Optimizing F-Measures: A Tale of Two Approaches

Nan Ye

YENAN@COMP.NUS.EDU.SG
Department of Computer Science, National University of Singapore, Singapore 117417

Kian Ming A. Chai

CKIANMIN@DSO.ORG.SG
DSO National Laboratories, Singapore 118230

Wee Sun Lee

LEEWS@COMP.NUS.EDU.SG
Department of Computer Science, National University of Singapore, Singapore 117417

Hai Leong Chieu

CHAILEON@DSO.ORG.SG
DSO National Laboratories, Singapore 118230

Appendix. Proofs

We shall often drop θ from the notations whenever there is no ambiguity.
Lemma 1. For any $\epsilon>0$, $\lim _{n \rightarrow \infty} \mathrm{P}\left(\mid F_{\beta, n}(\theta)-\right.$ $\left.F_{\beta}(\theta) \mid<\epsilon\right)=1$.

Proof for Lemma 1. By the law of large numbers, for any $\epsilon_{1}>0, \eta>0$, there exists an N (depending on ϵ_{1} and η only) such that for all $n>N$, for any i, j

$$
\begin{equation*}
\mathrm{P}\left(\left|p_{i j, n}-p_{i j}\right|<\epsilon_{1}\right)>1-\eta / 3 \tag{1}
\end{equation*}
$$

Note that only $p_{i j, n}$ is a random variable in the above inequality. Using the union bound, it follows that with probability at least $1-\eta$, the following hold simultaneously,
$\left|p_{11, n}-p_{11}\right|<\epsilon_{1},\left|p_{10, n}-p_{10}\right|<\epsilon_{1},\left|p_{01, n}-p_{01}\right|<\epsilon_{1}$

Let $a=\left(1+\beta^{2}\right) p_{11}, b=\beta^{2} \pi_{1}+p_{11}+p_{01}, \epsilon_{1}=\frac{b \epsilon /\left(1+\beta^{2}\right)}{\frac{2 a}{b}+2 \epsilon+1}$, then when the above inequalities hold simultaneously, it is easy to verify that $2\left(1+\beta^{2}\right) \epsilon_{1}<b$, and

$$
\begin{aligned}
\frac{a}{b}-\epsilon & \leq \frac{a-\left(1+\beta^{2}\right) \epsilon_{1}}{b+2\left(1+\beta^{2}\right) \epsilon_{1}} \\
& <\frac{\left(1+\beta^{2}\right) p_{11, n}}{\beta^{2}\left(p_{11, n}+p_{10, n}\right)+p_{10, n}+p_{01, n}} \\
\frac{a}{b}+\epsilon & \geq \frac{a+\left(1+\beta^{2}\right) \epsilon_{1}}{b-2\left(1+\beta^{2}\right) \epsilon_{1}} \\
& >\frac{\left(1+\beta^{2}\right) p_{11, n}}{\beta^{2}\left(p_{11, n}+p_{10, n}\right)+p_{10, n}+p_{01, n}}
\end{aligned}
$$

That is, $F_{\beta}(\theta)-\epsilon<F_{\beta, n}(\theta)<F_{\beta}(\theta)+\epsilon$.

Hence for any $\epsilon>0, \eta>0$, there exists N such that for all $n>N, \mathrm{P}\left(\left|F_{\beta, n}(\theta)-F_{\beta}(\theta)\right|<\epsilon\right)>1-\eta$.

Lemma 2. Let $r(n, \eta)=\sqrt{\frac{1}{2 n} \ln \frac{6}{\eta}}$. When $r(n, \eta)<$ $\frac{\beta^{2} \pi_{1}}{2\left(1+\beta^{2}\right)}$, then with probability at least $1-\eta, \mid F_{\beta, n}(\theta)-$ $F_{\beta}(\theta) \left\lvert\,<\frac{3\left(1+\beta^{2}\right) r(n, \eta)}{\beta^{2} \pi_{1}-2\left(1+\beta^{2}\right) r(n, \eta)}\right.$.

Proof for Lemma 2. Let $\eta=6 e^{-2 n \epsilon_{1}^{2}}$, then $\epsilon_{1}=$ $r(n, \eta)$. Using Hoeffding's inequality, for any i, j,

$$
\begin{equation*}
\mathrm{P}\left(\left|p_{i j, n}-p_{i j}\right|<\epsilon_{1}\right) \quad>1-\eta / 3 \tag{2}
\end{equation*}
$$

Let $\epsilon_{1}=\frac{\beta^{2}}{1+\beta^{2}} \frac{\pi_{1} \epsilon}{3+2 \epsilon}$, then $\epsilon=\frac{3\left(1+\beta^{2}\right) \epsilon_{1}}{\beta^{2} \pi_{1}-2\left(1+\beta^{2}\right) \epsilon_{1}}=$ $\frac{3\left(1+\beta^{2}\right) r(n, \eta)}{\beta^{2} \pi_{1}-2\left(1+\beta^{2}\right) r(n, \eta)}$. From $\beta^{2} \pi_{1} \leq b$ and $\frac{a}{b} \leq 1$, it follows that $\epsilon_{1} \leq \frac{b \epsilon /\left(1+\beta^{2}\right)}{\frac{2 a}{b}+2 \epsilon+1}$. Similarly as in the proof for Proposition 1, we have $\mathrm{P}\left(\left|F_{\beta, n}(\theta)-F_{\beta}(\theta)\right|<\epsilon\right)>$ $1-\eta$.

Lemma 2 leads to the following sample complexity: for $\epsilon, \eta>0$, for $n>\frac{1}{2}\left(\frac{\beta^{2}}{1+\beta^{2}} \frac{\pi_{1} \epsilon}{3+2 \epsilon}\right)^{-2} \ln \frac{6}{\eta}$, with probablity at least $1-\eta,\left|F_{\beta, n}(\theta)-F_{\beta}(\theta)\right|<\epsilon$.
The above bounds are not the tightest. For example, Lemma 2 still holds when $\frac{3\left(1+\beta^{2}\right) r(n, \eta)}{\beta^{2} \pi_{1}-2\left(1+\beta^{2}\right) r(n, \eta)}$ is replaced by the tighter bound $\frac{\left(1+\beta^{2}\right)\left(2 F_{\beta}(\theta)+1\right) r(n, \eta)}{\beta^{2} \pi_{1}+p_{1}(\theta)-2\left(1+\beta^{2}\right) r(n, \eta)}$, where $p_{1}(\theta)$ is the probability that θ classifies an instance as positive. In practice, the tighter bound is not useful for estimating the performance of a classifier, because it contains the terms $F_{\beta}(\theta)$ and $p_{1}(\theta)$. For the same reason, the tighter bound is also not useful in the uniform convergence that we seek next.

Theorem 3. Let $\Theta \subseteq X \mapsto Y, \quad d=V C(\Theta)$, $\theta^{*}=\arg \max _{\theta \in \Theta} F_{\beta}(\theta)$, and $\theta_{n}=\arg \max _{\theta \in \Theta} F_{\beta, n}(\theta)$. Let $\bar{r}(n, \eta)=\sqrt{\frac{1}{n}\left(\ln \frac{12}{\eta}+d \ln \frac{2 e n}{d}\right)}$. If n is such that $\bar{r}(n, \eta)<\frac{\beta^{2} \pi_{1}}{2\left(1+\beta^{2}\right)}$, then with probability at least $1-\eta$, $F_{\beta}\left(\theta_{n}\right)>F_{\beta}\left(\theta^{*}\right)-\frac{6\left(1+\beta^{2}\right) \bar{r}(n, \eta)}{\beta^{2} \pi_{1}-2\left(1+\beta^{2}\right) \bar{r}(n, \eta)}$.

Proof for Theorem 3. Let $\eta=12 e^{d \ln \frac{2 e n}{d}-n \epsilon_{1}^{2}}$, then $\epsilon_{1}=\bar{r}(n, \eta)$. Note that the VC dimension for class consisiting of loss functions of the form $\mathrm{I}(y=i \wedge \theta(x)=j)$ is the same as that for Θ, and the same remark applies for the the class consisting of loss functions of the form $\mathrm{I}(\theta(x)=y)$. By (3.3) in (Vapnik, 1995), for any i, j

$$
\begin{equation*}
\mathrm{P}\left(\sup _{\theta}\left|p_{i j, n}(\theta)-p_{i j}(\theta)\right|<\epsilon_{1}\right) \quad>1-\eta / 3 \tag{3}
\end{equation*}
$$

By the union bound, with probability at least 1 η, the inequalities $\sup _{\theta}\left|p_{11, n}(\theta)-p_{11}(\theta)\right|<\epsilon_{1}$, $\sup _{\theta}\left|p_{10, n}(\theta)-p_{10}(\theta)\right|<\epsilon_{1}, \sup _{\theta}\left|p_{01, n}-p_{01}\right|<\epsilon_{1}$, hold simultaneously. Let $\epsilon_{1}=\frac{\beta^{2}}{1+\beta^{2}} \frac{\pi_{1} \epsilon}{3+2 \epsilon}$, then following the proof of Lemma 2,

$$
\begin{aligned}
& F_{\beta}\left(\theta_{n}\right)-F_{\beta}\left(\theta^{*}\right) \\
= & F_{\beta}\left(\theta_{n}\right)-F_{\beta, n}\left(\theta_{n}\right)+F_{\beta, n}\left(\theta_{n}\right)-F_{\beta}\left(\theta^{*}\right) \\
\geq & F_{\beta}\left(\theta_{n}\right)-F_{\beta, n}\left(\theta_{n}\right)+F_{\beta, n}\left(\theta^{*}\right)-F_{\beta}\left(\theta^{*}\right) \\
\geq & -2 \epsilon=-\frac{6\left(1+\beta^{2}\right) \bar{r}(n, \eta)}{\beta^{2} \pi_{1}-2\left(1+\beta^{2}\right) \bar{r}(n, \eta)}
\end{aligned}
$$

Theorem 4. For any classifier $\theta, F_{\beta}(\theta) \leq F_{\beta}\left(t^{*}\right)$.
Proof for Theorem 4. Let θ be an arbitrary classifier. If $\theta \notin \mathcal{T} \cup \mathcal{T}^{\prime}$, then when all $x \in X$ are mapped to the number axis using $x \rightarrow P(1 \mid x)$, there must be some set B of negative instances which break the positive instances into two sets A and C. Formally, there exist disjoint subsets A, B and C of X such that

$$
\begin{aligned}
A \cup C & =\{x: \theta(x)=1\} \\
\theta(B) & =\{0\} \\
\sup _{x \in A} P(1 \mid x) \leq \inf _{x \in B} P(1 \mid x) & \leq \sup _{x \in B} P(1 \mid x) \leq \inf _{x \in C} P(1 \mid x) .
\end{aligned}
$$

Without loss of generality we assume $P(A), P(B), P(C)>0$. Let $a=P(A), x=$ $\mathrm{E}(P(1 \mid X) \mid X \in A), b=P(B), y=\mathrm{E}(P(1 \mid X) \mid X \in B)$, and $c=P(C), z=\mathrm{E}(P(1 \mid X) \mid X \in C)$, then $x \leq y \leq z$. Note that the expectation is taken with respect to X. Let θ_{B} and θ_{C} be the same as θ except that $\theta_{B}(B)=\{1\}$ and $\theta_{C}(A)=\{0\}$. Thus we have $F_{\beta}(\theta)=\frac{\left(1+\beta^{2}\right)(a x+c z)}{\beta^{2} \pi_{1}+a+c}, F_{\beta}\left(\theta_{B}\right)=\frac{\left(1+\beta^{2}\right)(a x+b y+c z)}{\beta^{2} \pi_{1}+a+b+c}$, and $F_{\beta}\left(\theta_{C}\right)=\frac{\left(1+\beta^{2}\right) c z}{\beta^{2} \pi_{1}+c}$.

We show that either $F_{\beta}\left(\theta_{B}\right) \geq F_{\beta}(\theta)$ or $F_{\beta}\left(\theta_{C}\right) \geq$ $F_{\beta}(\theta)$. Assume otherwise, then $F_{\beta}(\theta)>F_{\beta}\left(\theta_{B}\right)$, which implies that $a x+c z>\left(\beta^{2} \pi_{1}+a+c\right) y$. In addition, $F_{\beta}(\theta)>F_{\beta}\left(\theta_{C}\right)$, which implies that $\left(\beta^{2} \pi_{1}+c\right) x>$ $c z$. Thus $a x+c z>\left(\beta^{2} \pi_{1}+c\right) x+a x>c z+a x$, a contradiction. Hence it follows that we can convert θ to a classifier θ^{\prime} such that $\theta^{\prime} \in \mathcal{T} \cup \mathcal{T}^{\prime}$, and $F_{\beta}(\theta) \leq F_{\beta}\left(\theta^{\prime}\right) \leq F_{\beta}\left(t^{*}\right)$.

Theorem 5. A rank-preserving function is an optimal score function.

Proof for Theorem 5. Immediate from Theorem 4.

Theorem 6. For any classifier θ, any $\epsilon, \eta>0$, there exists $N_{\beta, \epsilon, \eta}$ such that for all $n>N_{\beta, \epsilon, \eta}$, with probability at least $1-\eta,\left|\mathrm{E}\left[F_{\beta}(\theta(\mathbf{x}), \mathbf{y})\right]-F_{\beta}(\theta)\right|<\epsilon$.

Proof for Theorem 6. This follows closely the proof for Lemma 7.

Lemma 7. For any $\epsilon, \eta>0$, there exists $N_{\beta, \epsilon, \eta}$ such that for all $n>N_{\beta, \epsilon, \eta}$, with probability at least $1-\eta$, for all $\delta \in[0,1],\left|\mathrm{E}\left[F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right)\right]-F_{\beta}\left(\mathrm{I}_{\delta}\right)\right|<\epsilon$.

Proof for Lemma 7. $p_{i}(\delta)=\mathrm{E}\left(\mathrm{I}\left(\mathrm{I}_{\delta}(X)=i\right)\right)$ denotes the probability that an observation is predicted to be in class i, and $p_{j \mid i}(\delta)=\mathrm{E}\left(P(j \mid X) \mid \mathrm{I}_{\delta}(x)=i\right)$ denotes the probability that an observation predicted to be in class i is actually in class j. Let $n_{i}(\delta)=\sum_{k} \mathrm{I}\left(\mathrm{I}_{\delta}\left(x_{k}\right)=\right.$ $i), n_{j i}(\delta)=\sum_{k} \mathrm{I}\left(y_{k}=j \wedge \mathrm{I}_{\delta}\left(x_{k}\right)=i\right)$, then $\tilde{p}_{i}(\delta)=\frac{n_{i}}{n}$ and $\tilde{p}_{j \mid i}(\delta)=\frac{n_{j i}(\delta)}{n_{i}(\delta)}$ are empirical estimates for $p_{i}(\delta)$ and $p_{j \mid i}(\delta)$ respectively. We will also need to use $\tilde{p}_{j \mid i}^{\prime}(\delta)=\frac{1}{n_{i}} \sum_{i} P(j \mid x) \mathrm{I}\left(\mathrm{I}_{\delta}(x)=i\right)$ as the empirical estimate of $p_{j \mid i}(\delta)$ based on \mathbf{x} only. Note that $\tilde{p}_{i}(\delta)$'s and $\tilde{p}_{j \mid i}^{\prime}(\delta)$'s are random variables depending on \mathbf{x} only, and $\tilde{p}_{j \mid i}(\delta)$'s are random variables depending on \mathbf{x} and \mathbf{y}. In the following, we shall drop δ from the notations as long as there is no ambiguity. Let $F_{\beta}(\delta)$ denote the F_{β}-measure of $\mathrm{I}_{\delta}(x)$. We have

$$
\begin{align*}
F_{\beta}(\delta) & =\frac{\left(1+\beta^{2}\right) p_{1} p_{1 \mid 1}}{\beta^{2}\left(p_{1} p_{1 \mid 1}+p_{0} p_{1 \mid 0}\right)+p_{1}} \tag{4}\\
F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right) & =\frac{\left(1+\beta^{2}\right) \tilde{p}_{1} \tilde{p}_{1 \mid 1}}{\beta^{2}\left(\tilde{p}_{1} \tilde{p}_{1 \mid 1}+\tilde{p}_{0} \tilde{p}_{1 \mid 0}\right)+\tilde{p}_{1}} \tag{5}
\end{align*}
$$

The main idea of the proof is to first show that
(a) there is high probability that \mathbf{x} gives good estimates for $p_{i}(\delta)$'s and $p_{1 \mid i}(\delta)$'s for all δ, and then show that
(b) for such \mathbf{x}, there is high probability that \mathbf{x}, \mathbf{y} give good estimates for $p_{i}(\delta)$'s and $p_{1 \mid i}(\delta)$'s, thus
(c) $F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right)$ has high probability of being close to $F_{\beta}(\delta)$, and its expectation is close to $F_{\beta}(\delta)$ as a consequence.
(a) We first show that for any $t>0$, with probability at least $1-12 e^{\ln (2 e n)-n t^{4}}$, we have for all δ, for all i,

$$
\begin{equation*}
\left|\tilde{p}_{i}(\delta)-p_{i}(\delta)\right| \leq t^{2},\left|\tilde{p}_{i}(\delta) \tilde{p}_{1 \mid i}^{\prime}(\delta)-p_{i}(\delta) p_{1 \mid i}(\delta)\right| \leq t^{2} \tag{6}
\end{equation*}
$$

To see this, consider a fixed i. Let $f_{\delta}(x)=\mathrm{I}\left(\mathrm{I}_{\delta}(x)=i\right)$, $\mathcal{F}=\left\{f_{\delta}: 0 \leq \delta \leq 1\right\}, g_{\delta}(x)=\mathrm{I}\left(\mathrm{I}_{\delta}(x)=i\right) P(1 \mid x)$, and $\mathcal{G}=\left\{g_{\delta}: 0 \leq \delta \leq 1\right\}$. Note that the expected value and empirical average of f_{δ} and g_{δ} are $p_{i}(\delta), \tilde{p}_{i}(\delta)$, $p_{i}(\delta) p_{1 \mid i}(\delta)$ and $\tilde{p}_{i}(\delta) \tilde{p}_{1 \mid i}^{\prime}(\delta)$ respectively. In addition, both \mathcal{F} and \mathcal{G} have VC dimension 1 . Thus, by Inequality (3.3) and (3.10) in (Vapnik, 1995), each of the following hold with probability at least $1-4 e^{\ln (2 e n)-n t^{4}}$,

$$
\begin{gather*}
\left.\forall \delta\left[\left|\tilde{p}_{1}(\delta)-p_{1}(\delta)\right| \leq t^{2}\right]\right) \tag{7}\\
\forall \delta\left[\left|\tilde{p}_{i}(\delta) \tilde{p}_{1 \mid i}^{\prime}(\delta)-p_{i}(\delta) p_{1 \mid i}(\delta)\right| \leq t^{2}\right] \tag{8}
\end{gather*}
$$

Now observing that $\left|\tilde{p}_{1}(\delta)-p_{1}(\delta)\right| \leq t^{2}$ implies $\mid \tilde{p}_{0}(\delta)-$ $p_{0}(\delta) \mid \leq t^{2}$, and applying the union bound, then with probability at least $1-12 e^{\ln (2 e n)-n t^{4}}$, (6) holds.
(b) Consider a fixed \mathbf{x} satisfying that for some δ, for all $i,\left|\tilde{p}_{i}(\delta)-p_{i}(\delta)\right| \leq t^{2}$ and $\left|\tilde{p}_{i}(\delta) \tilde{p}_{1 \mid i}^{\prime}(\delta)-p_{i}(\delta) p_{1 \mid i}(\delta)\right| \leq$ t^{2}, we show that if $t<1$, then with probability at least $1-4 e^{2 n t^{3}}$,

$$
\begin{equation*}
\forall i\left|\tilde{p}_{i}(\delta) \tilde{p}_{1 \mid i}(\delta)-p_{i}(\delta) p_{1 \mid i}(\delta)\right| \leq 5 t \tag{9}
\end{equation*}
$$

Consider a fixed i. If $p_{i} \leq 2 t$, then

$$
\left|\tilde{p}_{i} \tilde{p}_{1 \mid i}-p_{i} p_{1 \mid i}\right| \leq \tilde{p}_{i} \tilde{p}_{1 \mid i}+p_{i} p_{1 \mid i} \leq \tilde{p}_{i}+p_{i} \leq 5 t
$$

If $p_{i}>2 t$, then $\left|\tilde{p}_{1 \mid i}^{\prime}-p_{1 \mid i}\right| \leq t,{ }^{1}$ and we also have $\tilde{p}_{i}>2 t-t^{2}>t$, that is $n_{i}>n t$. Note that $\tilde{p}_{1 \mid i}$ is of the form $\frac{1}{n_{i}} \sum_{i=1}^{n_{i}} I_{i}$ where the I_{i} 's are independent binary random variables, and the expected value of $\tilde{p}_{1 \mid i}$ is $\tilde{p}_{1 \mid x}^{\prime}$, then applying Hoeffding's inequality, with probability at least $1-2 e^{-2 n t \cdot t^{2}}$, we have $\left|\tilde{p}_{1 \mid i}-\tilde{p}_{1 \mid i}^{\prime}\right| \leq t$. When $p_{i}>2 t,\left|\tilde{p}_{i}-p_{i}\right| \leq t^{2}<t$, and $\left|\tilde{p}_{1 \mid i}-\tilde{p}_{1 \mid i}^{\prime}\right| \leq t$, we have

$$
\begin{aligned}
\tilde{p}_{i} \tilde{p}_{1 \mid i}-p_{i} p_{1 \mid i} & \geq\left(p_{i}-t\right)\left(p_{1 \mid i}-2 t\right)-p_{i} p_{1 \mid i} \\
& \geq 2 t^{2}-2 p_{i} t-p_{1 \mid i} t \geq-5 t \\
\tilde{p}_{i} \tilde{p}_{1 \mid i}-\tilde{p}_{i} \tilde{p}_{1 \mid i} & \leq\left(p_{i}+t\right)\left(p_{1 \mid i}+2 t\right)-p_{i} p_{1 \mid i} \\
& \leq 2 p_{i} t+p_{1 \mid i} t+2 t^{2} \leq 5 t
\end{aligned}
$$

[^0]That is, $\left|\tilde{p}_{i} \tilde{p}_{1 \mid i}-p_{i} p_{1 \mid i}\right| \leq 5 t$. Combining the above argument, we see that (9) holds with probability at least $1-4 e^{2 n t^{3}}$.
(c) If for some δ, \mathbf{x} satisfies $\left|\tilde{p}_{i}-p_{i}\right| \leq t^{2}<t$ and \mathbf{x}, \mathbf{y} satisfies (9), then by eq. 5 ,

$$
\begin{aligned}
F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right) & \geq \frac{\left(1+\beta^{2}\right)\left(p_{1} p_{1 \mid 1}-5 t\right)}{\beta^{2}\left(p_{1} p_{1 \mid 1}+5 t+p_{0} p_{1 \mid 0}+5 t\right)+p_{1}+t} \\
& \geq F_{\beta}(\delta)-\gamma_{1} t
\end{aligned}
$$

where γ_{1} is some positive constant that depends on β and π_{1} only. The last inequality can be seen by noting that for $a, b, d, t \geq 0, c>0$, we have $\frac{a-b t}{c+d t} \geq \frac{a}{c}-\frac{a d+b c}{c^{2}} t$, and observing that in this case $a=\left(1+\beta^{2}\right) p_{1} p_{1 \mid 1} \leq$ $\left(1+\beta^{2}\right) \pi_{1}, b=5+5 \beta^{2}, c=\beta^{2} \pi_{1}+p_{1} \geq \beta^{2} \pi_{1}$, and $d=10 \beta^{2}+1$.
Similarly, if $t<\frac{1}{2} \frac{\beta^{2} \pi_{1}}{10 \beta^{2}+1}$, then

$$
\begin{aligned}
F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right) & \leq \frac{\left(1+\beta^{2}\right)\left(p_{1} p_{1 \mid 1}+5 t\right)}{\beta^{2}\left(p_{1} p_{1 \mid 1}-5 t+p_{0} p_{1 \mid 0}-5 t\right)+p_{1}-t} \\
& \leq F_{\beta}(\delta)+\gamma_{2} t
\end{aligned}
$$

where γ_{2} is some positive constant that depends on β and π_{1} only. The last inequality can be seen by noting that for $a, b, d \geq 0, c>0, c>2 d t$, we have $\frac{a+b t}{c-d t} \leq \frac{a}{c}+2 \frac{a d+b c}{c^{2}} t$, and observing that in this case $a=\left(1+\beta^{2}\right) p_{1} p_{1 \mid 1} \leq\left(1+\beta^{2}\right) \pi_{1}, b=5+5 \beta^{2}, c=$ $\beta^{2} \pi_{1}+p_{1} \geq \beta^{2} \pi_{1}, d=10 \beta^{2}+1$, and $c>2 d t$.

Now it follows that for an \mathbf{x} satisfying (6), then for any $\delta \in[0,1]$, for any $t<\frac{1}{2} \frac{\beta^{2} \pi_{1}}{10 \beta^{2}+1}$, with probability at least $1-4 e^{-n t^{3}},\left|F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right)-F_{\beta}(\delta)\right| \leq \max \left(\gamma_{1}, \gamma_{2}\right) t$. Hence

$$
\left|\mathrm{E}\left[F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right)\right]-F_{\beta}(\delta)\right| \leq 4 e^{-n t^{3}} \cdot 1+\max \left(\gamma_{1}, \gamma_{2}\right) t
$$

For any $\epsilon>0$, further restrict t to be the maximum satisfying $t \leq \frac{\epsilon}{2 \max \left(\gamma_{1}, \gamma_{2}\right)}$, and let this value be denoted by t_{0}, then t_{0} depends on β, ϵ (and π_{1}). Now the second term in the above inequality is less than $\epsilon / 2$. The first term is monotonically decreasing in n and converges to 0 as $n \rightarrow \infty$. Now take $N_{\beta, \epsilon, \eta}$ to be the smallest number such that for $n=N_{\beta, \epsilon, \eta}$, the first term is less than $\epsilon / 2$, and $12 e^{\ln (2 e n)-n t^{4}}<\eta$, then for any $n>N_{\beta, \epsilon, \eta}$, with probability at least $1-\eta$, $\left|\mathrm{E}_{\mathbf{y} \sim P(\cdot \mid \mathbf{x})}\left[F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right)\right]-F_{\beta}(\delta)\right|<\epsilon$.
Theorem 8. Let $\mathbf{s}^{*}(\mathbf{x})=\max _{\mathbf{s}} \mathrm{E}\left[F_{\beta}(\mathbf{s}, \mathbf{y})\right]$, with \mathbf{s} satisfying $\left\{P\left(1 \mid x_{i}\right) \mid s_{i}=1\right\} \cap\left\{P\left(1 \mid x_{i}\right) \mid s_{i}=0\right\}=\emptyset$. Let $t^{*}=\arg \max _{t \in \mathcal{T}} F_{\beta}(t)$. Then for any $\epsilon, \eta>0$,
(a) There exists $N_{\beta, \epsilon, \eta}$ such that for all $n>N_{\beta, \epsilon, \eta}$, with probability at least $1-\eta, \mathrm{E}\left[F_{\beta}\left(t^{*}(\mathbf{x}), \mathbf{y}\right)\right] \leq$ $\mathrm{E}\left(F_{\beta}\left(\mathbf{s}^{*}(\mathbf{x}), \mathbf{y}\right)\right)<\mathrm{E}\left[F_{\beta}\left(t^{*}(\mathbf{x}), \mathbf{y}\right)\right]+\epsilon$.
(b) There exists $N_{\beta, \epsilon, \eta}$ such that for all $n>N_{\beta, \epsilon, \eta}$, with probability at least $1-\eta, \mid F_{\beta}\left(t^{*}(\mathbf{x}), \mathbf{y}\right)-$ $\left.F_{\beta}\left(\mathbf{s}^{*}(\mathbf{x}), \mathbf{y}\right)\right) \mid<\epsilon$.

Proof for Theorem 8. (a) By Lemma 7, when $n>$ $N_{\beta, \frac{\epsilon}{2}, \eta}$, with probability at least $1-\eta$, \mathbf{x} satisfies that for all $\delta,\left|\mathrm{E}_{\mathbf{y} \sim P(\cdot \mid \mathbf{x})}\left[F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right)\right]-F_{\beta}(\delta)\right|<\epsilon / 2$. Consider such an \mathbf{x}. The lower bound is clear because $\mathbf{s}=\mathrm{I}_{\delta^{*}}$ satisfies $\left\{P\left(1 \mid x_{i}\right): s_{i}=1\right\} \cap\left\{P\left(1 \mid x_{i}\right): s_{i}=\right.$ $0\}=\emptyset$. For the upper bound, by Theorem 9 and the definition of $\mathbf{s}^{*}(\mathbf{x})$, we have $\mathbf{s}^{*}(\mathbf{x})=\mathrm{I}_{\delta^{\prime}}(\mathbf{x})$ for some δ^{\prime}. Thus $\mathrm{E}\left[F_{\beta}\left(\mathbf{s}^{*}(\mathbf{x}), \mathbf{y}\right)\right]<F_{\beta}\left(\delta^{\prime}\right)+\epsilon / 2<F_{\beta}\left(\delta^{\prime}\right)+\epsilon / 2 \leq$ $F_{\beta}\left(\delta^{*}\right)+\epsilon / 2<\mathrm{E}\left[F_{\beta}\left(\mathrm{I}_{\delta^{*}}(\mathbf{x}), \mathbf{y}\right)\right]+\epsilon$.
(b) From the proof for Lemma 7, for any $t>0$, with probability at least $1-12 e^{\ln (2 e n)-n t^{4}}$, we have for all δ, for all i, \mathbf{x} satisfies (6), that is,

$$
\left|\tilde{p}_{i}(\delta)-p_{i}(\delta)\right| \leq t^{2},\left|\tilde{p}_{i}(\delta) \tilde{p}_{1 \mid i}^{\prime}(\delta)-p_{i}(\delta) p_{1 \mid i}(\delta)\right| \leq t^{2}
$$

In addition, if $t<\frac{1}{2} \frac{\beta^{2} \pi_{1}}{10 \beta^{2}+1}$, then for such \mathbf{x}, for any δ, with probability at least $1-4 e^{2 n t^{3}}$,

$$
\left|F_{\beta}\left(\mathrm{I}_{\delta}(\mathbf{x}), \mathbf{y}\right)-F_{\beta}(\delta)\right|<\gamma t
$$

where γ is a constant depending on ϵ (and π_{1}). Note that there exists δ^{\prime} such that $\mathrm{I}_{\delta^{\prime}}(\mathbf{x})=\mathbf{s}^{*}(\mathbf{x})$. Using the union bound, with probability at least $1-8 e^{-2 n t^{3}}$,

$$
\begin{array}{r}
\left|F_{\beta}\left(\mathrm{I}_{\delta^{\prime}}(\mathbf{x}), \mathbf{y}\right)-F_{\beta}\left(\delta^{\prime}\right)\right|<\gamma t \\
\left|F_{\beta}\left(\mathrm{I}_{\delta^{*}}(\mathbf{x}), \mathbf{y}\right)-F_{\beta}\left(\delta^{*}\right)\right|<\gamma t \tag{10}
\end{array}
$$

Hence we have

$$
\begin{aligned}
& \mathrm{E}\left(F_{\beta}\left(\mathrm{I}_{\delta^{\prime}}(\mathbf{x}), \mathbf{y}\right)\right. \leq\left(1-8 e^{-2 n t^{3}}\right)\left(F_{\beta}\left(\delta^{\prime}\right)+\gamma t\right)+8 e^{-2 n t^{3}} \\
& \mathrm{E}\left(F_{\beta}\left(\mathrm{I}_{\delta^{*}}(\mathbf{x}), \mathbf{y}\right) \geq\left(1-8 e^{-2 n t^{3}}\right)\left(F_{\beta}\left(\delta^{*}\right)-\gamma t\right)\right.
\end{aligned}
$$

Combining the above two inequalities with $\mathrm{E}\left(F_{\beta}\left(\mathrm{I}_{\delta^{\prime}}(\mathbf{x}), \mathbf{y}\right) \geq \mathrm{E}\left(F_{\beta}\left(\mathrm{I}_{\delta *}(\mathbf{x}), \mathbf{y}\right)\right.\right.$, we have

$$
F_{\beta}\left(\delta^{*}\right)-F_{\beta}\left(\delta^{\prime}\right) \leq 2 \gamma t+\frac{8 e^{-2 n t^{3}}}{1-8 e^{-2 n t^{3}}}
$$

For those \mathbf{y} satisfying (10), we have

$$
\begin{aligned}
& \left|F_{\beta}\left(\mathrm{I}_{\delta^{\prime}}(\mathbf{x}), \mathbf{y}\right)-F_{\beta}\left(\mathrm{I}_{\delta^{*}}(\mathbf{x}), \mathbf{y}\right)\right| \\
& \begin{aligned}
&=\mid F_{\beta}\left(\mathrm{I}_{\delta^{\prime}}(\mathbf{x}, \mathbf{y})-F_{\beta}\left(\delta^{\prime}\right)\left|+\left|F_{\beta}\left(\delta^{\prime}\right)-F_{\beta}\left(\delta^{*}\right)\right|\right.\right. \\
& \quad+\left|F_{\beta}\left(\delta^{*}\right)-F_{\beta}\left(\mathrm{I}_{\delta^{*}}(\mathbf{x}), \mathbf{y}\right)\right| \\
&<4 \gamma t+\frac{8 e^{-2 n t^{3}}}{1-8 e^{-2 n t^{3}}}
\end{aligned}
\end{aligned}
$$

Combining the above argument, we have with probability at least $\left(1-12 e^{\ln (2 e n)-n t^{4}}\right)\left(1-8 e^{-2 n t^{3}}\right)$ that $\left|F_{\beta}\left(\mathbf{s}^{*}(\mathbf{x}), \mathbf{y}\right)-F_{\beta}\left(t^{*}(\mathbf{x}), \mathbf{y}\right)\right|<4 \gamma t+\frac{8 e^{-2 n t^{3}}}{1-8 e^{-2 n t^{3}}}$.

Now choose $t=\frac{\epsilon}{8 \gamma}$, then for sufficiently large n, we can guarantee that with probability at least $1-\eta$, $\left|F_{\beta}\left(\mathbf{s}^{*}(\mathbf{x}), \mathbf{y}\right)-F_{\beta}\left(t^{*}(\mathbf{x}), \mathbf{y}\right)\right|<\epsilon$.

Theorem 9. (Probability Ranking Principle for F measure, Lewis 1995) Suppose \mathbf{s}^{*} is a maximizer of $\mathrm{E}\left(F_{\beta}(\mathbf{s}, \mathbf{y})\right)$. Then $\min \left\{p_{i} \mid s_{i}^{*}=1\right\}$ is not less than $\max \left\{p_{i} \mid s_{i}^{*}=0\right\}$.

References

Lewis, D.D. Evaluating and optimizing autonomous text classification systems. In SIGIR, pp. 246-254, 1995.

Vapnik, V.N. The nature of statistical learning theory. Springer, 1995.

[^0]: ${ }^{1}$ This can be seen by observing that if $\tilde{p}_{1 \mid i}^{\prime}-p_{1 \mid i}>t$, then $\tilde{p}_{i} \tilde{p}_{1 \mid i}^{\prime}-p_{i} p_{1 \mid i} \geq p_{i}\left(\tilde{p}_{1 \mid i}^{\prime}-p_{1 \mid i}\right)-\left|\tilde{p}_{i}-p_{i}\right|>2 t \cdot t-t^{2}=t^{2}$, a contradiction. Similarly, the other case can be shown to be impossible.

