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ABSTRACT 
Support Vector Machines (SVMs) have been very successful in 
text classification. However, the intrinsic geometric structure of 
text data has been ignored by standard kernels commonly used in 
SVMs. It is natural to assume that the documents are on the 
multinomial manifold, which is the simplex of multinomial 
models furnished with the Riemannian structure induced by the 
Fisher information metric. We prove that the Negative Geodesic 
Distance (NGD) on the multinomial manifold is conditionally 
positive definite (cpd), thus can be used as a kernel in SVMs. 
Experiments show the NGD kernel on the multinomial manifold 
to be effective for text classification, significantly outperforming 
standard kernels on the ambient Euclidean space. 

Categories and Subject Descriptors 
H.3.1. [Content Analysis and Indexing]; H.3.3 [Information 
Search and Retrieval]; I.2.6 [Artificial Intelligence]: Learning; 
I.5.2 [Pattern Recognition]: Design Methodology – classifier 
design and evaluation. 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Text Classification, Machine Learning, Support Vector Machine, 
Kernels, Manifolds, Differential Geometry. 

1. INTRODUCTION 
Recent research works have established the Support Vector 
Machine (SVM) as one of the most powerful and promising 

machine learning methods for text classification [8, 15, 16, 36]. 

“The crucial ingredient of SVMs and other kernel methods is the 
so-called kernel trick, which permits the computation of dot 
products in high-dimensional feature spaces, using simple 
functions defined on pairs of input patterns. This trick allows the 
formulation of nonlinear variants of any algorithm that can be 
cast in terms of dot products, SVMs being but the most 
prominent example.” [32] 

However, standard kernels commonly used in SVMs have 
neglected a-priori knowledge about the intrinsic geometric 
structure of text data. We think it makes more sense to view 
document feature vectors as points in a Riemannian manifold, 
rather than in the much larger Euclidean space. This paper 
studies kernels on the multinomial manifold that enable SVMs to 
effectively exploit the intrinsic geometric structure of text data to 
improve text classification accuracy. 

In the rest of this paper, we first examine the multinomial 
manifold (§2), then propose the new kernel based on the 
geodesic distance (§3) and present experimental results to 
demonstrate its effectiveness (§4), later review related works 
(§5), finally make concluding remarks (§6). 

2. THE MULTINOMIAL MANIFOLD 
This section introduces the concept of the multinomial manifold 
and the trick to compute geodesic distances on it, followed by 
how documents can be naturally embedded in it. 

2.1 Concept 
Let { }( | )p ∈Θ= ⋅

θ
θS  be an n-dimensional regular statistical 

model family on a set X . For each ∈x X  assume the mapping 
( | )pθ x θ�  is C∞  at each point in the interior of Θ . Let i∂  

denote 
iθ

∂
∂

 and ( )
θ

x�  denote ( )log ( | )p x θ . The Fisher 

information metric [1, 19, 21] at ∈Θθ  is defined in terms of the 
matrix given by  
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or equivalently as 

 ( ) 4 ( | ) ( | )ij i jg p p d= ∂ ∂∫θ x θ x θ x
X

. (2) 

Note that ( )ijg θ  can be thought of as the variance of the score 

i∂
θ

� . In coordinates iθ , ( )ijg θ  defines a Riemannian metric on 

Θ , giving S  the structure of an n-dimensional Riemannian 
manifold.  

Intuitively the Fisher information may be seen as the amount of 
information a single data point supplies with respect to the 
problem of estimating the parameter θ . The choice of the Fisher 
information metric is motivated by its attractive properties in 
theory and good performances in practice [21, 23, 24]. 

Consider multinomial distributions that model mutually 
independent events 1 1,..., nX X +  with Pr[ ]i iX θ= . Obviously 

1 1( ,..., )nθ θ +=θ  should be on the n-simplex defined by 
1

1

1
n

i
i

θ
+

=

=∑ . 

The probability that 1X  occurs 1x  times, ..., 1nX +  occurs 1nx +  

times is given by  
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where 
1

1

n

i
i

N x
+

=

=∑ .  

The multinomial manifold is the parameter space of the 
multinomial distribution  
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equipped with the Fisher information metric, which can be 
shown to be  
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where n∈θ P , and , nT∈
θ

u v P  are vectors tangent to n
P  at θ  

represented in the standard basis of 1n+
� .  

2.2 Geodesic 
It is a well-known fact that the multinomial manifold n

P  is 
isometric to the positive portion of the n-sphere of radius 2 [18] 

 { }1 : 2; , 0n n
ii ψ+

+ = ∈ = ∀ ≥ψ ψ�S  (6) 

through the diffeomorphism : n nF +→P S ,  

 1 1( ) (2 ,...,2 )nF θ θ +=θ . (7) 

Therefore the geodesic distance between , n′∈θ θ P can be 

computed as the geodesic distance between ( ), ( ) nF F +′ ∈θ θ S , i.e., 

the length of the shortest curve on n
+S  connecting ( )F θ  and 

( )F ′θ  that is actually a segment of a great circle. Specifically, 

the geodesic distance between , n′∈θ θ P is given by  

 ( )
1

1

( , ) 2arccos ( ), ( ) 2arccos
n

G i i
i

d F F θ θ
+

=

⎛ ⎞′ ′ ′= = ⎜ ⎟
⎝ ⎠
∑θ θ θ θ . (8) 

2.3 Embedding 
In text retrieval, clustering and classification, a document is 
usually considered as a “bag of words” [2]. It is natural to 
assume that the “bag of words” of a document is generated by 
independent draws from a multinomial distribution θ  over 

vocabulary { }1 1,..., nV w w += . In other words, every document is 

modeled by a multinomial distribution, which may change from 
document to document. Given the feature representation of a 
document, 1 1( ,..., )nd d +=d ,  it can be embedded in the 

multinomial manifold n
P  by applying L1 normalization,  

 1
1 1

1 1

ˆ ( ) ,...,i n
n n

i ii i

d d

d d
+

+ +

= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠∑ ∑

θ d . (9) 

The simple TF representation of a document D  sets 
( , )i id tf w D=  which means the term frequency (TF) of word iw  

in document D , i.e., how many times iw  appears in D . The 

embedding that corresponds to the TF representation is 
theoretically justified as the maximum likelihood estimator for 
the multinomial distribution [15, 21, 24].  

The popular TF×IDF representation [2] of a document D  sets 
( , ) ( )i i id tf w D idf w= ⋅ , where the TF component ( , )itf w D  is 

weighted by ( )iidf w , the inverse document frequency (IDF) of 

word iw  in the corpus. If there are m  documents in the corpus 

and word iw  appears in ( )idf w  documents, then 

( )log ( )i iidf m df w= . The embedding that corresponds to the 

TF×IDF representation can be interpreted as a pullback metric of 
the Fisher information through the transformation  

 1 1 1 1
1 1

1 1

( ) ,..., n n
n n

i i i ii i

G
θ λ θ λ

θ λ θ λ
+ +

+ +

= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠∑ ∑

λ
θ  (10) 

with 1

1

i
i n

jj

idf

idf
λ +

=

=
∑

.  

How to find the optimal embedding is an interesting research 
problem to explore. It is possible to learn a Riemannian metric 
even better than using the TF×IDF weighting [23].  

Under the above embeddings, the kernel (that will be discussed 

later) between two documents  d  and ′d  means ( )ˆ ˆ( ), ( )k ′θ d θ d .  



3. DISTANCE BASED KERNELS 
Good kernels should be consistent with one’s intuition of pair-
wise similarity/dissimilarity in the domain. The motivation of 
this paper is to exploit the intrinsic geometric structure of text 
data to design a kernel that can better capture document 
similarity/dissimilarity. Standard text retrieval, clustering and 
classification usually rely on the similarity measure defined by 
the dot product (inner product) of two document vectors in a 
Euclidean space [2]. The geometric interpretation of the dot 
product is that it computes the cosine of the angle between two 
vectors provided they are normalized to unit length. When 
turning to the Riemannian geometry, this similarity measure is 
no longer available on general manifolds, because the concept of 
dot product is only defined locally on the tangent space but not 
globally on the manifold itself. However, there exists a natural 
dissimilarity measure on general manifolds: geodesic distance. 

This section first describes the concept of kernels (§3.1), then 
discusses the Negative Euclidean Distance kernel (§3.2) and the 
Negative Geodesic Distance kernel (§3.3) in detail.  

3.1 PD and CPD Kernels 
Definition 1 (Kernels [32]). Let X  be a nonempty set. A real-
valued symmetric function :k × →�X X  is called a positive 
definite (pd) kernel if for all m ∈�  and all 1,..., m ∈x x X  the 

induced m m×  Gram (kernel) matrix K  with elements 

( , )ij i jk=K x x  satisfies T ≥c Kc 0  given any vector m∈c � . The 

function k  is called a conditionally positive definite (cpd) 

kernel if K  satisfies the above inequality for any vector m∈c �  

with T =c 1 0 . 

As a direct consequence of Definition 1, we have  

Lemma 1 ([32]).  

(i) Any pd kernel is also a cpd kernel. 

(ii) Any constant 0c ≥  is a pd kernel; any constant c ∈�  is a 
cpd kernel. 

(iii) If 1k  and 2k  are pd (resp. cpd) kernels, 1 2, 0α α ≥ , then 

1 1 2 2k kα α+  is a pd (resp. cpd) kernel. 

(iv) If 1k  and 2k  are pd kernels, then 1 2k k  defined by 

1 2 1 2( , ) ( , ) ( , )k k k k′ ′ ′=x x x x x x  is a pd kernel. 

Lemma 2 (Connection of PD and CPD Kernels [4, 29, 32]). 
Let k  be real-valued symmetric function defined on ×X X . 
Then we have  

(i) ( )0 0 0 0

1
( , ) : ( , ) ( , ) ( , ) ( , )

2
k k k k k′ ′ ′= − − +x x x x x x x x x x�  is pd if 

and only if k  is cpd; 

(ii) exp( )tk  is pd for all 0t >  if and only if k  is cpd. 

Theorem 1 (Hilbert Space Representation of PD Kernels 
[32]). Let k  be a real-valued pd kernel  on X . Then there exists 
a Hilbert space of real-valued functions on X  and a mapping 

:Φ →X H  such that  

 ( ), ( ) ( , )k′ ′Φ Φ =x x x x . (11) 

Theorem 2 (Hilbert Space Representation of CPD Kernels 
[32]). Let k  be a real-valued cpd kernel  on X . Then there 
exists a Hilbert space of real-valued functions on X  and a 
mapping :Φ →X H  such that  

 ( )2 1
( ) ( ) ( , ) ( , ) ( , )

2
k k k′ ′ ′ ′Φ − Φ = − + +x x x x x x x x . (12) 

The former theorem implies that pd kernels are justified to be 
used in all kernel methods. The latter theorem implies that cpd 
kernels are justified to be used in the kernel methods which are 
translation invariant, i.e., distance based, in the feature space. 
Since SVMs are translation invariant in the feature space, they 
are able to employ not only pd kernels but also cpd kernels [31, 
32]. 

Standard (commonly used) kernels [32] include:  

Linear ( , ) ,LINk ′ ′=x x x x ,  (13) 

Polynomial ( )( , ) ,
d

POLk c′ ′= +x x x x  with , 0d c∈ ≥� , (14) 

Gaussian 
2

2
( , ) exp

2RBFk
σ

⎛ ⎞′−
′ ⎜ ⎟= −

⎜ ⎟
⎝ ⎠

x x
x x  with 0σ > , and  (15) 

Sigmoid ( )( , ) tanh ,SIGk κ ϑ′ ′= +x x x x  with 0, 0κ ϑ> < .  (16) 

The former three are pd but the last one is not. 

3.2 The Negative Euclidean Distance Kernel 
Lemma 3 ([31, 32]). The negative squared Euclidean distance 

function 
22 ( , )Ed ′ ′− = − −x x x x  is a cpd kernel. 

Lemma 4 (Fractional Powers and Logs of CPD Kernels [4, 
32]). If : ( ,0]k × → −∞X X  is cpd, then so are ( )k β− − , 

0 1β< <  and ln(1 )k− − . 

Proposition 1. The Negative Euclidean Distance (NED) function  

 ( , ) ( , )NED Ek d′ ′= −x x x x  (17) 

is a cpd kernel. 

Proof. It follows directly from Lemma 3 and 4 with 1 2β = . 

3.3 The Negative Geodesic Distance Kernel 
Theorem 3 (Dot Product Kernels in Finite Dimensions [30, 
32]). A function ( , ) ( , )k f′ ′=x x x x  defined on the unit sphere in 

a finite n  dimensional Hilbert space is a pd kernel if and only if 
its Legendre polynomial expansion has only nonnegative 
coefficients, i.e.,  

 
0

( ) ( )n
r r

r

f t b t
∞

=

=∑ P  with 0rb ≥ . (18) 

Theorem 4 (Dot Product Kernels in Infinite Dimensions [30, 
32]). A function ( , ) ( , )k f′ ′=x x x x  defined on the unit sphere in 



an infinite dimensional Hilbert space is a pd kernel if and only if 
its Taylor series expansion has only nonnegative coefficients, i.e.,  

 
0

( ) r
r

r

f t a t
∞

=

=∑  with 0ra ≥ . (19) 

Since (19) is more stringent than (18), in order to prove positive 
definiteness for arbitrary dimensional dot product kernels it 
suffices to show that condition (19) holds [32]. 

Proposition 2.  The Negative Geodesic Distance (NGD) function 
on the multinomial manifold  

 ( , ) ( , )NGD Gk d′ ′= −θ θ θ θ  (20) 

for , n′∈θ θ P  is a cpd kernel. Moreover, the shifted NGD kernel 

( , )NGDk π′ +θ θ   is a pd kernel. 

Proof. Plugging the formula (8) into (20), we have  

 
1

1

( , ) 2arccos
n

NGD i i
i

k θ θ
+

=

⎛ ⎞′ ′= − ⎜ ⎟
⎝ ⎠
∑θ θ . (21) 

Denote 1 1( ,..., )nθ θ +  and  1 1( ,..., )nθ θ +′ ′  by θ  and ′θ  

respectively. It is obvious that θ  and ′θ  are both on the unit 
sphere. Let  

 ( ) 2arccos( )f t tπ= − . (22) 

Then we can rewrite ( , )NGDk ′θ θ  as  

 ( , ) ( , )NGDk f π′ ′= −θ θ θ θ . (23) 

The Maclaurin series (the Taylor series expansion of a function 
about 0) for the inverse cosine function with 1 1t− ≤ ≤  is   

 2 1

0

1

2
arccos( )

2 (2 1) !
r

r

r
t t

r r

π
π

∞
+

=

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠= −

+∑ , (24) 

where ( )xΓ  is the gamma function. Hence  

 2 1

0

( ) r
r

r

f t c t
∞

+

=

=∑ , (25) 

and  

 

1
2

2

(2 1) !
r

r
c

r rπ

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠=

+
. (26) 

Since ( ) 0xΓ >  for all 0x > , we have 0rc >  for all 0,1,2,...r = . 

By Theorem 3 and 4, the dot product kernel ( , )f ′θ θ  is pd. 

Thus the NGD kernel ( , )NGDk ′θ θ  is cpd according to Lemma 1. 

The shifted NGD kernel ( , )NGDk π′ +θ θ  equals to ( , )f ′θ θ  

which has been proved to be pd. 

Definition 2 (Support Vector Machine, Dual Form [32]) 
Given a set of m  labeled examples 1 1( , ),..., ( , )m my yx x  and a 

kernel k , the decision function of the Support Vector Machine 
(SVM) is  

 * *

1

( ) sgn ( , )
m

i i i
i

f y k bα
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑x x x , (27) 

where * * *
1( ,..., )mα α = α  solves the following quadratic 

optimization problem: 

 
1 , 1

1
maximize  ( ) ( , )

2m

m m

i i j i j i j
i i j

W y y kα α α
∈ = =

= −∑ ∑
α

α x x
�

 (28) 

              subject to i0 Cα≤ ≤  for all 1,...,i m=  (29) 

                       and 
1

0
m

i i
i

yα
=

=∑   (30) 

for some 0C > , and *b  is obtained by averaging 

*

1

( , )
m

j i i j i
i

y y kα
=

−∑ x x  over all training examples with *0 j Cα< < . 

Proposition 3.  Let k be a valid kernel, and k k β= +�  where 

β ∈�  is a constant. Then k  and k�   lead to the identical SVM, 

given the same training data.  

Proof. Denote the SVMs with kernel k  and k�  learned from the 

training data 1 1( , ),..., ( , )m my yx x  by ( )SVM k  and ( )SVM k�  

respectively. The objective function (28) of the quadratic 

optimization problem for training ( )SVM k�  is  

1 , 1

1
( ) ( , )

2

m m

i i j i j i j
i i j

W y y kα α α
= =

= −∑ ∑α x x�  (31) 

         ( )
1 , 1

1
( , )

2

m m

i i j i j i j
i i j

y y kα α α β
= =

= − +∑ ∑ x x  (32) 

         
1 , 1 , 1

1
( , )

2 2

m m m

i i j i j i j i j i j
i i j i j

y y k y y
βα α α α α

= = =

= − −∑ ∑ ∑x x  (33) 

         
2

1 , 1 1

1
( , )

2 2

m m m

i i j i j i j i i
i i j i

y y k y
βα α α α

= = =

⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

∑ ∑ ∑x x . (34) 

In addition, for all training examples with *0 j Cα< < ,  

( )* *

1 1

( , ) ( , )
m m

j i i j i j i i j i
i i

y y k y y kα α β
= =

− = − +∑ ∑x x x x�  (35) 

                                 * *

1 1

( , )
m m

j i i j i i i
i i

y y k yα β α
= =

⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

∑ ∑x x . (36) 

Furthermore, the decision function of  ( )SVM k�  is  

* *

1

( ) sgn ( , )
m

i i i
i

f y k bα
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑x x x�  (37) 

        * * *

1 1

sgn ( , )
m m

i i i i i
i i

y k y bα β α
= =

⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑x x . (38) 



Making use of the equality constraint (30), all terms containing 
β  vanish in (34), (36) and (38). Therefore ( )SVM k  and 

( )SVM k�  arrive at equivalent *
α  and *b , and their decision 

functions for classification are identical.  

Proposition 2 and Proposition 3 reveal that although the NGD 
kernel ( , )NGDk ′θ θ  is cpd (not pd), it leads to the identical SVM 

as a pd kernel ( , )NGDk π′ +θ θ . This deepens our understanding of 

the NGD kernel.  

Using the NGD kernel as the starting point, a family of cpd and 
pd kernels can be constructed based on the geodesic distance on 
the multinomial manifold using Lemma 1, Lemma 2, Lemma 4, 
etc [32]. In particular, we have the following pd kernel which 
will be discussed later in the section of related works. 

Proposition 4.  The kernel  

 ( )
1

2

1

1
( , ) 4 exp arccos

nn

NGD E i i
i

k t
t

π θ θ
+

−
−

=

⎛ ⎞⎛ ⎞′ ′= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑θ θ  (39) 

with 0t >  for , n′∈θ θ P  is pd. 

Proof. It is not hard to see that ( , )NGD Ek − ′θ θ  equals to 

( ) 2
1

4 exp ( , )
2

n

NGDt k
t

π − ⎛ ⎞′⎜ ⎟
⎝ ⎠

θ θ , whose positive definiteness is a 

trivial consequence of Proposition 2, Lemma 1 and Lemma 2. 

4. EXPERIMENTS 
We have conducted experiments on two real-world datasets, 
WebKB 1  and 20NG 2 , to evaluate the effectiveness of the 
proposed NGD kernel for text classification using SVMs.  

The WebKB dataset contains manually classified Web pages that 
were collected from the computer science departments of four 
universities (Cornell, Texas, Washington and Wisconsin) and 
some other universities (misc.). Only pages in the top 4 largest 
classes were used, namely student, faculty, course and project. 
All pages were pre-processed using the Rainbow toolkit [25] 
with the options “--skip-header --skip-html --lex-pipe-command=tag-
digits --no-stoplist --prune-vocab-by-occur-count=2”. The task is sort 
of a four-fold cross validation in a leave-one-university-out way: 
training on three of the universities plus the misc. collection, and 
testing on the pages from a fourth, held-out university. This way 
of train/test split is recommended because each university’s 
pages have their idiosyncrasies. The performance measure is the 
multi-class classification accuracy averaged over these four splits. 

The 20NG (20newsgroups) dataset is a collection of 
approximately 20,000 documents that were collected from 20 
different newsgroups [22]. Each newsgroup corresponds to a 
different topic and is considered as a class. All documents were 
pre-processed using the Rainbow toolkit [25] with the option “--
prune-vocab-by-doc-count=2”. The “bydate” version of this dataset 

                                                             
1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/ 

data/ 
2 http://people.csail.mit.edu/people/jrennie/20Newsgroups 

along with its train/test split is used in our experiments due to 
the following considerations: duplicates and newsgroup-
identifying headers have been removed; there is no randomness 
in training and testing set selection so cross-experiment 
comparison is easier; separating the training and testing sets in 
time is more realistic. The performance measure is the multi-
class classification accuracy. 

LIBSVM [5] was employed as the implementation of SVM, with 
all the parameters set to their default values3. LIBSVM uses the 
“one-vs-one” ensemble method for multi-class classification 
because of its effectiveness and efficiency [12]. 

We have tried standard kernels, the NED kernel and the NGD 
kernel. The linear (LIN) kernel worked better than or as well as 
other standard kernels (such as the Gaussian RBF kernel) in our 
experiments, which is consistent with previous observations that 
the linear kernel usually can achieve the best performance for 
text classification [8, 15-17, 36].  Therefore the experimental 
results of standard kernels other than the linear kernel are not 
reported here. 

The text data represented as TF or TF×IDF vectors can be 
embedded in the multinomial manifold by applying L1 
normalization (9), as described in §2.3. Since kernels that 
assume Euclidean geometry (including the LIN and NED kernel) 
often perform better with L2 normalization, we report such 
experimental results as well. The NGD kernel essentially relies 
on the multinomial manifold so we stick to L1 normalization 
when using it. 

The experimental results4 obtained using SVMs with the LIN, 
NED and NGD kernels are shown in Table 1 and 2. 

 

                                                             
3 We have further tried a series of values {…, 0.001, 0.01, 0.1, 1, 

10, 100, 1000, …} for the parameter C and found the 
superiority of the NGD kernel unaffected.  

4 Our experimental results on the WebKB and 20NG datasets 
should not be directly compared with most published results 
because of the difference in experimental settings and 
performance measures. 

Table 1, Experimental results on the WebKB dataset. 

representation normalization kernel accuracy 

LIN 72.57% 
NED 84.39% L1 

NGD 91.88% 
LIN 89.52% 

TF 

L2 
NED 90.08% 
LIN 55.84% 
NED 81.04% L1 

NGD 91.42% 
LIN 88.23% 

TF×IDF 

L2 
NED 87.96% 

 



 
The NED kernel worked comparably to the LIN kernel under L2 
normalization, and superiorly under L1 normalization. This 
observation has not been reported before.  

The NGD kernel consistently outperformed its Euclidean 
counterpart --  the NED kernel, and the representative of 
standard kernels -- the LIN kernel, throughout the experiments. 
All improvements made by the NGD kernel over the LIN or NED 
kernel are statistically significant according to (micro) sign test 
[36] at the 0.005 level (P-Value < 0.005)5, as shown in Table 3. 

 
We think the success of the NGD kernel for text classification is 
attributed to its ability to exploit the intrinsic geometric structure 
of text data. 

5. RELATED WORKS 
It is very attractive to design kernels that can combine the merits 
of generative modeling and discriminative learning. This paper 
lies along the line of research towards this direction.  

An influential work on this topic is the Fisher kernel proposed by 
Jaakkola and Haussler [13]. For any suitably  regular probability 
model ( | )p x θ  with parameters θ , the Fisher kernel is based on 

                                                             
5 Using McNemar’s test also indicates that the improvements 

brought by the NGD kernel are statistically significant. 

the Fisher score log ( | )U p= ∇x θ
x θ  at a single point in the 

parameter space:  

 1( , ) T
Fk U I U−

′′ = x xx x  (40) 

where [ ]TI E U U= x x x . In contrast, the NGD kernel is based on 

the full geometry of statistical models. 

Another typical kernel of this type is the probability product 
kernel proposed by Jebara et al. [14]. Let ( | )p ⋅ θ  be probability 

distributions on a space X . Given a positive constant 0ρ > , the 
probability product kernel is defined as  

 
2

( , ) ( | ) ( | ) ( | ) , ( | )PP L
k p p d p pρ ρ ρ ρ′ ′ ′= = ⋅ ⋅∫θ θ x θ x θ x θ θ

X

� (41) 

assuming that 2( | ) , ( | ) ( )p p Lρ ρ′⋅ ⋅ ∈θ θ X , i.e., 2( | )p dρ
∫ x θ x
X

�  

and 2( | )p dρ′∫ x θ x
X

�  are well-defined (not infinity). For any Θ  

such that 2( | ) ( )p Lρ⋅ ∈θ X  for all ∈Θθ , the probability product 

kernel defined by (41) is pd. In a special case 1 2ρ = , the 

probability product kernel is called the Bhattacharyya kernel 
because in the statistics literature it is known as the 
Bhattacharyya’s affinity between probability distributions. When 
applied to the multinomial manifold, the Bhattacharyya kernel of 

, n′∈θ θ P  turns out to be  

 
1

1

( , )
n

B i i
i

k θ θ
+

=

′ ′=∑θ θ  (42) 

which is closely related to the NGD kernel given by (21) through 

 
1

cos
2B NGDk k

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, (43) 

though they are proposed from different angles. 

The idea of assuming text data as points on the multinomial 
manifold for constructing new classification methods has been 
investigated by Lebanon and Lafferty [21, 24]. In particular, they 
have proposed the information diffusion kernel, based on the 
heat equation on the Riemannian manifold defined by the Fisher 
information metric [21]. On the multinomial manifold, the 
information diffusion kernel can be approximated by 

 ( )
1

22

1

1
( , ) 4 exp arccos

nn

ID i i
i

k t
t

π θ θ
+

−

=

⎛ ⎞⎛ ⎞′ ′≈ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑θ θ . (44) 

It is identical to the pd kernel ( , )NGD Ek − ′θ θ  that is constructed 

based on the NGD kernel (39), except that the inverse cosine 

component is squared. Since 
1

2

1

arccos
n

i i
i

θ θ
+

=

⎛ ⎞′− ⎜ ⎟
⎝ ⎠
∑

2 ( , )Gd θ ′= − θ  

looks not cpd, the kernel ( , )IDk ′θ θ  is probably not pd, according 

to Lemma 2. Whether it is cpd still remains unclear. While the 
information diffusion kernel generalizes the Gaussian kernel of 
Euclidean space, the NGD kernel generalizes the NED kernel 
and provides more insights on this issue. 

Let’s look at the NGD kernel, the Bhattacharyya kernel and the 
information diffusion kernel on the multinomial manifold, in the 

Table 3, Statistical significance tests about the 
differences between the NGD kernel (under L1 
normalization) and the LIN/NEG kernel (under L2 
normalization). 

comparison dataset representation Z 

TF 3.4744 
WebKB-top4 

TF×IDF 4.2500 
TF 7.5234 

NGD vs. LIN  

20NG-bydate 
TF×IDF 7.4853 

TF 2.6726 
WebKB-top4 

TF×IDF 4.4313 
TF 7.6028 

NGD vs. NED 
20NG-bydate 

TF×IDF 8.4718 

Table 2, Experimental results on the 20NG dataset. 

representation normalization kernel accuracy 

LIN 24.68% 
NED 69.16% L1 

NGD 81.94% 
LIN 79.76% 

TF 

L2 
NED 79.76% 
LIN 21.47% 
NED 72.20% L1 

NGD 84.61% 
LIN 82.33% 

TF×IDF 

L2 
NED 82.06% 

 



context of text classification using TF or TF×IDF feature 
representation. It is not hard to see that the above three kernels 
all invoke the square-root squashing function on the term 
frequencies, thus provides an explanation for the long-standing 
mysterious wisdom that preprocessing term frequencies by taking 
squared roots often improves performance of text clustering or 
classification [14]. 

Although the NGD kernel is not restricted to the multinomial 
manifold, it may be hard to have a closed-form formula to 
compute geodesic distances on manifolds with complex structure. 
One possibility to overcome this obstacle is to use manifold 
learning techniques [28, 33, 35]. For example, given a set of data 
points that reside on a manifold, the Isomap algorithm of 
Tenenbaum et al. [35] estimates the geodesic distance between a 
pair of points by the length of the shortest path connecting them 
with respect to some graph (e.g., the k-nearest-neighbor graph) 
constructed on the data points. In case of the Fisher information 
metric, the distance between nearby points (distributions) of X  
can be approximated in terms of the Kullback-Leibler divergence 
via the following relation. When δ′ = +θ θ θ  with δθ  a 
perturbation, the Kullback-Leibler divergence is proportional to 
the density’s Fisher information [7, 20] 

 ( ) ( )
0 21

( | ) || ( | ) ( )
2

D p p F
δ

δ
→

′ =
θ

x θ x θ θ θ . (45) 

Another relevant line of research is to incorporate problem-
specific distance measures into SVMs. One may simply represent 
each example as a vector of its problem-specific distances to all 
examples, or embed the problem-specific distances in a 
(regularized) vector space, and then employ standard SVM 
algorithm [9, 27]. This approach has a disadvantage of losing 
sparsity, consequently they are not suitable for large-scale dataset. 
Another kind of approach directly uses kernels constructed based 
on the problem-specific distance, such as the Gaussian RBF 
kernel with the problem-specific distance measure plugged in [3, 
6, 10, 11, 26]. Our proposed NGD kernel on the multinomial 
manifold encodes a-priori knowledge about the intrinsic 
geometric structure of text data. It has been shown to be 
theoretically justified (cpd) and practically effective. 

6. CONCLUSIONS 
The main contribution of this paper is to prove that the Negative 
Geodesic Distance (NGD) on the multinomial manifold is a 
conditionally positive definite (cpd) kernel, and it leads to 
accuracy improvements over kernels assuming Euclidean 
geometry for text classification.  

Future works are to extend the NGD kernel to other manifolds 
(particularly for multimedia tasks), and apply it in other kernel 
methods for pattern analysis (kernel PCA, kernel Spectral 
Clustering, etc.) [34]. 
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