Supplementary Material: Near-optimal Adaptive Pool-based Active Learning with General Loss

Nguyen Viet Cuong Department of Computer Science National University of Singapore nvcuong@comp.nus.edu.sg Wee Sun Lee Department of Computer Science National University of Singapore leews@comp.nus.edu.sg

Nan Ye Department of Computer Science National University of Singapore yenan@comp.nus.edu.sg

1 PROOF OF THEOREM 4

We will prove the theorem for the case when \mathcal{H} contains probabilistic hypotheses. The proof can easily be transferred to the case where \mathcal{H} is the labeling set by following the construction in (Cuong et al., 2013, sup.).

Let $\mathcal{H} = \{h_1, h_2, \dots, h_n\}$ with *n* probabilistic hypotheses, and assume a uniform prior on them. A labeling is generated by first randomly drawing a hypothesis from the prior and then drawing a labeling from this hypothesis. This induces a distribution on all labelings.

We construct k independent distractor instances x_1, x_2, \ldots, x_k with identical output distributions for the n probabilistic hypotheses. Our aim is to trick the greedy algorithm π to select these k instances. Since the hypotheses are identical on these instances, the greedy algorithm learns nothing when receiving each label.

Let $H(Y_1)$ be the Shannon entropy of the prior label distribution of any x_i (this entropy is the same for all x_i). Since the greedy algorithm always selects the k instances x_1, x_2, \ldots, x_k and their labels are independent, we have

$$H_{\text{ent}}(\pi) = kH(Y_1).$$

Next, we construct an instance x_0 where its label will deterministically identify the probabilistic hypotheses. Specifically, $\mathbb{P}[h_i(x_0) = i | h_i] = 1$ for all *i*. Note that $H(Y_0) = \ln n$.

To make sure that the greedy algorithm π selects the distractor instances instead of x_0 , a constraint is that $H(Y_1) > H(Y_0) = \ln n$. This constraint can be satisfied by, for example, allowing \mathcal{Y} to have n+1 labels and letting $\mathbb{P}[h(x_j)|h]$ be the uniform distribution for all $j \geq 1$ and $h \in \mathcal{H}$. In this case, $H(Y_1) = \ln(n+1) > \ln n$.

We compare the greedy algorithm π with an algorithm π_A that selects x_0 first, and hence knows the true hypothesis after observing its label.

Finally, we construct n(k-1) more instances, and the algorithm π_A will select the appropriate k-1 instances

from them after figuring out the true hypothesis. Let the instances be $\{x_{(i,j)}: 1 \leq i \leq n \text{ and } 1 \leq j \leq k-1\}$. Let $Y_{(i,j)}^h$ be the (random) label of $x_{(i,j)}$ according to the hypothesis h. For all $h \in \mathcal{H}$, $Y_{(i,j)}^h$ has identical distributions for $1 \leq j \leq k-1$. Thus, we only need to specify $Y_{(i,1)}^h$.

We specify $Y_{(i,1)}^h$ as follows. If $h \neq h_i$, then let $\mathbb{P}[Y_{(i,1)}^h = 0] = 1$. Otherwise, let $\mathbb{P}[Y_{(i,1)}^h = 0] = 0$, and the distribution on other labels has entropy $H(Y_{(1,1)}^{h_1})$, as all hypotheses are defined the same way.

When the true hypothesis is unknown, the distribution for $Y_{(1,1)}$ has entropy

$$H(Y_{(1,1)}) = H(1 - \frac{1}{n}) + \frac{1}{n}H(Y_{(1,1)}^{h_1}),$$

where $H(1-\frac{1}{n})$ is the entropy of the Bernoulli distribution $(1-\frac{1}{n},\frac{1}{n})$.

As we want the greedy algorithm to select the distractors, we also need $H(Y_1) > H(Y_{(1,1)})$, giving $H(Y_{(1,1)}^{h_1}) < n(H(Y_1) - H(1 - \frac{1}{n}))$.

Algorithm π_A first selects x_0 , identifies the true hypothesis exactly, and then selects k - 1 instances with entropy $H(Y_{(1,1)}^{h_1})$. Thus,

$$H_{\text{ent}}(\pi_A) = \ln n + (k-1)H(Y_{(1,1)}^{h_1}).$$

Hence, we have

$$\frac{H_{\text{ent}}(\pi)}{H_{\text{ent}}(\pi_A)} = \frac{kH(Y_1)}{\ln n + (k-1)H(Y_{(1,1)}^{h_1})}$$

Set $H(Y_{(1,1)}^{h_1})$ to $n(H(Y_1)-H(1-\frac{1}{n}))-c$ for some small constant c. The above ratio becomes

$$\frac{kH(Y_1)}{\ln n + (k-1)n(H(Y_1) - H(1 - \frac{1}{n})) - (k-1)c}$$

Since $H(1 - \frac{1}{n})$ approaches 0 as n grows and $H(Y_1) = \ln(n+1)$, we can make the ratio $H_{\text{ent}}(\pi)/H_{\text{ent}}(\pi_A)$ as small as we like by increasing n. Furthermore, $H_{\text{ent}}(\pi)/H_{\text{ent}}(\pi_A) \ge H_{\text{ent}}(\pi)/H_{\text{ent}}(\pi^*)$. Thus, Theorem 4 holds.

2 PROOF OF THEOREM 5

It is clear that the version space reduction function f satisfies the minimal dependency property, is pointwise monotone and $f(\emptyset, h) = 0$ for all h. Let $x_{\mathcal{D}} \stackrel{\text{def}}{=} \operatorname{dom}(\mathcal{D})$ and $y_{\mathcal{D}} \stackrel{\text{def}}{=} \mathcal{D}(x_{\mathcal{D}})$. From Equation (3), we have

$$\arg \max_{x} \min_{y} \{f(\operatorname{dom}(\mathcal{D}) \cup \{x\}, \mathcal{D} \cup \{(x, y)\}) - f(\operatorname{dom}(\mathcal{D}), \mathcal{D})\}$$

$$= \arg \max_{x} \min_{y} f(\operatorname{dom}(\mathcal{D}) \cup \{x\}, \mathcal{D} \cup \{(x, y)\})$$

$$= \arg \max_{x} \min_{y} [1 - p_{0}[y_{\mathcal{D}} \cup \{y\}; x_{\mathcal{D}} \cup \{x\}]]$$

$$= \arg \min_{x} \max_{y} p_{0}[y_{\mathcal{D}} \cup \{y\}; x_{\mathcal{D}} \cup \{x\}]$$

$$= \arg \min_{x} \max_{y} \frac{p_{0}[y_{\mathcal{D}} \cup \{y\}; x_{\mathcal{D}} \cup \{x\}]}{p_{0}[y_{\mathcal{D}}; x_{\mathcal{D}}]}$$

$$= \arg \min_{x} \max_{y} p_{\mathcal{D}}[y; x].$$

Thus, Equation (6) is equivalent to Equation (3). To apply Theorem 3, what remains is to show that f is pointwise submodular.

Consider $f_h(S) \stackrel{\text{def}}{=} f(S,h)$ for any h. Fix $A \subseteq B \subseteq \mathcal{X}$ and $x \in \mathcal{X} \setminus B$. We have

$$f_h(A \cup \{x\}) - f_h(A)$$

$$= p_0[h(A); A] - p_0[h(A \cup \{x\}); A \cup \{x\}]$$

$$= \sum_{h'(A)=h(A)} p_0[h'] - \sum_{\substack{h'(A)=h(A) \\ h'(x)=h(x)}} p_0[h']$$

$$= \sum_{h'} p_0[h'] \mathbf{1}(h'(A) = h(A)) \mathbf{1}(h'(x) \neq h(x))$$

Similarly, we have

$$f_h(B \cup \{x\}) - f_h(B) = \sum_{h'} p_0[h'] \mathbf{1}(h'(B) = h(B)) \mathbf{1}(h'(x) \neq h(x)).$$

Since $A \subseteq B$, all pairs h, h' such that h'(B) = h(B) also satisfy h'(A) = h(A).

Thus, $f_h(A \cup \{x\}) - f_h(A) \ge f_h(B \cup \{x\}) - f_h(B)$ and f_h is submodular. Therefore, f is pointwise submodular.

3 PROOF OF THEOREM 7

Consider any prior p_0 such that $p_0[h] > 0$ for all h. Fix any \mathcal{D} and \mathcal{D}' where $\mathcal{D}' = \mathcal{D} \cup \mathcal{E}$ with $\mathcal{E} \neq \emptyset$, and fix any $x \in \mathcal{X} \setminus \operatorname{dom}(\mathcal{D}')$. For a partial labeling \mathcal{D} , let $x_{\mathcal{D}} \stackrel{\text{def}}{=} \operatorname{dom}(\mathcal{D})$ and $y_{\mathcal{D}} \stackrel{\text{def}}{=} \mathcal{D}(x_{\mathcal{D}})$. We have

$$\begin{split} &\Delta(x|\mathcal{D}) \\ &= \quad \mathbb{E}_{h \sim p_{\mathcal{D}}}[f_L(\operatorname{dom}(\mathcal{D}) \cup \{x\}, h) - f_L(\operatorname{dom}(\mathcal{D}), h)] \\ &= \quad \mathbb{E}_{h \sim p_{\mathcal{D}}}[\sum_{\substack{h'(x_{\mathcal{D}}) = h(x_{\mathcal{D}})\\ h'(x_{\mathcal{D}}) = h(x_{\mathcal{D}})}} p_0[h']L(h, h') \\ &\quad -\sum_{\substack{h'(x_{\mathcal{D}}) = h(x_{\mathcal{D}})\\ h'(x) = h(x)}} p_0[h']L(h, h')] \\ &= \quad \mathbb{E}_{h \sim p_{\mathcal{D}}}\sum_{\substack{h'(x_{\mathcal{D}}) = h(x_{\mathcal{D}})\\ h'(x) \neq h(x)}} p_0[h']L(h, h'). \end{split}$$

Note that if $p_{\mathcal{D}}[h] > 0$, then

$$p_{\mathcal{D}}[h] = \frac{p_0[h]}{p_0[y_{\mathcal{D}}; x_{\mathcal{D}}]} = \frac{p_0[h]}{\sum_{h(x_{\mathcal{D}})=y_{\mathcal{D}}} p_0[h]}.$$

Thus, $\Delta(x|\mathcal{D}) =$

$$\frac{\sum_{p_{\mathcal{D}}[h]>0} \sum_{\substack{p_{\mathcal{D}}[h']>0\\h'(x)\neq h(x)}} p_0[h]p_0[h']L(h,h')}{\sum_{h(x_{\mathcal{D}})=y_{\mathcal{D}}} p_0[h]} = \frac{\sum_{h\sim\mathcal{D}} \sum_{\substack{h'\sim\mathcal{D}\\h'(x)\neq h(x)}} p_0[h]p_0[h']L(h,h')}{\sum_{h\in\mathcal{D}} p_0[h]}.$$

Similarly, for \mathcal{D}' , we also have

$$= \frac{\Delta(x|\mathcal{D}')}{\sum_{h\sim\mathcal{D}'}\sum_{\substack{h'\sim\mathcal{D}'\\h'(x)\neq h(x)}} p_0[h]p_0[h']L(h,h')}{\sum_{h\sim\mathcal{D}'}p_0[h]}$$

$$= \frac{1}{\sum_{h\sim\mathcal{D}'}p_0[h]} [\sum_{\substack{h\sim\mathcal{D}\\h'(x)\neq h(x)}} p_0[h]p_0[h']L(h,h')$$

$$- \sum_{\substack{h\sim\mathcal{D}\\h'(x)\neq h(x)}} \sum_{\substack{h'\sim\mathcal{D}\\h'(x)\neq h(x)}} p_0[h]p_0[h']L(h,h')\mathbf{1}(h\nsim\mathcal{E} \text{ or } h' \nsim\mathcal{E})]$$

where $h \approx \mathcal{E}$ denotes that h is not consistent with \mathcal{E} . Now we can construct the loss function L such that L(h, h') = 0for all h, h' satisfying $h \approx \mathcal{E}$ or $h' \approx \mathcal{E}$. Thus,

$$\Delta(x|\mathcal{D}') = \frac{\sum_{h\sim\mathcal{D}}\sum_{\substack{h'\in\mathcal{D}\\h'(x)\neq h(x)}} p_0[h]p_0[h']L(h,h')}{\sum_{h\sim\mathcal{D}'} p_0[h]}$$

From the assumption $p_0[h] > 0$ for all h, we have $\sum_{h \sim \mathcal{D}'} p_0[h] < \sum_{h \sim \mathcal{D}} p_0[h]$. Thus, $\Delta(x|\mathcal{D}') > \Delta(x|\mathcal{D})$ and f_L is not adaptive submodular.

4 SUFFICIENT CONDITION FOR ADAPTIVE SUBMODULARITY OF f_L

From the previous section, let

$$A \stackrel{\text{def}}{=} \sum_{h \sim \mathcal{D}} \sum_{\substack{h' \sim \mathcal{D} \\ h'(x) \neq h(x)}} p_0[h] p_0[h'] L(h,h')$$

$$B \stackrel{\text{def}}{=} \sum_{h \sim \mathcal{D}} \sum_{\substack{h' \sim \mathcal{D} \\ h'(x) \neq h(x)}} p_0[h] p_0[h'] L(h, h') \mathbf{1}(h \nsim \mathcal{E} \text{ or } h' \nsim \mathcal{E})$$
$$C \stackrel{\text{def}}{=} \sum_{h \sim \mathcal{D}} p_0[h] \quad \text{and} \quad D \stackrel{\text{def}}{=} \sum_{h \sim \mathcal{D}} p_0[h] \mathbf{1}(h \nsim \mathcal{E}).$$

In this section, we allow \mathcal{E} to be empty. Note that $\Delta(x|\mathcal{D}) = \frac{A}{C}$ and $\Delta(x|\mathcal{D}') = \frac{A-B}{C-D}$. A sufficient condition for f_L to be adaptive submodular with respect to p_0 is that for all \mathcal{D} , \mathcal{D}' , and x, we have $\frac{A}{C} \geq \frac{A-B}{C-D}$. This condition is equivalent to $\frac{A}{C} \leq \frac{B}{D}$. That means

$$\leq \frac{\frac{\sum_{h\sim\mathcal{D}}\sum_{\substack{h'\sim\mathcal{D}\\h'(x)\neq h(x)}} p_0[h]p_0[h']L(h,h')}{\sum_{h\sim\mathcal{D}}p_0[h]}}{\sum_{h\sim\mathcal{D}}p_0[h]}$$

for all \mathcal{D} , \mathcal{D}' , and x. This condition holds if L is the 0-1 loss. However, it remains open whether this condition is true for any interesting loss function other than 0-1 loss.

5 PROOF OF THEOREM 8

It is clear that t_L satisfies the minimal dependency property and Equation (8) is equivalent to Equation (3). It is also clear that t_L is pointwise monotone and $t_L(\emptyset, h) = 0$ for all h. Thus, to apply Theorem 3, what remains is to show that t_L is pointwise submodular.

Consider $t_{L,h}(S) \stackrel{\text{def}}{=} t_L(S,h)$ for any h. Fix $A \subseteq B \subseteq \mathcal{X}$ and $x \in \mathcal{X} \setminus B$. We have

$$\begin{split} & t_{L,h}(A \cup \{x\}) - t_{L,h}(A) \\ = & \sum_{h'(A) = h(A)} \sum_{\substack{h''(A) = h(A) \\ h'(x) = h(x)}} p_0[h'] L(h',h'') p_0[h''] \\ & - \sum_{\substack{h'(A) = h(A) \\ h'(x) = h(x)}} \sum_{\substack{h''(A) = h(A) \\ h''(x) = h(x)}} p_0[h'] L(h',h'') p_0[h''] \\ \\ = & \sum_{\substack{h' \\ h''}} \sum_{\substack{h'' \\ h''}} [p_0[h'] L(h',h'') p_0[h''] \cdot \\ & \mathbf{1}(h'(A) = h(A) \text{ and } h''(A) = h(A)) \cdot \\ & \mathbf{1}(h'(x) \neq h(x) \text{ or } h''(x) \neq h(x))]. \end{split}$$

Similarly, we have

$$t_{L,h}(B \cup \{x\}) - t_{L,h}(B)$$

$$= \sum_{h'} \sum_{h''} [p_0[h'] L(h',h'') p_0[h''] \cdot$$

$$\mathbf{1}(h'(B) = h(B) \text{ and } h''(B) = h(B)) \cdot$$

$$\mathbf{1}(h'(x) \neq h(x) \text{ or } h''(x) \neq h(x))].$$

Since $A \subseteq B$, all pairs h, h' such that $\mathbf{1}(h'(B) = h(B) \text{ and } h''(B) = h(B)) = 1$ also satisfy $\mathbf{1}(h'(A) = h(A) \text{ and } h''(A) = h(A)) = 1$.

Thus, $t_{L,h}(A \cup \{x\}) - t_{L,h}(A) \ge t_{L,h}(B \cup \{x\}) - t_{L,h}(B)$ and $t_{L,h}$ is submodular. Therefore, t_L is pointwise submodular.

6 POINTWISE SUBMODULARITY OF f_L

Consider $f_{L,h}(S) \stackrel{\text{def}}{=} f_L(S,h)$ for any h. Fix $A \subseteq B \subseteq \mathcal{X}$ and $x \in \mathcal{X} \setminus B$. We have

$$f_{L,h}(A \cup \{x\}) - f_{L,h}(A)$$

= $\sum_{h'(A)=h(A)} p_0[h']L(h,h') - \sum_{\substack{h'(A)=h(A)\\h'(x)=h(x)}} p_0[h']L(h,h')\mathbf{1}(h'(A) = h(A))\mathbf{1}(h'(x) \neq h(x)).$

Similarly, we have

$$f_{L,h}(B \cup \{x\}) - f_{L,h}(B) = \sum_{h'} p_0[h']L(h,h')\mathbf{1}(h'(B) = h(B))\mathbf{1}(h'(x) \neq h(x)).$$

Since $A \subseteq B$, all pairs h, h' such that h'(B) = h(B) also satisfy h'(A) = h(A).

Thus, $f_{L,h}(A \cup \{x\}) - f_{L,h}(A) \ge f_{L,h}(B \cup \{x\}) - f_{L,h}(B)$ and $f_{L,h}$ is submodular. Therefore, f_L is pointwise submodular.

7 PROOF OF PROPOSITION 1

Let $x_{\mathcal{D}} \stackrel{\text{def}}{=} \operatorname{dom}(\mathcal{D})$ and $y_{\mathcal{D}} \stackrel{\text{def}}{=} \mathcal{D}(x_{\mathcal{D}})$. Using Equation (7) and the definition of f_L , we have

$$x^{*}$$

$$= \arg \max_{x} \mathbb{E}_{h \sim p_{\mathcal{D}}} [f_{L}(x_{\mathcal{D}} \cup \{x\}, h) - f_{L}(x_{\mathcal{D}}, h)]$$

$$= \arg \max_{x} \mathbb{E}_{h \sim p_{\mathcal{D}}} [f_{L}(x_{\mathcal{D}} \cup \{x\}, h)]$$

$$= \arg \max_{x} \mathbb{E}_{h \sim p_{\mathcal{D}}} (\sum_{h'} p_{0}[h']L(h, h'))$$

$$- \sum_{\substack{h(x_{\mathcal{D}}) = h'(x_{\mathcal{D}}) \\ h(x) = h'(x)}} p_{0}[h']L(h, h'))$$

$$= \arg \min_{x} \mathbb{E}_{h \sim p_{\mathcal{D}}} \sum_{\substack{h(x_{\mathcal{D}}) = h'(x_{\mathcal{D}}) \\ h(x) = h'(x)}} p_{0}[h']L(h, h')}$$

$$= \arg \min_{x} \mathbb{E}_{h \sim p_{\mathcal{D}}} \sum_{\substack{p_{\mathcal{D}}[h'] > 0 \\ h(x) = h'(x)}} p_{0}[h']L(h, h').$$

Note that if $p_{\mathcal{D}}[h'] > 0$, then

$$p_0[h'] = p_{\mathcal{D}}[h']p_0[y_{\mathcal{D}}; x_{\mathcal{D}}].$$

Hence, the last expression above is equal to

$$\arg \min_{x} \mathbb{E}_{h \sim p_{\mathcal{D}}} \sum_{\substack{p_{\mathcal{D}}[h'] > 0 \\ h(x) = h'(x)}} p_{\mathcal{D}}[h'] p_{0}[y_{\mathcal{D}}; x_{\mathcal{D}}] L(h, h')}$$

$$= \arg \min_{x} \mathbb{E}_{h \sim p_{\mathcal{D}}} \sum_{\substack{p_{\mathcal{D}}[h'] > 0 \\ h(x) = h'(x)}} p_{\mathcal{D}}[h'] L(h, h')$$

$$= \arg \min_{x} \sum_{h} p_{\mathcal{D}}[h] \sum_{h(x) = h'(x)} p_{\mathcal{D}}[h'] L(h, h')$$

$$= \arg \min_{x} \sum_{y} \sum_{h(x) = y} p_{\mathcal{D}}[h] \sum_{h'(x) = y} p_{\mathcal{D}}[h'] L(h, h')$$

$$= \arg \min_{x} \sum_{y} \sum_{h} p_{\mathcal{D}}[h] \sum_{h'(x) = y} p_{\mathcal{D}}[h'] L(h, h') \cdot \mathbf{1}(h(x) = h'(x) = y))$$

$$= \arg \min_{x} \sum_{y} \sum_{h} \mathbb{E}_{h,h' \sim p_{\mathcal{D}}}[L(h, h') \cdot \mathbf{1}(h(x) = h'(x) = y)].$$

Thus, Proposition 1 holds.

8 PROOF OF PROPOSITION 2

Let $x_{\mathcal{D}} \stackrel{\text{def}}{=} \operatorname{dom}(\mathcal{D})$ and $y_{\mathcal{D}} \stackrel{\text{def}}{=} \mathcal{D}(x_{\mathcal{D}})$. Using Equation (8) and the definition of t_L , we have

$$\begin{aligned} x^{*} \\ &= \arg \max_{x} \min_{y} [t_{L}(x_{\mathcal{D}} \cup \{x\}, \mathcal{D} \cup \{(x,y)\}) - t_{L}(x_{\mathcal{D}}, \mathcal{D})] \\ &= \arg \max_{x} \min_{y} [t_{L}(x_{\mathcal{D}} \cup \{x\}, \mathcal{D} \cup \{(x,y)\})] \\ &= \arg \max_{x} \min_{y} [\sum_{h'} \sum_{h''} p_{0}[h']L(h',h'')p_{0}[h''] \\ &- \sum_{\substack{h'(x_{\mathcal{D}}) = y_{\mathcal{D}} \\ h'(x) = y}} \sum_{\substack{h''(x_{\mathcal{D}}) = y_{\mathcal{D}} \\ h''(x) = y}} p_{0}[h']L(h',h'')p_{0}[h'']] \\ &= \arg \min_{x} \max_{y} \sum_{\substack{h'(x_{\mathcal{D}}) = y_{\mathcal{D}} \\ h'(x) = y}} \sum_{\substack{h''(x_{\mathcal{D}}) = y_{\mathcal{D}} \\ h''(x) = y}} \sum_{\substack{h''(x_{\mathcal{D}}) = y_{\mathcal{D}} \\ h''(x) = y}} p_{0}[h']L(h',h'')p_{0}[h''] \\ &= \arg \min_{x} \max_{y} \sum_{\substack{p_{\mathcal{D}}[h'] > 0 \\ h'(x) = y}} \sum_{\substack{p_{\mathcal{D}}[h''] > 0 \\ h''(x) = y}} p_{0}[h'] \sum_{p_{\mathcal{D}}[h''] > 0 \\ h''(x) = y}} L(h',h'')p_{0}[h'']. \end{aligned}$$

Using the same observation about $p_0[h']$ and $p_0[h'']$ as in the previous section, we note that the last expression above is equal to

$$\begin{aligned} \arg\min_{x} \max_{y} \sum_{\substack{p_{\mathcal{D}}[h'] > 0 \\ h'(x) = y}} (p_{\mathcal{D}}[h']p_{0}[y_{\mathcal{D}}; x_{\mathcal{D}}] \cdot \\ \sum_{\substack{p_{\mathcal{D}}[h''] > 0 \\ h''(x) = y}} L(h', h'')p_{\mathcal{D}}[h'']p_{0}[y_{\mathcal{D}}; x_{\mathcal{D}}]) \end{aligned}$$

$$= \arg\min_{x} \max_{y} \sum_{\substack{p_{\mathcal{D}}[h'] > 0 \\ h''(x) = y}} p_{\mathcal{D}}[h'] \sum_{h'(x) = y} L(h', h'')p_{\mathcal{D}}[h''] \\ = \arg\min_{x} \max_{y} \sum_{\substack{h'(x) = y \\ h'(x) = y}} p_{\mathcal{D}}[h'] \sum_{h''(x) = y} L(h', h'')p_{\mathcal{D}}[h''] \\ = \arg\min_{x} \max_{y} \sum_{\substack{h'(x) = y \\ h'(x) = y}} p_{\mathcal{D}}[h'] \sum_{h''} p_{\mathcal{D}}[h''](L(h', h'') \cdot \\ \mathbf{1}(h''(x) = h'(x) = y)) \\ = \arg\min_{x} \max_{y} \sum_{y} \mathbb{E}_{h', h'' \sim p_{\mathcal{D}}}[L(h', h'') \cdot \\ \mathbf{1}(h''(x) = h'(x) = y)]. \end{aligned}$$

Thus, Proposition 2 holds.

References

Nguyen Viet Cuong, Wee Sun Lee, Nan Ye, Kian Ming A. Chai, and Hai Leong Chieu. Active learning for probabilistic hypotheses using the maximum Gibbs error criterion. In *Advances in Neural Information Processing Systems*, pages 1457–1465, 2013.