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Abstract

We design an edge adaptive predictor for lossless image coding. The predictor
adaptively weights four directional predictor together with an adaptive linear predictor
based on information from neighbouring pixels. Although conceptually simple, the
performance of the resulting coder is comparable to state of the art image coders when
a simple context based coder is used to encode the prediction errors.

1 Introduction

State of the art lossless image coders typically perform prediction followed by entropy cod-
ing of the prediction errors. The prediction stage is usually used to reduce the complexity
of the probability modelling done by the entropy coder, hence reducing the modelling cost
of coding [7].

Images which we wish to compress are usually nonstationary and can be reasonably
modelled as smooth and textured areas separated by edges. In this paper, we consider a
simple edge adaptive prediction scheme which is designed to perform well around simple
edges and smooth areas of images. The predictor achieves good performance by adaptively
weighting four directional predictors and an adaptive linear predictor based on information
obtained from the neighbours of the pixel being predicted. The four directional predictors
we use are simply the previous pixels in four directions while the adaptive linear predictor
is a linear function of the neighbouring pixels adaptively updated using the Widrow-Hoff
algorithm. For the weighting scheme, we assume that the prediction errors have a Lapla-
cian distribution and perform a Bayesian weighting based on the prediction errors in a small
window of neighbouring pixels. This weighting scheme is similar to that used in [6] for pre-
dicting missing pixels in images and video. Our simulation results show that the weighting
scheme is much more effective than selecting the maximum a posteriori predictor based on
the prediction errors of the same neighbouring pixels. Our results also show that weighting
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the adaptive linear predictor with the directional predictors results in a better predictor than
using either the adaptive linear predictor or the directional predictors alone.

The prediction error of our predictor is entropy coded using a simple context based
entropy coder. The context is calculated by uniformly quantizing the sum of absolute errors
of a small number of neighbouring pixels. With this simple context coder, the performance
of our coder is comparable to the state of the art coder CALIC [8].

In contrast to the predictor in CALIC which is heuristically designed, the weighting
scheme and the component predictors in our prediction scheme are conceptually quite sim-
ple. Our results also show that a simple scheme for adapting the predictor to edges is
already competitive with the context tree based methods used in [7].

2 The Predictor

2.1 Weighting Scheme

Let t be the time index generated by a raster scan of an image. Letyt denote the current
pixel and letyt�1 denote the sequence of pixels which been scanned prior toyt. We assume
that the current pixel is generated according to the following process:

yt = ŷkt + �

for somek 2 f1; : : : ;mg, wherek is the index of a finite set of predictors and� has a
Laplacian distributionp(�) = 1

2�
e�j�j=�.

We will predict the pixelYt using the conditional expectationE(Ytjyt�1). We can write

E(Ytjyt�1) =

Z
Ytp(Ytjyt�1)dY:

Assumming that there is a hidden random variable taking a finite numberm of states, where
the predictor̂ykt is active in stateuk, we have

p(Ytjyt�1) =

mX
k=1

p(Yt; ukjyt�1) =

mX
k=1

p(Ytjuk;yt�1)p(ukjyt�1):

For eachk, we perform a change of variable� = Yt � hkjyt�1, wherehkjyt�1 is the condi-
tional expectation of the process when it is in stateuk. This allows us to write

E(Ytjyt�1) =

mX
k=1

Z
(hkjyt�1 + �)p(ukjyt�1)p(hkjyt�1 + �jyt�1)d� =

mX
k=1

hkjyt�1p(ukjyt�1):

This suggests that we take a weighted average of all the predictions weighted by the
a posteriori probability of the states. We need to calculatep(ukjyt�1) for eachk. We do
this using a window of pixels which are neighbours to the pixel being predicted. The effect
of using a window of neighbouring pixels is to allow the predictor to change according to
the local statistics. Let�(i) denote a permutation of the natural numbers. Letyt;n be a
finite set of neigbours ofyt, selected by using the appropriate permutation� and letting

2



yt;n = (yt��(1); : : : ; yt��(n))
0. Let �yt;n = yt�1 � yt;n be the set of pixels inyt�1 which are

not inyt;n. For this paper we takeyt;n to be the pixels shown in Figure 1. From Bayes rule,

p(ukjyt;n; �yt;n) =
p(yt;njuk; �yt;n)p(ukj�yt;n)PK
i=1 p(yt;njui; �yt;n)p(uij�yt;n)

:

To simplify matters, we assume that all states are equally probable given�yt;n, i.e. p(uij�yt;n) =
p(ujj�yt;n) for i; j 2 1; : : : ;m. Then

p(ukjyt;n; �yt;n) =
p(yt;njuk; �yt;n)PK
i=1 p(yt;njuk�yt;n)

:

Calculating the a posteriori probability of the states is simple with the models we are
using:

p(yt;njuk; �yt;n) =
1

2n�n
e�

1

�

Pn
i=1 jyt��(i)�ŷk(t��(i))j:

yt,n

yt

Figure 1: Current pixel and neighbouring pixels used in prediction and context modelling.

2.2 Component predictors

For the directional predictors, we use the optimal predictors for the following four pro-
cesses:y(i; j) = y(i; j � 1) + �, y(i; j) = y(i � 1; j) + �, y(i; j) = y(i � 1; j � 1) + �,
y(i; j) = y(i� 1; j+1)+ �, wherei is the vertical index of the image starting from the top
left hand corner of the image and going downwards,j is the horizontal index of the image
and as before� has a Laplacian distributionp(�) = 1

2�
e�j�j=�. Since� is zero mean, the op-

timal predictors are simply the previous pixels in the appropriate direction. The directional
predictors are useful around edges in images.

For the linear predictor, we use the optimal predictor for the following process:

yt = w1yt��(1) + : : : + wnyt��(n) + �
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whereyt��(1); : : : ; yt��(n) are shown in Figure 1 and� is as before. Since� has zero mean,
the optimal predictor is simply the linear function. The linear function should perform well
in smooth areas of images.

In order to learn a suitable weight vectorw, we use a simple online gradient descent
algorithm also known as the Widrow-Hoff algorithm. For the Widrow-Hoff algorithm, the
weight vector is updated according to the following:

wt+1 = wt + 2�(ŷt � yt)yt;n:

The learning rate� needs to be chosen small enough so that the algorithm does not
become unstable. We use a value� = 1=(4 k yt;n k2max) wherek yt;n k2max is an upper
bound for the squared norm ofyt;n (we use1282n as the upper bound since the pixels range
from 0 to 255 and we center it by taking away 128 before performing the predictions). This
value of� is guaranteed to perform close to the best fixed value ofw in a worst case sense
[1, 5].

2.2.1 Boundary Conditions

In this paper, we simply pad the pixels outside the image boundaries with zeros.

3 Entropy Coder

We use a simple context based entropy coder. First, we calculate the sum of absolute value
of prediction errors for a window of neighbouring pixels. We use the same neighbouring
pixelsyt;n as before (as shown in Figure 1). Next we quantizes with a fixed quantization
parameterq to a fixed numberN of quantized value. Uniform quantization is used except
for values ofs larger thanNq which is quantized to the valueN � 1. The quantized values
of s is used as an index for selecting the entropy coder to be used for coding the prediction
error of the current pixel. A similar entropy coder is used in [2]. In our simulations, we use
q = 10 andN = 10 and a histogram based adaptive arithmetic coders (provided in [3]) as
the entropy coders.

The aim of the context based coder is to segment the (prediction error) image in such a
way that pixels with similar statistics (expected absolute errors) are coded using the same
entropy coder.

4 Simulation Results

4.1 Selecting the values of�

In our models, we have one parameter� of the Laplacian distributions which has to be
determined. We do this by empirically trying out several values of� over a set of images.
The results for several values of� are shown in Table 1. The best values of� = 20 will
be used in the rest of the paper. The performance of the coder does not seem to be very
sensitive to small change of� around� = 20.
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Image � = 5 � = 20 � = 50

Balloon 2.80 2.79 2.83
Barb1 4.24 4.20 4.26
Barb2 4.52 4.47 4.50
Board 3.53 3.50 3.56
Boats 3.77 3.76 3.82
Girl 3.70 3.70 3.80
Gold 4.40 4.35 4.40
Hotel 4.29 4.24 4.26
Zelda 3.71 3.68 3.72

Average 3.88 3.85 3.91

Table 1: Bits per pixel for different values of�

4.2 Weighted Predictor Versus Maximum a Posteriori Predictor

Instead of weighting the predictors, it is possible to select the the predictor which has the
maximum a posteriori probability for performing the prediction. As can be seen in Table 2,
the weighted predictor outperforms the maximum a posteriori predictor.

Image Weighted Predictor Max a Posteriori Predictor

Balloon 2.79 2.98
Barb1 4.20 4.34
Barb2 4.47 4.62
Board 3.50 3.69
Boats 3.76 3.90
Girl 3.70 3.82
Gold 4.35 4.50
Hotel 4.24 4.41
Zelda 3.68 3.85

Average 3.85 4.01

Table 2: Bits per pixel for weighted versus maximum a posteriori predictor

4.3 Linear versus Directional Predictors

A natural question to ask is whether the adaptive linear predictor or the directional pre-
dictors are helpful for compression. Table 3 shows that weighting the predictors together
improves the performance of using either just the linear predictor or just the directional
predictors.
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Image Weighted Predictor Linear Predictor Directional Predictors

Balloon 2.79 2.97 2.83
Barb1 4.20 4.55 4.49
Barb2 4.47 4.68 4.61
Board 3.50 3.76 3.56
Boats 3.76 3.98 3.89
Girl 3.70 3.89 3.82
Gold 4.35 4.49 4.43
Hotel 4.24 4.55 4.30
Zelda 3.68 3.80 3.75

Average 3.85 4.07 3.96

Table 3: Bits per pixel for weighted versus linear and directional predictors

4.4 Comparison Against the State of the Art

We also compared our coder against the coder CALIC [8] which was the best performing
coder on the test images used for evaluating proposals for the lossless JPEG standard. The
performance of the coder is slightly better than the performance of CALIC for the images
we tested. The results are shown in Table 4.

Image Weighted Predictor CALIC

Balloon 2.79 2.82
Barb1 4.20 4.42
Barb2 4.47 4.53
Board 3.50 3.56
Boats 3.76 3.84
Girl 3.70 3.77
Gold 4.35 4.39
Hotel 4.24 4.24
Zelda 3.68 3.74

Average 3.85 3.92

Table 4: Bits per pixel for weighted predictor versus CALIC.

5 Discussion

In this section, we discuss some possibilities for further work.
The Bayesian weighting scheme is known to have good worst case performance (see

e.g. [4]) for online learning. We have used windowing in order to allow the algorithm
to track the best predictor. In [4], different schemes with guaranteed worst case bounds
are proposed for tracking the best predictor which changes with time. It may be possi-
ble to extend these schemes for tracking the best predictor in two dimension (images) for
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comparison with the windowing scheme.
We have followed the common practice of separating out the prediction and probability

modelling stages in this work. Our prediction stage actually uses a well defined probability
model for forming the prediction. It is possible to use the probability model directly for
compression. However, it may be necessary to track both� and the best predictor in order
to obtain good performance for image compression.

6 Conclusions

We have shown that simple edge adaptive prediction using a weighting technique is suffi-
cient to achieve state of the art lossless image compression performance when used with a
simple context based entropy coder.
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