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Appendix. Proofs

We shall often drop € from the notations whenever
there is no ambiguity.

Lemma 1. For any ¢ > 0, lim,_,o P(|F3,(0) —
Fg(0) <e) =1.

Proof for Lemma 1. By the law of large numbers, for
any €, > 0, n > 0, there exists an N (depending on €;
and 7 only) such that for all n > N, for any ¢, j

P(|pijn — pij| < e1) > 1-1n/3, (1)

Note that only p;;, is a random variable in the above
inequality. Using the union bound, it follows that with
probability at least 1 — 7, the following hold simulta-
neously,

|p11,n —pu| < €1, |p10,n — p1ol < €1, |p01,n —poi| < e

_ 2 _ 2 _ be/(1+5?)
Let a = (1+5%)p11, b = FPmitpuitpor, € = 2050

then when the above inequalities hold simultaneously,
it is easy to verify that 2(1 + 8%)e; < b, and

a— (14 8%)e
b+2(1+ 82)ey
(14 8%)p11,n
52(p11,n + plo,n) + P1o,n + Po1,n
a a+(1+B%)e
b b—2(1+ 8%)ey
(1+8%)piin
B2(p11,n + P10.n) + P10 + Po1n

— €

a
. <

That is, Fﬁ(@) —€e< Fﬂm(Q) < FB(Q) + €.
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Hence for any € > 0, n > 0, there exists N such that
for all n > N, P(|F3,(0) — Fg(0)| <¢) >1—n. O

Lemma 2. Let r(n,n) = ﬁln%. When r(n,n) <
2
%, then with probability at least 1 —n, |F3,,(0) —

3(1+8%)r(n,n)
Fﬁ(9)| < 52m—2(1+52)r?nm)'

Proof for Lemma 2. Let n = 6@72"6?, then ¢ =
r(n,n). Using Hoeffding’s inequality, for any i, j,

P(lpijn —pijl <€) >1-n/3 (2)
Let — B me  thenm e = . 3048%a o _
L €1 = Trpz342e WIEN € = w17

3(1+ﬂ2)r(n, ) a .
ﬁQWl_Q(Hﬁz)Jznm). From (?m; < band ¢ <1, it fol-

be/(1+8%) -, .
lows that ¢ < Toioeri Similarly as in the proof

for Proposition 1, we have P(|Fj3,,(0) — F3(0)| < €) >
1—n. O

Lemma 2 leads to the following sample complexity: for

e,n > 0, for n > %(1522 35c) 2 In %, with probablity

at least 1 —n, |Fsn(0) — Fz(0)] < e.

The above bounds are not the tightest. For example,
2
Lemma 2 still holds when ﬁQWP’l(i;g +);3(27)LT78H7) is replaced

- (148%)(2F3(0)+D)r(n,m)
by the tighter bound & - 5 qmy Gy

p1(0) is the probability that ¢ classifies an instance as
positive. In practice, the tighter bound is not useful
for estimating the performance of a classifier, because
it contains the terms F(6) and p;(f). For the same
reason, the tighter bound is also not useful in the uni-
form convergence that we seek next.

where
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Theorem 3. Let O©CX—Y, d=V(C(0O),
0* = argmaxgco F(0), and 0,, = argmaxgeco Fj3,,(0).

Let 7(n,n) = \/l(lng +dIn2). If n is such that

then with probability at least 1 —n,

6(1+5°)7(n,n)
B2m1—2(1+B2)r(n,n)

r(n,n) < (€+52)
Fg(0,) > Fp(0) —

2en

Proof for Theorem 3. Let n = 12e?™ 73 _”ef, then
€1 = 7(n,n). Note that the VC dimension for class con-
sisiting of loss functions of the form I(y = iAf(z) = j)
is the same as that for ©, and the same remark applies
for the the class consisting of loss functions of the form

I(6(x) = y). By (3.3) in (Vapnik, 1995), for any i, j

P(St;p Pijn(60) >1-n/3 (3)

—pii(0)] < e1)

By the union bound, with probability at least 1 —
1, the inequalities supy [p11.,(0) — p11(0)] < €1,

supg |p10.n(0) — p10(0)| < €1, supg [po1,n — Po1| < €,
2
hold simultaneously. Let ¢; = MBrW 373_1266, then follow-

ing the proof of Lemma 2,

Fg(0,) — Fp(0")
= F3(0n) — Fpn(6n) + Fpn(bn) — Fp(0%)
> Fg(0h) — Fan(0n) + Fpn(07) — Fp(07)
S 9o __ 60+ B*)7(n,n)

By —2(1 + B2)7(n, n)

Theorem 4. For any classifier 8, Fg(0) < Fp(t*).

Proof for Theorem j. Let 6 be an arbitrary classifier.
If @ ¢ TUT’', then when all z € X are mapped to the
number axis using © — P(1|x), there must be some
set B of negative instances which break the positive
instances into two sets A and C'. Formally, there exist
disjoint subsets A, B and C of X such that

AUC ={z:0(x) =1}

0(B) = {0}

sup P(1]z) < mf P(lz) < sup P(lz) < mf P(1|z).
€A

Without loss of  generality we assume
P(A),P(B),P(C) > 0. Let a = P(A), z =

E(P(11X)|X € A), b= P(B), y = E(P(1|X)|X € B),
and ¢ = P(C), 2 = E(P(11X)|X € C), then
xz < y < z. Note that the expectation is taken with
respect to X. Let O and 0¢c be the same as 0 except
that 0p(B) = {1} and 0c(A) = {0}. Thus we have

1+ 2 ar+tcz 14+ 2 ax+by+tcz
Fﬁ(e) = (,BQBTFI(*FGJrC )’ Fﬂ(aB) = ( Bg‘n')l(Jra«Fb?ic )’
1432
and Fj(0c) = L2

We show that either Fg(0p) > Fz(6) or Fz(6c) >
Fg(#). Assume otherwise, then Fg(0) > Fp(0p),
which implies that az + cz > (8?m; +a+c)y. In addi-
tion, F3(0) > Fs(0c), which implies that (821 +c)z >
cz. Thus ax + cz > (B%m + ¢)x + ax > cz + az,
a contradiction. Hence it follows that we can con-
vert 6 to a classifier ' such that 8’ € 7 U T’, and
Fg(0) < Fs(0') < Fa(t”). O

Theorem 5. A rank-preserving function is an optimal
score function.

Proof for Theorem 5. Immediate from Theorem 4.
O

Theorem 6. For any classifier 8, any €, > 0, there
exists Ng cn such that for all n > Ng ., with proba-
bility at least 1 —n, |E[F(0(x),y)] — Fp(9)| <e.

Proof for Theorem 6. This follows closely the proof
for Lemma 7. O

Lemma 7. For any €,n > 0, there ewists Ng ., such
that for all n > Ng ., with probability at least 1 —n,
for all 6 € [0,1], |E[Fp(I5(x),y)] — Fs(ls)| <e.

Proof for Lemma 7. p;(0) = E(I(Is(X) = 4)) denotes
the probability that an observation is predicted to be
in class i, and p;;(0) = E(P(j|X)|Is(z) = i) denotes
the probability that an observation predicted to be in
class i is actually in class j. Let n;(8) = >, I(Is(xx) =
i), n3i(6) = 224 Wyw = j ALs(x) = ), then pi(6) = 7+
and p;;(0) = 7;]’((6)) are empirical estimates for p;(9)
and pji; (5) respectively. We will also need to use
~;|Z( ) = E P(jl2)I(Is(x) = 4) as the empirical
estimate of pﬂ (6) based on x only. Note that p;(0)’s
and p’, i (6)’s are random variables depending on x only,

and pm(é)’s are random variables depending on x and
y. In the following, we shall drop ¢ from the notations
as long as there is no ambiguity. Let Fjg(d) denote the
Fg-measure of I(z). We have

(14 B*)prp1j
B2(p1p1p + popajo) + P1
(1+ 8%)p1pip
B2(p1p1)1 + Pob1jo) + P1

Fg(d) =

Fp(I5(x),y)

The main idea of the proof is to first show that

(a) there is high probability that x gives good esti-
mates for p;(9)’s and p);(0)’s for all §, and then
show that
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(b) for such x, there is high probability that x,y give
good estimates for p;(0)’s and py|;(5)’s, thus

(¢) Fg(Is5(x),y) has high probability of being close to
F3(0), and its expectation is close to Fz(d) as a
consequence.

(a) We first show that for any ¢ > 0, with probability
at least 1 — 1261n(2€")_"t4, we have for all d, for all 7,

1:(8) = pi(8)] < 2, 15:(8)5y4(8) — pi(O)paja(8)| < £ (6)

To see this, consider a fixed i. Let f5(x) = I(Is(x) = i),
F={fs:0<6 <1}, gs(x) =I(Is(x) = i)P(1]x), and
G ={gs : 0 <6 < 1}. Note that the expected value
and empirical average of f5 and gs are p;(d), p;(9),
Pi(6)p1)i(9) and ﬁi(é)ﬁ’lli(é) respectively. In addition,
both F and G have VC dimension 1. Thus, by Inequal-
ity (3.3) and (3.10) in (Vapnik, 1995), each of the fol-

lowing hold with probability at least 1 — 4eln(2en)—nt*,

V8[|p1(8) — p1(8)] < 7)) (7)
Vo[5i(0)py;(9) — pi(d)p1:(9)] < t?] (8)

Now observing that |p;(6)—p1(8)] < ¢ implies |po(5) —
po(d)| < 2, and applying the union bound, then with
probability at least 1 — 12en(2em)=nt* ' (6) holds.

(b) Consider a fixed x satisfying that for some ¢, for all
i, |Pi(6) = pi(9)] < ¢* and [pi(8)p;(8) — pi(9)p11s(9)] <
2, we ShOBW that if ¢ < 1, then with probability at least
1 — 4e?nt

)

Vi[pi(0)p11i(0) — pi(d)p1ji(d)] < 5t (9)
Consider a fixed i. If p; < 2¢, then
|DiD1)s — Pip1jil < Pib1ji + pip1)i < Pi +pi < 5t

If p; > 2t, then |]5'1‘i —pual <t I and we also have
pi > 2t—t* > t, that is n; > nt. Note that p|; is of the
form - >71" | I; where the I;’s are independent binary
random variables, and the expected value of py; is ;5’1‘ .
then applying Hoeﬁging’s inequality, with probability
at least 1 — 2e2""*" we have |py); — 15/1|z'| < t. When
pi > 2t, |pi —pi| <t* < t, and |py; — Pyl < t, we have

(pi —t)(p1js — 2t) — pip1)i
2t% — 2p;t — py)it > —5t
(pi +t)(p1yi + 2t) — pip1ji
2pit + pyjit + 262 < 5t

ﬁzﬁui — PiP1]i

PiD1)i — Pib1)i

ININ IV IV

!This can be seen by observing that if ﬁll\i —p1i >t
thenﬁiﬁ'ﬂi—pww > pi(Bhyi—pi) —|Pi—pi| > 2t-t—t* = ¢2,
a contradiction. Similarly, the other case can be shown to
be impossible.

That is, [pip1); — pip1)il < 5t. Combining the above
argument, we see that (9) holds with probability at
least 1 — 4e2nt”.

(c) If for some &, x satisfies |p; — p;| <t? < t and x,y
satisfies (9), then by eq. 5,

Fs(15(x),y) > (1+ %) (p1p1js — 5t)
B "= B2(pipyyy + 5t + popajo + 5t) + p1 +t
> F(0) —mt

where ; is some positive constant that depends on 3
and m; only. The last inequality can be seen by noting
that for a,b,d,t > 0, ¢ > 0, we have Z;—z > %—%t,
and observing that in this case a = (1 + ﬁg)plpm <
(1+8%)m, b=5+58% ¢ = f°m +p1 > %, and
d=105% 4 1.

1 _B%m
2108241

1+ %) (pip1s + 5t
F(I5(x),y) < = ( D1y + 51)

B%(p1p1j1 — 5t + popijo — 5t) +p1 — ¢
< Fp(0) + 72t

Similarly, if ¢ < then

where 7, is some positive constant that depends on
B and 7 only. The last inequality can be seen by
noting that for a,b,d > 0, ¢ > 0, ¢ > 2dt, we have

ng’é < % + Q%t, and observing that in this case
a=1+4ppipip < (L+B%)m, b=5+58%c=

B%my +p1 > B2m1, d =108 + 1, and ¢ > 2dt.

Now it follows that for an x satisfying (6), then for

2
any d € [0, 1], for any ¢t < %105672711’

least 1 —4e~ " | |F5(I5(x),y) — F5(6)| < max(v1,72)t.
Hence

with probability at

|E[F5(Ls(x),y)] — F5(8)] < 4e™™ -1+ max(y1,72)¢

For any € > 0, further restrict ¢ to be the maximum
satisfying ¢t < W, and let this value be de-
x(71,72)
noted by tg, then ¢y, depends on 3,¢ (and 7). Now
the second term in the above inequality is less than
€/2. The first term is monotonically decreasing in n
and converges to 0 as n — co. Now take Ng,, to be
the smallest number such that for n = Ng  ,, the first
term is less than €/2, and 12¢™Zem)=nt" « ) then
for any n > Ng., with probability at least 1 — 7,
[By~p (0 [Fp(ls(x),y)] — Fp(0)] <e O

Theorem 8. Let s*(x) = maxs E[Fs(s,y)], with s
satisfying {P(1]x;) | s; = 1} N {P(1]z;) | s; =0} = 0.
Let t* = argmaxye7 F3(t). Then for any e,n > 0,

(a) There exists Ng e, such that for all n > Ng ¢,
with probability at least 1 — n, E[Fz(t*(x),y)] <
E(Fj(s*(x),y)) < E[Fp(t*(x),y)] + €.
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(b) There exists Ng., such that for all n > Ng ..,
with probability at least 1 — n, |Fp(t*(x),y) —
Fp(s*(x),y))| <e

Proof for Theorem 8. (a) By Lemma 7, when n >
Npg, < n, with probability at least 1 — 7, x satisfies that
for all 0, [Ey~p(.1x)[Fp(ls(x),y)] — F3(d)| < €/2. Con-
sider such an x. The lower bound is clear because
s = Iy« satisfies {P(1|z;) : s; = 1} N{P(1|z;) : s; =
0} = 0. For the upper bound, by Theorem 9 and the
definition of s*(x), we have s*(x) = Iy (x) for some ¢§'.
Thus E[F(s*(x),y)] < Fp(d') +€/2 < Fg(d') +€¢/2 <
Fg(0*) + €/2 < E[Fs(Is+(x),y)] + €.

(b) From the proof for Lemma 7, for any ¢ > 0, with
probability at least 1 — 1261“(26")””4, we have for all
d, for all 4, x satisfies (6), that is,

1:(8) — pi(8)] < 3, |]5i(5)]5/1|1'(6) —pi(0)p1i(0)] < t2

2
In addition, if ¢ < 127,

with probability at least 1 — 4e27t”

[F(I5(x),y) — Fp(0)| <t

then for such x, for any 9,

where 7 is a constant depending on € (and m1). Note
that there exists ¢’ such that Iy (x) = s*(x). Using
the union bound, with probability at least 1 —8e—2nt"

|Fa(Is (x),y) — Fp(8")| <t

[Fi(Is(x),y) = F(8")| <t (10)

Hence we have

E(Fa(Ly (x),y) < (1— 82" ) (Fp (&) + yt) + 82"
B(Fp(Ls+ (x),y) > (1 —8e™2"") (F(8") — 1)

Combining the above two inequalities with

E(Fs(ly (x),y) > E(F3(Ls«(x),y), we have
8672nt3

*\ " < o oe
Fp(0%) = Fp(&') <29t + o — s

For those y satisfying (10), we have

[Fs(Iy (%), y) = Fp(Is-(x), )|
= |Fs(Iy (x,y) = Fp(d")| + [F(5") — F(6")]
+ |F3(0") — F(Is-(x), y)l

8672nt3

<Ayt 1 — 8e—2nt?

Combining the above argument, we have Wit}% prob-
ability at least (1 — 12e™(Zem)=7t7)(1 — 8¢=27") that

_ 3
Se 2nt

[Fa(s™(x),y) = Fp(t*(x),y)| <t + -

Now choose ¢ = ¢, then for sufficiently large n, we
y

can guarantee that with probability at least 1 — 7,
[Fa(s™(x),y) — Fa(t"(x),y)| < e O

Theorem 9. (Probability Ranking Principle for F-
measure, Lewis 1995) Suppose s* is a mazimizer of
E(Fs(s,y)). Then min{p; | sf = 1} is not less than
max{p; | s} = 0}.
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