (19)

Rui→a =
∏

β∈Cs
a(i)

Mu
β→i

 ∏
β∈Cu

a (i)

(Ms
β→i +M∗β→i)− (1− ω0)

∏
β∈Cu

a (i)

M∗β→i

 (20)

R∗i→a =
∏

β∈Cu
a (i)

Mu
β→i

 ∏
β∈Cs

a(i)

(Ms
β→i +M∗β→i)− (1− ω0)

∏
β∈Cs

a(i)

M∗β→i

 + ω∗
∏

β∈Cs
a(i)∪Cu

a (i)

M∗β→i (21)

Bi(0) ∝
∏

β∈C+(i)

Mu
β→i

 ∏
β∈C−(i)

(Ms
β→i +M∗β→i)− ω∗

∏
β∈C−(i)

M∗β→i

 (22)

Bi(1) ∝
∏

β∈C−(i)

Mu
β→i

 ∏
β∈C+(i)

(Ms
β→i +M∗β→i)− ω∗

∏
β∈C+(i)

M∗β→i

 (23)

Bi(∗) ∝
∏

β∈C(i)

M∗β→i (24)

Figure 2: The update equations for RSP. These equations are sum-product belief propagation equations for the MRF defined
in the text. The notations used here are identical to those in (Maneva, Mossel, and Wainwright 2004). The only difference is
in Equation 17, where the penalty exp(−y) is introduced for violated clauses. Each iteration of the belief propagation updates
can be done in O(MN) time, where N is the number of variables, and M the number of clauses.

Definition 7. We define a min-cover for a Max-SAT problem
as the m-cover, where m is the minimum number of violated
constraints for the problem.

Theorem 2. For ω0 = 0 and ω∗ = 1, and for sufficiently
large y, RSP estimates marginals over min-covers.

Proof. Having ω0 = 0 corresponds to forcing n0 = 0, hence
disallowing unconstrained variables. In this case, only cov-
ers have non-zero probabilities, and a v-cover has proba-
bility proportional to exp(−vy) in Equation 15. The ratio
of the probability of a v-cover and that of a (v + 1)-cover
equals exp(y). For large y, the probability of min-covers
dominates the distribution in Equation 15. Hence RSP, as
the sum-product algorithm over the factor graph represent-
ing Equation 15, estimates marginals over min-covers.

In Figure 3, we show the v-covers of a small example. In
this example, there are four 1-covers, which are also the min-
covers. Assumption 2 for SP-y states that Σ(U) = 0, where
U is the global ground state energy (i.e. minimum number
of violated constraints). This corresponds to the assumption
that there is only one unique min-cover for a Max-SAT in-
stance. While this is false for the example in Figure 3, it is

000

1 violated constraint, with 
probability proportional to exp(-y)

2 violated constraints, with 
probability proportional to exp(-2y)

001

10* 011 *10 111

100 101 010 110

Figure 3: Energy landscape for the problem (x̄1∨x2)∧(x̄2∨
x3)∧ (x̄3∨x1)∧ (x̄1∨ x̄2∨ x̄3)∧ (x1∨x2∨x3)∧ (x1∨x2)

assumed to be true for large random Max-3-SAT problems.
In the case where ω0 6= 0, the smoothing interpretation

of SP-ρ also applies to RSP: the probability on a v-cover is
spread over its lattice. See Theorem 6 in (Maneva, Mossel,
and Wainwright 2004) for more details.

Experimental Results
We run experiments on random Max-3-SAT, as well as on a
few instances used in the paper (Lardeux, Saubion, and Hao
2005). All experiments are run with ω0 = 0, and ω∗ = 1.



Figure 4: Performance of SP-y and RSP on Max-3-SAT over varying values of y, for N = 104 and α from 4.2 to 5.2. The
x-axis shows the value of y used, and the y-axis the number of violated constraints returned by each method. These figures
show that the performance of RSP over varying y is consistent with Theorem 2: as long as RSP converges, its performance
improves as y increases. This property allows for a systematic search for a good value of y to be used.

Random Max-3-SAT
We run experiments on randomly generated Max-3-SAT in-
stances of 104 variables, with different clause-to-variable ra-
tios. The random instances are generated by the SP-y code
available online (Battaglia, Kolar, and Zecchina 2004). In
Figure 4, we compare SP-y and RSP on random Max-3-
SAT with different clause-to-variable ratio, α. We vary α
from 4.2 to 5.2 to show the performance of SP-y and RSP
in the UNSAT region of 3-SAT, beyond its phase transition
at αc ≈ 4.267. For each value of α, the number of violated
constraints (y-axis) is plotted against the value of y used.

We perform a decimation procedure for RSP. We select
the variables to decimate by ranking them according to their
bias, defined as |P (xi = 0) − P (xi = 1)|. For each value
of y, we run RSP until convergence (for a maximum of 500
iterations, allowing 3 tries with random initializations), dec-
imates the first 100 variables with bias larger than 0.5, and
run the algorithm on the remaining problem. We stop the
decimation process when the algorithm fails to converge,
or when all variables have bias smaller than 0.5. At this
point, we run 1000 attempts of walksat on the remaining
problem. For SP-y, we run the SP-y code available on line,
with the option of decimating 100 variables at each iteration,
and with two different settings: with and without backtrack-
ing (Battaglia, Kolar, and Zecchina 2004). Backtracking is
a procedure used in SP-y to improve performance, by unfix-
ing previously fixed variables at a rate r = 0.2, so that errors
made by the decimation process can be corrected. For RSP,
we do not run backtracking. Note that the y in our formula-
tion equals to 2y in the formulation in (Battaglia, Kolar, and
Zecchina 2004).

Both SP-y and RSP fail to converge when y becomes large
enough. When this happens, the output of the algorithm
is the result returned by walksat on the original problem.
In Figure 4, we see this happening when a curve reaches
a horizontal line, signifying that the algorithm is returning
the same configuration regardless of y (we “seed” the ran-
domized walksat so that results are identical when problems
are identical). From Figure 4, we see RSP performs more
consistently than SP-y: as y increases, the performance of
RSP improves, until a point where RSP fails to converge.

Hence, the best value of y for RSP is obtainable without go-
ing through the decimation process: we can commence dec-
imation at the largest value of y for which RSP converges.
In Table 1, we show that RSP (without backtracking) out-
performs SP-y, with or without backtracking, for α ≥ 4.7.
We also compare RSP and SP-y with the local search solvers
implemented in UBCSAT (Tompkins and Hoos 2004). We
run 1000 iterations of each of the 20 Max-SAT solvers in
UBCSAT, and take the best result among the 20 solvers. The
results are shown in Table 1. We see that the local solvers in
UBCSAT does worse than both RSP and SP-y. We have also
tried running complete solvers such as toolbar (de Givry et
al. 2005) and maxsatz (Li, Manyà, and Planes 2006). They
are unable to deal with instances of size 104.

Table 1: Number of violated constraints attained by each
method. For SP-y, “SP-y (BT)” (SP-y with backtracking),
and RSP, the best result is selected over all y. For each α, we
show the best performance in bold face. The column “Fix”
shows the number of variables fixed by RSP at the optimal y,
and “Time” the time taken by RSP (in minutes) to fix those
variables, on an AMD Opteron 2.2GHz machine.

α UBCSAT SP-y SP-y(BT) RSP Fix Time
4.2 47 0 0 0 7900 24
4.3 68 9 7 10 7200 43
4.4 95 42 31 36 8938 82
4.5 128 67 67 65 9024 76
4.6 140 98 89 90 9055 45
4.7 185 137 130 122 9287 76
4.8 232 204 189 172 9245 52
4.9 251 223 211 193 9208 62
5.0 278 260 224 218 9307 66
5.1 311 294 280 267 9294 42
5.2 358 362 349 325 9361 48

Benchmark Max-SAT instances
We compare RSP with UBCSAT on instances used in
(Lardeux, Saubion, and Hao 2005), which were instances
used in the SAT 2003 competition. Among the 27 instances,



Table 2: Benchmark Max-SAT instances. Columns: “in-
stance” shows the instance name in (Lardeux, Saubion, and
Hao 2005), “nvar” the number of variables, “ubcsat” and
“rsp-x” (x is the number of decimations at each iteration)
the number of violated constraints returned by each algo-
rithm, and “fx-x” the number of spins fixed by RSP. Best
results are indicated in bold face.

instance nvar ubcsat rsp-100 fx-100 rsp-10 fx-10
family: purdom-10142772393204023

fw 9366 83 357 0 357 0
nc 8372 74 33 8339 35 8316
nw 8589 73 24 8562 28 8552

family: pyhala-braun-unsat
35-4-03 7383 58 68 7295 44 7299
35-4-04 7383 62 53 7302 41 7304
40-4-02 9638 86 57 9547 65 9521
40-4-03 9638 76 77 9521 41 9568

we use the seven largest instances with more than 7000 vari-
ables. (On the smaller instances, RSP performs comparably
with UBCSAT. These instances might be small enough for
local search solvers to perform well).

We run RSP in two settings: decimating either 10 or 100
variables at a time. We run RSP for increasing values of y:
for each y, RSP fixes a number of spins, and we stop in-
creasing y when the number of spins fixed decreases over
the previous value of y. For UBCSAT, we run 1000 itera-
tions for each of the 20 solvers. Results are shown in Table
2. Out of the seven instances, RSP fails to fix any spins on
the first one, but outperforms UBCSAT on the rest. Lardeux
et al. (2005) did not show best performances in their paper,
but their average results were an order of magnitude higher
than results in Table 2.

Figure 4 shows that finding a good y for SP-y is hard. On
the benchmark instances, we run SP-y with the “-Y” option
(Battaglia, Kolar, and Zecchina 2004) that uses dichotomic
search for y: SP-y failed to fix any spins on all 7 instances.

Related work
While recent work on Max-SAT tends to focus more on
complete solvers, these solvers are unable to handle large
problems. In the Max-SAT competition 2007 (Argelich et
al. 2007), the largest Max-3-SAT problems used have only
70 variables. For large instances, complete solvers are still
not practical, and local search procedures have been the only
feasible alternative. SP-y, generalizing SP, has been shown
to be able to solve large Max-3-SAT problems at its phase
transition, but lacks the theoretical explanations that recent
work on SP has generated.

This paper adapts the RSP algorithm in (Chieu, Lee, and
Teh 2007) to the problem of Max-SAT. While Chieu et al.
(2007) formulate RSP for general MRFs, they develop the
algorithm under settings which result in zero probability for
all configurations containing joker states. However, the suc-
cess of SP algorithms have largely been attributed to the
presence of joker states, which allows SP to reason on cov-
ers (or clusters) of configurations. In this paper, we adapt

the RSP algorithm for Max-SAT, and show that it naturally
generalizes the sum-product interpretation of SP.

For 3-SAT, there is an easy-hard-easy transition as the
clause-to-variable ratio increases. For Max-3-SAT, however,
it has been shown empirically that beyond the phase transi-
tion of satisfiability, all instances are hard to solve (Zhang
2001). In this paper, we show that RSP outperforms SP-y as
well as other local search algorithms on Max-3-SAT prob-
lems, well beyond the phase transition region.

Conclusion
While SP-y does well on Max-SAT problems near the phase
transition, the intuition behind SP-y is still unclear from a
mathematical point of view. In this paper, we show an alter-
native algorithm RSP, that not only outperforms SP-y, but
also has a clear sum-product interpretation. The mecha-
nisms behind SP-y and RSP are similar: both algorithms
impose a penalty term for each violated constraint, and both
reduce to SP when y →∞. SP-y uses a population dynam-
ics algorithm, which can also be seen as a warning prop-
agation algorithm. RSP, on the other hand, uses the well-
studied sum-product algorithm. This enables us to under-
stand RSP as estimating marginals over min-covers, which
gives a clearer picture on its empirical success.
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