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Appendix. Proofs

We shall often drop θ from the notations whenever
there is no ambiguity.

Lemma 1. For any ε > 0, limn→∞ P(|Fβ,n(θ) −
Fβ(θ)| < ε) = 1.

Proof for Lemma 1. By the law of large numbers, for
any ε1 > 0, η > 0, there exists an N (depending on ε1
and η only) such that for all n > N , for any i, j

P(|pij,n − pij | < ε1) > 1− η/3, (1)

Note that only pij,n is a random variable in the above
inequality. Using the union bound, it follows that with
probability at least 1 − η, the following hold simulta-
neously,

|p11,n − p11| < ε1, |p10,n − p10| < ε1, |p01,n − p01| < ε1

Let a = (1+β2)p11, b = β2π1+p11+p01, ε1 = bε/(1+β2)
2a
b +2ε+1

,

then when the above inequalities hold simultaneously,
it is easy to verify that 2(1 + β2)ε1 < b, and

a

b
− ε ≤ a− (1 + β2)ε1

b+ 2(1 + β2)ε1

<
(1 + β2)p11,n

β2(p11,n + p10,n) + p10,n + p01,n

a

b
+ ε ≥ a+ (1 + β2)ε1

b− 2(1 + β2)ε1

>
(1 + β2)p11,n

β2(p11,n + p10,n) + p10,n + p01,n

That is, Fβ(θ)− ε < Fβ,n(θ) < Fβ(θ) + ε.

Hence for any ε > 0, η > 0, there exists N such that
for all n > N , P(|Fβ,n(θ)− Fβ(θ)| < ε) > 1− η.

Lemma 2. Let r(n, η) =
√

1
2n ln 6

η . When r(n, η) <

β2π1

2(1+β2) , then with probability at least 1− η, |Fβ,n(θ)−

Fβ(θ)| < 3(1+β2)r(n,η)
β2π1−2(1+β2)r(n,η) .

Proof for Lemma 2. Let η = 6e−2nε21 , then ε1 =
r(n, η). Using Hoeffding’s inequality, for any i, j,

P(|pij,n − pij | < ε1) > 1− η/3 (2)

Let ε1 = β2

1+β2
π1ε

3+2ε , then ε = 3(1+β2)ε1
β2π1−2(1+β2)ε1

=
3(1+β2)r(n,η)

β2π1−2(1+β2)r(n,η) . From β2π1 ≤ b and a
b ≤ 1, it fol-

lows that ε1 ≤ bε/(1+β2)
2a
b +2ε+1

. Similarly as in the proof

for Proposition 1, we have P(|Fβ,n(θ)− Fβ(θ)| < ε) >
1− η.

Lemma 2 leads to the following sample complexity: for

ε, η > 0, for n > 1
2 ( β2

1+β2
π1ε

3+2ε )
−2 ln 6

η , with probablity

at least 1− η, |Fβ,n(θ)− Fβ(θ)| < ε.

The above bounds are not the tightest. For example,

Lemma 2 still holds when 3(1+β2)r(n,η)
β2π1−2(1+β2)r(n,η) is replaced

by the tighter bound
(1+β2)(2Fβ(θ)+1)r(n,η)

β2π1+p1(θ)−2(1+β2)r(n,η) , where

p1(θ) is the probability that θ classifies an instance as
positive. In practice, the tighter bound is not useful
for estimating the performance of a classifier, because
it contains the terms Fβ(θ) and p1(θ). For the same
reason, the tighter bound is also not useful in the uni-
form convergence that we seek next.
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Theorem 3. Let Θ ⊆ X 7→ Y , d = V C(Θ),
θ∗ = arg maxθ∈Θ Fβ(θ), and θn = arg maxθ∈Θ Fβ,n(θ).

Let r̄(n, η) =
√

1
n (ln 12

η + d ln 2en
d ). If n is such that

r̄(n, η) < β2π1

2(1+β2) , then with probability at least 1− η,

Fβ(θn) > Fβ(θ∗)− 6(1+β2)r̄(n,η)
β2π1−2(1+β2)r̄(n,η) .

Proof for Theorem 3. Let η = 12ed ln 2en
d −nε

2
1 , then

ε1 = r̄(n, η). Note that the VC dimension for class con-
sisiting of loss functions of the form I(y = i∧θ(x) = j)
is the same as that for Θ, and the same remark applies
for the the class consisting of loss functions of the form
I(θ(x) = y). By (3.3) in (Vapnik, 1995), for any i, j

P(sup
θ
|pij,n(θ)− pij(θ)| < ε1) > 1− η/3 (3)

By the union bound, with probability at least 1 −
η, the inequalities supθ |p11,n(θ) − p11(θ)| < ε1,
supθ |p10,n(θ) − p10(θ)| < ε1, supθ |p01,n − p01| < ε1,

hold simultaneously. Let ε1 = β2

1+β2
π1ε

3+2ε , then follow-
ing the proof of Lemma 2,

Fβ(θn)− Fβ(θ∗)

= Fβ(θn)− Fβ,n(θn) + Fβ,n(θn)− Fβ(θ∗)

≥ Fβ(θn)− Fβ,n(θn) + Fβ,n(θ∗)− Fβ(θ∗)

≥ −2ε = − 6(1 + β2)r̄(n, η)

β2π1 − 2(1 + β2)r̄(n, η)

Theorem 4. For any classifier θ, Fβ(θ) ≤ Fβ(t∗).

Proof for Theorem 4. Let θ be an arbitrary classifier.
If θ /∈ T ∪ T ′, then when all x ∈ X are mapped to the
number axis using x → P (1|x), there must be some
set B of negative instances which break the positive
instances into two sets A and C. Formally, there exist
disjoint subsets A, B and C of X such that

A ∪ C = {x : θ(x) = 1}
θ(B) = {0}

sup
x∈A

P (1|x) ≤ inf
x∈B

P (1|x) ≤ sup
x∈B

P (1|x) ≤ inf
x∈C

P (1|x).

Without loss of generality we assume
P (A), P (B), P (C) > 0. Let a = P (A), x =
E(P (1|X)

∣∣X ∈ A), b = P (B), y = E(P (1|X)
∣∣X ∈ B),

and c = P (C), z = E(P (1|X)
∣∣X ∈ C), then

x ≤ y ≤ z. Note that the expectation is taken with
respect to X. Let θB and θC be the same as θ except
that θB(B) = {1} and θC(A) = {0}. Thus we have

Fβ(θ) = (1+β2)(ax+cz)
β2π1+a+c , Fβ(θB) = (1+β2)(ax+by+cz)

β2π1+a+b+c ,

and Fβ(θC) = (1+β2)cz
β2π1+c .

We show that either Fβ(θB) ≥ Fβ(θ) or Fβ(θC) ≥
Fβ(θ). Assume otherwise, then Fβ(θ) > Fβ(θB),
which implies that ax+ cz > (β2π1 +a+ c)y. In addi-
tion, Fβ(θ) > Fβ(θC), which implies that (β2π1+c)x >
cz. Thus ax + cz > (β2π1 + c)x + ax > cz + ax,
a contradiction. Hence it follows that we can con-
vert θ to a classifier θ′ such that θ′ ∈ T ∪ T ′, and
Fβ(θ) ≤ Fβ(θ′) ≤ Fβ(t∗).

Theorem 5. A rank-preserving function is an optimal
score function.

Proof for Theorem 5. Immediate from Theorem 4.

Theorem 6. For any classifier θ, any ε, η > 0, there
exists Nβ,ε,η such that for all n > Nβ,ε,η, with proba-
bility at least 1− η, |E[Fβ(θ(x),y)]− Fβ(θ)| < ε.

Proof for Theorem 6. This follows closely the proof
for Lemma 7.

Lemma 7. For any ε, η > 0, there exists Nβ,ε,η such
that for all n > Nβ,ε,η, with probability at least 1− η,
for all δ ∈ [0, 1], |E[Fβ(Iδ(x),y)]− Fβ(Iδ)| < ε.

Proof for Lemma 7. pi(δ) = E(I(Iδ(X) = i)) denotes
the probability that an observation is predicted to be
in class i, and pj|i(δ) = E(P (j|X)

∣∣Iδ(x) = i) denotes
the probability that an observation predicted to be in
class i is actually in class j. Let ni(δ) =

∑
k I(Iδ(xk) =

i), nji(δ) =
∑
k I(yk = j ∧ Iδ(xk) = i), then p̃i(δ) = ni

n

and p̃j|i(δ) =
nji(δ)
ni(δ)

are empirical estimates for pi(δ)

and pj|i(δ) respectively. We will also need to use

p̃′j|i(δ) = 1
ni

∑
i P (j|x)I(Iδ(x) = i) as the empirical

estimate of pj|i(δ) based on x only. Note that p̃i(δ)’s
and p̃′j|i(δ)’s are random variables depending on x only,

and p̃j|i(δ)’s are random variables depending on x and
y. In the following, we shall drop δ from the notations
as long as there is no ambiguity. Let Fβ(δ) denote the
Fβ-measure of Iδ(x). We have

Fβ(δ) =
(1 + β2)p1p1|1

β2(p1p1|1 + p0p1|0) + p1
(4)

Fβ(Iδ(x),y) =
(1 + β2)p̃1p̃1|1

β2(p̃1p̃1|1 + p̃0p̃1|0) + p̃1
(5)

The main idea of the proof is to first show that

(a) there is high probability that x gives good esti-
mates for pi(δ)’s and p1|i(δ)’s for all δ, and then
show that
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(b) for such x, there is high probability that x,y give
good estimates for pi(δ)’s and p1|i(δ)’s, thus

(c) Fβ(Iδ(x),y) has high probability of being close to
Fβ(δ), and its expectation is close to Fβ(δ) as a
consequence.

(a) We first show that for any t > 0, with probability

at least 1− 12eln(2en)−nt4 , we have for all δ, for all i,

|p̃i(δ)− pi(δ)| ≤ t2, |p̃i(δ)p̃′1|i(δ)− pi(δ)p1|i(δ)| ≤ t2 (6)

To see this, consider a fixed i. Let fδ(x) = I(Iδ(x) = i),
F = {fδ : 0 ≤ δ ≤ 1}, gδ(x) = I(Iδ(x) = i)P (1|x), and
G = {gδ : 0 ≤ δ ≤ 1}. Note that the expected value
and empirical average of fδ and gδ are pi(δ), p̃i(δ),
pi(δ)p1|i(δ) and p̃i(δ)p̃

′
1|i(δ) respectively. In addition,

both F and G have VC dimension 1. Thus, by Inequal-
ity (3.3) and (3.10) in (Vapnik, 1995), each of the fol-

lowing hold with probability at least 1− 4eln(2en)−nt4 ,

∀δ[|p̃1(δ)− p1(δ)| ≤ t2]) (7)

∀δ[|p̃i(δ)p̃′1|i(δ)− pi(δ)p1|i(δ)| ≤ t2] (8)

Now observing that |p̃1(δ)−p1(δ)| ≤ t2 implies |p̃0(δ)−
p0(δ)| ≤ t2, and applying the union bound, then with

probability at least 1− 12eln(2en)−nt4 , (6) holds.

(b) Consider a fixed x satisfying that for some δ, for all
i, |p̃i(δ)− pi(δ)| ≤ t2 and |p̃i(δ)p̃′1|i(δ)− pi(δ)p1|i(δ)| ≤
t2, we show that if t < 1, then with probability at least
1− 4e2nt3 ,

∀i|p̃i(δ)p̃1|i(δ)− pi(δ)p1|i(δ)| ≤ 5t (9)

Consider a fixed i. If pi ≤ 2t, then

|p̃ip̃1|i − pip1|i| ≤ p̃ip̃1|i + pip1|i ≤ p̃i + pi ≤ 5t

If pi > 2t, then |p̃′1|i − p1|i| ≤ t, 1 and we also have

p̃i > 2t−t2 > t, that is ni > nt. Note that p̃1|i is of the

form 1
ni

∑ni
i=1 Ii where the Ii’s are independent binary

random variables, and the expected value of p̃1|i is p̃′1|x,
then applying Hoeffding’s inequality, with probability
at least 1 − 2e−2nt·t2 , we have |p̃1|i − p̃′1|i| ≤ t. When

pi > 2t, |p̃i−pi| ≤ t2 < t, and |p̃1|i− p̃′1|i| ≤ t, we have

p̃ip̃1|i − pip1|i ≥ (pi − t)(p1|i − 2t)− pip1|i
≥ 2t2 − 2pit− p1|it ≥ −5t

p̃ip̃1|i − p̃ip̃1|i ≤ (pi + t)(p1|i + 2t)− pip1|i
≤ 2pit+ p1|it+ 2t2 ≤ 5t

1This can be seen by observing that if p̃′1|i − p1|i > t,

then p̃ip̃
′
1|i−pip1|i ≥ pi(p̃

′
1|i−p1|i)−|p̃i−pi| > 2t·t−t2 = t2,

a contradiction. Similarly, the other case can be shown to
be impossible.

That is, |p̃ip̃1|i − pip1|i| ≤ 5t. Combining the above
argument, we see that (9) holds with probability at

least 1− 4e2nt3 .

(c) If for some δ, x satisfies |p̃i − pi| ≤ t2 < t and x,y
satisfies (9), then by eq. 5,

Fβ(Iδ(x),y) ≥
(1 + β2)(p1p1|1 − 5t)

β2(p1p1|1 + 5t+ p0p1|0 + 5t) + p1 + t

≥ Fβ(δ)− γ1t

where γ1 is some positive constant that depends on β
and π1 only. The last inequality can be seen by noting
that for a, b, d, t ≥ 0, c > 0, we have a−bt

c+dt ≥
a
c−

ad+bc
c2 t,

and observing that in this case a = (1 + β2)p1p1|1 ≤
(1 + β2)π1, b = 5 + 5β2, c = β2π1 + p1 ≥ β2π1, and
d = 10β2 + 1.

Similarly, if t < 1
2

β2π1

10β2+1 , then

Fβ(Iδ(x),y) ≤
(1 + β2)(p1p1|1 + 5t)

β2(p1p1|1 − 5t+ p0p1|0 − 5t) + p1 − t
≤ Fβ(δ) + γ2t

where γ2 is some positive constant that depends on
β and π1 only. The last inequality can be seen by
noting that for a, b, d ≥ 0, c > 0, c > 2dt, we have
a+bt
c−dt ≤

a
c + 2ad+bc

c2 t, and observing that in this case

a = (1 + β2)p1p1|1 ≤ (1 + β2)π1, b = 5 + 5β2, c =
β2π1 + p1 ≥ β2π1, d = 10β2 + 1, and c > 2dt.

Now it follows that for an x satisfying (6), then for

any δ ∈ [0, 1], for any t < 1
2

β2π1

10β2+1 , with probability at

least 1−4e−nt
3

, |Fβ(Iδ(x),y)−Fβ(δ)| ≤ max(γ1, γ2)t.
Hence

|E[Fβ(Iδ(x),y)]− Fβ(δ)| ≤ 4e−nt
3

· 1 + max(γ1, γ2)t

For any ε > 0, further restrict t to be the maximum
satisfying t ≤ ε

2 max(γ1,γ2) , and let this value be de-

noted by t0, then t0 depends on β, ε (and π1). Now
the second term in the above inequality is less than
ε/2. The first term is monotonically decreasing in n
and converges to 0 as n → ∞. Now take Nβ,ε,η to be
the smallest number such that for n = Nβ,ε,η, the first

term is less than ε/2, and 12eln(2en)−nt4 < η, then
for any n > Nβ,ε,η, with probability at least 1 − η,
|Ey∼P (·|x)[Fβ(Iδ(x),y)]− Fβ(δ)| < ε.

Theorem 8. Let s∗(x) = maxs E[Fβ(s,y)], with s
satisfying {P (1|xi) | si = 1} ∩ {P (1|xi) | si = 0} = ∅.
Let t∗ = arg maxt∈T Fβ(t). Then for any ε, η > 0,
(a) There exists Nβ,ε,η such that for all n > Nβ,ε,η,
with probability at least 1 − η, E[Fβ(t∗(x),y)] ≤
E(Fβ(s∗(x),y)) < E[Fβ(t∗(x),y)] + ε.
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(b) There exists Nβ,ε,η such that for all n > Nβ,ε,η,
with probability at least 1 − η, |Fβ(t∗(x),y) −
Fβ(s∗(x),y))| < ε.

Proof for Theorem 8. (a) By Lemma 7, when n >
Nβ, ε2 ,η, with probability at least 1− η, x satisfies that
for all δ, |Ey∼P (·|x)[Fβ(Iδ(x),y)]−Fβ(δ)| < ε/2. Con-
sider such an x. The lower bound is clear because
s = Iδ∗ satisfies {P (1|xi) : si = 1} ∩ {P (1|xi) : si =
0} = ∅. For the upper bound, by Theorem 9 and the
definition of s∗(x), we have s∗(x) = Iδ′(x) for some δ′.
Thus E[Fβ(s∗(x),y)] < Fβ(δ′) + ε/2 < Fβ(δ′) + ε/2 ≤
Fβ(δ∗) + ε/2 < E[Fβ(Iδ∗(x),y)] + ε.

(b) From the proof for Lemma 7, for any t > 0, with

probability at least 1 − 12eln(2en)−nt4 , we have for all
δ, for all i, x satisfies (6), that is,

|p̃i(δ)− pi(δ)| ≤ t2, |p̃i(δ)p̃′1|i(δ)− pi(δ)p1|i(δ)| ≤ t2

In addition, if t < 1
2

β2π1

10β2+1 , then for such x, for any δ,

with probability at least 1− 4e2nt3 ,

|Fβ(Iδ(x),y)− Fβ(δ)| < γt

where γ is a constant depending on ε (and π1). Note
that there exists δ′ such that Iδ′(x) = s∗(x). Using

the union bound, with probability at least 1−8e−2nt3 ,

|Fβ(Iδ′(x),y)− Fβ(δ′)| < γt

|Fβ(Iδ∗(x),y)− Fβ(δ∗)| < γt (10)

Hence we have

E(Fβ(Iδ′(x),y) ≤ (1− 8e−2nt3)(Fβ(δ′) + γt) + 8e−2nt3

E(Fβ(Iδ∗(x),y) ≥ (1− 8e−2nt3)(Fβ(δ∗)− γt)

Combining the above two inequalities with
E(Fβ(Iδ′(x),y) ≥ E(Fβ(Iδ∗(x),y), we have

Fβ(δ∗)− Fβ(δ′) ≤ 2γt+
8e−2nt3

1− 8e−2nt3

For those y satisfying (10), we have

|Fβ(Iδ′(x),y)− Fβ(Iδ∗(x),y)|
= |Fβ(Iδ′(x,y)− Fβ(δ′)|+ |Fβ(δ′)− Fβ(δ∗)|

+ |Fβ(δ∗)− Fβ(Iδ∗(x),y)|

< 4γt+
8e−2nt3

1− 8e−2nt3

Combining the above argument, we have with prob-
ability at least (1 − 12eln(2en)−nt4)(1 − 8e−2nt3) that

|Fβ(s∗(x),y)− Fβ(t∗(x),y)| < 4γt+ 8e−2nt3

1−8e−2nt3
.

Now choose t = ε
8γ , then for sufficiently large n, we

can guarantee that with probability at least 1 − η,
|Fβ(s∗(x),y)− Fβ(t∗(x),y)| < ε.

Theorem 9. (Probability Ranking Principle for F-
measure, Lewis 1995) Suppose s∗ is a maximizer of
E(Fβ(s,y)). Then min{pi | s∗i = 1} is not less than
max{pi | s∗i = 0}.
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