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Abstract—An effective collision avoidance system for un-
manned aircraft will enable them to fly in civil airspace and
greatly expand their applications. One promising approach is
to model aircraft collision avoidance as a partially observable
Markov decision process (POMDP) and automatically generate
the threat resolution logic for the collision avoidance system
by solving the POMDP model. However, existing discrete-state
POMDP algorithms cannot cope with the high-dimensional state
space in collision avoidance POMDPs. Using a recently devel-
oped algorithm called Monte Carlo Value Iteration (MCVI), we
constructed several continuous-state POMDP models and solved
them directly, without discretizing the state space. Simulation
results show that our 3-D continuous-state models reduce the
collision risk by up to 70 times, compared with earlier 2-D
discrete-state POMDP models. The success demonstrates both
the benefits of continuous-state POMDP models for collision
avoidance systems and the latest algorithmic progress in solving
these complex models.

I. INTRODUCTION

Unmanned aircraft have great potential for military, scien-
tific, and commercial applications, but currently they cannot
fly in civil airspace without special authorization. One primary
concern is that unmanned aircraft do not yet have the capabil-
ity to sense and avoid other aircraft effectively. An automated
airborne collision avoidance system that meets the strict safety
requirements of civil aviation authorities will greatly expand
the applications of unmanned aircraft.

A key component of a collision avoidance system is the
threat resolution logic, which relies on noisy sensor readings
to detect other aircraft and must act under tight time limits to
help bring the aircraft to safety. The safety-critical and time-
critical nature of collision avoidance systems makes designing
effective logic a significant challenge.

The Traffic Alert and Collision Avoidance System
(TCAS) [13] is the most widely deployed collision avoidance
system today and is mandated for all large commercial passen-
ger and cargo aircraft worldwide. TCAS relies on dedicated
transponders to sense nearby aircraft and uses complex, hand-
crafted threat resolution logic. TCAS is unsuitable for many
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types of unmanned aircraft due to constraints such as sensor
cost and payload. Unmanned aircraft tend to use cheaper,
lighter, but noisier sensors.

Unmanned aircraft collision avoidance is a challenging
instance of planning under uncertainty. Uncertainties arise
from sensor noise as well as the unknown flight dynamics and
intentions of other aircraft. The partially observable Markov
decision process (POMDP) is a principled and general frame-
work for modeling and planning under uncertainty [10, 22].
The POMDP approach to collision avoidance system devel-
opment involves building a model that specifies the goal and
the operating environment of the system. The threat resolution
logic is then generated automatically by solving the model.

This automated approach has several advantages over the
traditional approach of manually designing the logic. It is
nearly impossible for a human designer to anticipate all pos-
sible aircraft encounter situations, but the POMDP approach
systematically accounts for all of them and their likelihood
when solving the model. Once a successful POMDP model has
been developed, it can be adapted relatively easily for different
aircraft dynamics and sensor characteristics. The logic is then
regenerated. It would be expensive and time consuming to
handcraft a new collision avoidance system for every com-
bination of aircraft platform and sensor configuration and to
verify the safety of the system.

POMDPs, however, are often avoided in robotics because
of high computational complexity [15]. In recent years, point-
based algorithms have drastically improved the speed of
POMDP planning by computing approximate solutions [14,
16, 23, 24]. The fastest offline POMDP algorithms today,
such as HSVI [23] and SARSOP [14], can solve moderately
complex POMDPs with nearly 100,000 states in reasonable
time. However, these algorithms typically assume a discrete
state space, while the natural state space of a robotic system
is often continuous. Discretizing a continuous state space with
a regular grid is not always practical. In a collision avoidance
system, the state must contain the 3-D positions and velocities
of at least two aircraft. Even a coarse discretization of the
state space may result in hundreds of millions of states, which
are beyond the reach of the fastest discrete-state POMDP
algorithms today.

This work uses Monte Carlo Value Iteration (MCVI) [2], a
recent point-based algorithm, to compute the threat resolution



logic from a continuous-state POMDP model. MCVI solves
the POMDP and outputs a policy graph. A policy graph is
a directed graph in which each node represents an aircraft
maneuver command and each edge represents a sensor ob-
servation. In the collision avoidance system, the policy graph
can be implemented as a finite state controller that issues a
command in response to a sensor observation. MCVI is well
suited for computing the logic for several reasons:
• MCVI operates directly on continuous-state POMDP

models and avoids inefficient a priori discretization of
the state space.

• The resulting finite state controllers can be executed
efficiently—using table lookup—to meet the strict time
limits of collision avoidance systems.

• The graphical representation of policy graphs facilitates
manual inspection and modification when necessary.
They can also be validated using model-checking and
simulation tools.

We constructed several collision avoidance POMDPs in both
2-D and 3-D spaces and with different sensors. We applied
MCVI to each model to generate the logic and evaluated it in
the CASSATT simulator [12], which is designed for testing
collision avoidance systems. Simulation results show that our
3-D continuous-state models reduce the collision risk by up to
70 times, compared with 2-D discrete-state POMDP models
in earlier work [25] and TCAS. The success demonstrates
both the benefits of continuous-state POMDP models for
collision avoidance systems and the latest algorithmic progress
in solving these complex models.

In the following, Section II reviews related work. Section III
presents our POMDP models. Section IV summarizes the
MCVI algorithm for continuous-state POMDPs. Section V
presents the simulation results. Section VI investigates why
MCVI works so well on collision avoidance POMDPs. Sec-
tion VII ends with some remarks on future directions.

II. RELATED WORK

A. Aircraft Collision Avoidance Systems

Interest in collision avoidance systems dates back to the
1950s, when a mid-air collision of two aircraft occurred
in the United States [13]. After decades of development,
TCAS is currently the most widely used aircraft collision
avoidance system. Various approaches have been proposed for
collision avoidance, including geometric methods [6], potential
field methods [7], and rapidly expanding random trees [20].
Compared with these alternatives, a major advantage of the
POMDP approach is that it systematically accounts for uncer-
tainties in the system.

Both offline and online algorithms have been proposed for
collision avoidance POMDPs [25, 27]. As mentioned earlier,
offline discrete-state POMDP algorithms have difficulty in
scaling up to high-dimensional state spaces. Online algorithms
usually handle high-dimensional state spaces well, but require
significant online computation time [27], making it difficult to
meet the real-time requirements of collision avoidance.

B. POMDP Algorithms
In a POMDP, the system state is not known exactly due to

control and sensing errors. Instead, it is modeled as a belief,
which is a probability distribution over possible system states.
An algorithm solves a POMDP by computing an optimal
policy, which specifies the best action for each belief.

In recent years, point-based algorithms made dramatic
progress in computing approximate solutions to large discrete-
state POMDPs, but progress on continuous-state POMDPs has
been limited. A major difficulty is the belief and the policy
representation, when high-dimensional continuous state spaces
are involved. It is well known that representing and reasoning
about high-dimensional, continuous probability distributions
are difficult. One common approach is to restrict beliefs to
a particular parametric form, e.g., a Gaussian [4, 18] or a
Gaussian mixture [5, 17]. To relax this assumption, other
algorithms use particles to represent beliefs [17, 26], but it
remains difficult to represent policies effectively.

MCVI is a point-based continuous-state POMDP algorithm
that has shown good performance on several robot motion
planning tasks, including navigation, grasping, and explo-
ration [2]. MCVI uses particles to represents beliefs, thus
making no assumption on their parametric form. It represents
the policy as a policy graph [8], whose benefits for collision
avoidance system modeling have already been outlined in Sec-
tion I.

MCVI is an offline algorithm. Online search [9, 19, 21,
27] is complementary and can be used to further improve the
performance of policies computed offline.

III. COLLISION AVOIDANCE MODELS

A. Overview
A POMDP models a system taking a sequence of actions

under uncertainty to maximize its total reward. Formally, a
POMDP is a tuple (S,A,O, T , Z,R, γ), where S, A, and O
denote the system’s state space, action space, and observation
space, respectively. At each time step, the system takes an
action a ∈ A to move from a state s ∈ S to s′ ∈ S and
then receives an observation o ∈ O. A conditional probability
function T (s, a, s′) = p(s′|s, a) models the state-transition
dynamics. It specifies the probability distribution of the system
state if the system takes action a in state s. Similarly, the con-
ditional probability function Z(s′, a, o) = p(o|s′, a) models
the sensor observations. In a POMDP, the belief over system
states is typically represented as a probability distribution b(s)
over S. The functions T and Z determine how to update b(s)
based on system dynamics and observations, respectively

At each time step, the system receives a real-valued reward
R(s, a) if it takes action a ∈ A in state s ∈ S. The goal of the
system is to choose a sequence of actions that maximizes the
expected total reward E

(∑∞
t=0 γ

tR(st, at)
)
, where st and at

denote the agent’s state and action at time t, respectively, and
γ ∈ (0, 1) is a discount factor, which reflects that immediate
rewards are preferred over future rewards.

Our models focus on situations involving two aircraft, the
own aircraft and the intruder aircraft. The own aircraft has
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Fig. 1. An encounter model for two aircraft.

no prior information on the intruder aircraft’s flight path, but
has sensors onboard. Given noisy sensor input, the collision
avoidance system maneuvers the own aircraft and tries to
prevent Near Mid-Air Collision (NMAC) by keeping a safe
separation distance between the two aircraft.

In our models, the state space is continuous, but the action
and the observation spaces are discretized, due to the limita-
tion of the MCVI algorithm. The details on state-transition,
observation, and reward modeling are described below.

B. Flight Dynamics Modeling

We use a simplified flight dynamics model that treats an
aircraft as a point mass in 3-D space (Fig. 1). Let (x, y, z) be
the position of the aircraft with respect to the earth coordinate
system, where the positive x-direction points east, the positive
y-direction points north, and z is the altitude. Let θ be the
aircraft’s heading angle with respect to east. Let u and v be
the aircraft’s horizontal and vertical speed, respectively. The
flight state of the aircraft is specified as (x, y, z, θ, u, v).

The aircraft control consists of the vertical acceleration
a ∈ {−am, 0, am} and the turn rate ω ∈ {−ωm, 0, ωm}, where
am and ωm are the maximum control input values. Although
aircraft control inputs are in fact continuous, restricting to
the extreme values is reasonable for emergency maneuvers.
This discretization helps improve computational efficiency
during the POMDP policy computation. The horizontal speed
u is constant and cannot be controlled. This is a reasonable
simplification, as aircraft typically fly at high horizontal speed,
which cannot be changed quickly under emergency conditions.

Given (a, ω), the new state of the aircraft after a small time
duration ∆t is given by

xt+1 = xt + u∆t cos θ, θt+1 = θt + ω∆t,
yt+1 = yt + u∆t sin θ, ut+1 = ut, (1)
zt+1 = zt + v∆t, vt+1 = vt + a∆t.

C. Encounter Modeling

An encounter model specifies the state-transition dynamics
of the own aircraft and the intruder aircraft during an en-
counter. In our model, a state consists of the two aircraft’s
flight states. There are 9 discrete actions {−am, 0, am} ×
{−ωm, 0, ωm}, which maneuver the own aircraft by specifying
the control inputs for the vertical acceleration a and the turn
rate ω. Because the intruder aircraft’s control inputs a and ω
are unknown, they are modeled as uniform random variables.
Each aircraft’s state-transition dynamics is then given by (1).

Although our encounter model has 12 state variables,
the state space is effectively 10-dimensional since each air-
craft’s horizontal speed is constant. To cope with the high-

TABLE I
SENSOR PARAMETERS.

EO/IR Radar
Range limit 5 NM1 5 NM
Azimuth limit ±110 deg ±110 deg
Elevation limit ±15 deg ±15 deg
Range error standard deviation n/a 50 ft
Bearing error standard deviation 0.5 deg 1 deg
Elevation error standard deviation 0.5 deg 1 deg
False positive probability 0.01 0.01
False negative probability 0.01 0.01

1Nautical mile.

dimensional state space, earlier work using a discrete-state
POMDP approach had to adopt a lower-dimensional model
and a coarse discretization [25]. First, the aircraft are not
allowed to turn, so that they move entirely within a 2-D plane
(Fig. 1) instead of the 3-D space. Next, the intruder aircraft’s
flight state is specified in the own aircraft’s local coordinate
system, in order to further reduce state-space dimensionality.
Finally, the state space is discretized coarsely to fit within the
capability of discrete-state POMDP algorithms.

Discretizing continuous state-transition dynamics introduces
modeling errors that are often difficult to quantify. To find
effective discretization, domain knowledge and many trials are
needed to tune the granularity of discretization for each state
variable. Our continuous-state POMDP models avoid these
difficulties entirely and enable designers to specify aircraft
flight dynamics in a much more natural and realistic manner.

D. Sensor Modeling

We consider two sensor modalities likely suitable for un-
manned aircraft: electro-optical/infrared (EO/IR) and passive
radar.

EO/IR measures the intruder aircraft’s elevation and bearing
in the own aircraft’s local coordinate system. The sensor’s lim-
ited field of view (FoV), especially in the vertical direction (see
Table I), makes aircraft control and sensing challenging. For
computational efficiency, our observation model discretizes
elevation and bearing into four equally spaced values each.
When the sensor detects the intruder aircraft, it produces a
pair of elevation-bearing values. Including the observation NO-
DETECTION, there are 17 possible observations. The sensor
may produce false positive or false negative detection, as well
as error in elevation-bearing values. Our observation model
accounts for all sensing errors. The main model parameters
are shown in Table I. Implementation details of the model are
the same as those in [25].

Radar is not as accurate as EO/IR in measuring elevation
and bearing, but it measures the range to the intruder aircraft.
The range is discretized into 3 values. The observation model
for radar has 49 observations in total. Other aspects of the
radar model are similar to those for EO/IR.

E. Reward Modeling

The primary goal of collision avoidance systems is to
minimize the risk of NMAC. By definition, NMAC occurs
when two aircraft are within a horizontal distance of 500 ft and



a vertical distance of 100 ft. Our reward model assigns a large
penalty of −10, 000 for NMAC. To discourage unnecessary
maneuvers, our model assigns a penalty of −0.1 when the
own aircraft has non-zero vertical velocity or turn rate.

IV. MONTE CARLO VALUE ITERATION (MCVI)

Now we briefly describe the algorithm used to solve colli-
sion avoidance POMDPs. The details are available in [2].

A. Policies and Value Functions

A POMDP algorithm computes an optimal policy π∗ that
maximizes a system’s expected total reward. In a POMDP, the
system state is partially observable and modeled as a belief,
i.e., a probability distribution over the state space S. Let B
denote the space of all beliefs. A policy is a mapping π : B →
A, which specifies an action a ∈ A for each belief b ∈ B.

A policy π induces a value function Vπ : B → R. The value
of b ∈ B with respect to π is the system’s expected total reward
of executing π with initial belief b:

Vπ(b) = E
( ∞∑
t=0

γtR(st, at)
∣∣∣ π, b). (2)

If the action space A and the observation space O of a
POMDP are discrete, then the optimal value function V ∗

can be approximated arbitrarily closely by a piecewise-linear,
convex function [17]:

V (b) = max
α∈Γ

∫
s∈S

α(s)b(s) ds, (3)

where each α ∈ Γ is a function over S and commonly
called an α-function. If the state space S is also discrete,
we can represent beliefs and α-functions as vectors and
replace the integral in (3) by a sum. For each fixed α,
h(b) =

∑
s∈S α(s)b(s) defines a hyperplane over B, and V

can be represented as a finite set of hyperplanes. Most of
the fastest discrete-state POMDP algorithms [14, 16, 23, 24]
represent a policy by its value function and exploit the vector
representation for efficient computation. Unfortunately, when
S is continuous and high-dimensional, a vector representation
is no longer possible.

An alternative policy representation is a policy graph G,
which is a labeled directed graph. Each node of G is labeled
with an action a. Each edge of G is labeled with an obser-
vation o. To execute a policy πG represented this way, we
use a finite state controller whose states are the nodes of G.
The controller starts in a node v of G, and the system, with
initial belief b, performs the associated action av . If the system
then receives an observation o, the controller transitions from
v to a new node v′ by following the edge (v, v′) with label
o. The process then repeats. The finite state controller does
not maintain a belief on the system state explicitly. It encodes
the belief implicitly in the controller state based on the initial
belief b and the sequence of observations received.

For each node v of G, we may define an α-function αv . Let
πG,v denote a policy represented by G, when the controller

a1

a2

o1

o1, o2

o2

G
a1

o1

o2

Fig. 2. MC-Backup of a policy graph G. The dashed lines indicate the new
node and edges.

always starts in node v of G. The value αv(s) is the expected
total reward of executing πG,v with initial state s:

αv(s) = E
( ∞∑
t=0

γtR(st, at)
)

= R(s, av)+E
( ∞∑
t=1

γtR(st, at)
)
.

(4)
Putting (4) together with (2) and (3), we define the value of
b with respect to πG as

VG(b) = max
v∈G

∫
s∈S

αv(s)b(s)ds. (5)

So VG is completely determined by the α-functions associated
with the nodes of G.

B. MC-Backup

The optimal value function V ∗ can be computed by the
value iteration (VI) algorithm, which is based on the idea of
dynamic programming. An iteration of VI is called a backup.
The backup operator H constructs a new value function Vt+1

from the current value function Vt:

Vt+1(b) = HVt(b) = max
a∈A

{
R(b, a) + γ

∑
o∈O

p(o|b, a)Vt(b′)
}
,

(6)
In the equation above, R(b, a) =

∫
s∈S R(s, a)b(s)ds is the

expected immediate reward, and b′ is the belief on the next
system state, after the system takes action a and receives
observation o:

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∫
s∈S

T (s, a, s′)b(s) ds,

where η is a normalizing constant that ensures
∑
s′∈S b(s

′) =
1. At every b ∈ B, the backup operator H looks ahead one
step and chooses the action that maximizes the sum of the
expected immediate reward and the expected total reward at
the next belief. Under fairly general conditions, Vt converges
to the unique optimal value function V ∗.

VI is intended for computing value functions, but, interest-
ingly, it can be carried out on policy graphs as well. Let VG

be the value function for a policy graph G. Substituting (5)
into (6), we get

HVG(b) = max
a∈A

{∫
s∈S

R(s, a)b(s)ds

+
∑
o∈O

p(o|b, a) max
v∈G

∫
s∈S

αv(s)b′(s)ds
}
. (7)

Let us now evaluate (7) at a particular point b ∈ B and
construct the resulting new policy graph G′, which contains a
new node u and a new edge from u for each o ∈ O (Fig. 2).
Since we do not maintain VG explicitly as a set of α-functions,



Algorithm 1 MC-Backup of a policy graph G at a belief b ∈ B
with N samples.
MC-BACKUP(G, b,N)

1: For each action a ∈ A, Ra ← 0.
2: For each action a ∈ A, each observation o ∈ O, and each node
v ∈ G, Va,o,v ← 0.

3: for each action a ∈ A do
4: for i = 1 to N do
5: Sample a state si with probability b(si).
6: Simulate taking action a in state si. Generate the new

state s′i by sampling from the distribution T (si, a, s
′
i).

Generate the resulting observation oi by sampling from the
distribution Z(s′i, a, oi).

7: Ra ← Ra +R(si, a).
8: for each node v ∈ G do
9: Simulate the policy represented by G, with initial con-

troller state v and initial state s′i, for L steps. Set the
resulting total reward V ′ =

PL
t=0 γ

tR(st, at).
10: Va,oi,v ← Va,oi,v + V ′.
11: for each observation o ∈ O do
12: Va,o ← maxv∈G Va,o,v .
13: va,o ← arg maxv∈G Va,o,v .
14: Va ← (Ra + γ

P
o∈O Va,o)/N .

15: V ∗ ← maxa∈A Va.
16: a∗ ← arg maxa∈A Va.
17: Create a new policy graph G′ by adding a new node u to G.

Label u with a∗. For each o ∈ O, add the edge (u, va∗,o) and
label it with o.

18: return G′.

it seems difficult to compute the integral
∫
s∈S αv(s)b

′(s)ds.
However, the definition of αv in (4) suggests computing the
integral by Monte Carlo (MC) simulation: repeatedly sample
a state s with probability b′(s) and simulate the policy πG,v .
In fact, we can evaluate the entire right-hand side of (7) via
sampling and MC simulation, and construct the new policy
graph G′ with value function ĤbVG. We refer to this as the
MC-backup of G at b (Algorithm 1).

Conceptually, Algorithm 1 considers all possible ways of
generating G′. The new node u in G′ has |A| possible labels,
and each outgoing edge from u has |G| possible end nodes
in G, where |G| is the number of nodes in G (Fig. 2). Thus,
there are |A||G||O| candidates for G′. Each candidate graph G′

defines a new policy πG′,u. We draw N samples to estimate
the value of b for each candidate πG′,u. For each sample, we
pick s from the state space S with probability b(s). We run an
MC simulation under πG′,u, starting from s, for L steps and
calculate the total reward

∑L
t=0 γ

tR(st, at). The simulation
length L is chosen to be large enough so that the error due to
the finite simulation steps is small after discounting. We then
choose the candidate graph with the highest average simulation
reward. This naive procedure requires an exponential number
of samples.

Algorithm 1 computes the same result, but is more efficient:
the three nested loops (lines 3–10) use only N |A||G| samples.
Furthermore, we can show that MC-backup approximates the
standard VI backup (equation (7)) well, with error decreasing
at the rate O(1/

√
N):

Theorem 1 ([2]): Let Rmax be the maximum magnitude of

R(s, a) over s ∈ S and a ∈ A. Given a policy graph G and
a point b ∈ B, MC-BACKUP(G, b,N) produces an improved
policy graph with value function ĤbVG such that for any τ ∈
(0, 1),∣∣HVG(b)− ĤbVG(b)

∣∣ ≤ 2Rmax

1− γ

×

√
2
(
|O| ln |G|+ ln(2|A|) + ln(1/τ)

)
N

, (8)

with probability at least 1− τ .

C. Algorithm

MCVI computes an approximation to an optimal policy by
updating a policy graph G. To improve G, it samples beliefs
incrementally and performs backups at selected sampled be-
liefs. MCVI shares the same basic structure with the SARSOP
algorithm [14] for discrete POMDPs; however, it uses MC-
backup and particle filtering to handle continuous state spaces.
Below we give a summary of the algorithm and describe the
specific upper and lower bounds used in the implementation
of MCVI for our collision avoidance POMDPs.

Let R ⊆ B be a subset of points reachable from a given
initial belief b0 ∈ B under arbitrary sequences of actions
and observations. Following the recent point-based POMDP
planning approach, MCVI samples a set of beliefs from this
reachable space R rather than B for computational efficiency,
as R is often much smaller than B. The sampled beliefs form
a tree TR. Each node of TR represents a sampled belief b ∈ R,
and the root of TR is the initial belief b0. If b is a node of
TR and b′ is a child of b in TR, then b′ = τ(b, a, o) for some
a ∈ A and o ∈ O. By definition, the belief associated with
every node in TR lies in R.

To sample new beliefs, MCVI updates TR by performing a
search in R. At each node b of TR, it maintains both upper
and lower bounds on V ∗(b). We start from the root of TR
and traverse a single path down until reaching a leaf of TR.
At a node b along the path, we choose action a that leads
to the child node with the highest upper bound and choose
observation o that leads to the child node making the largest
contribution to the gap between the upper and lower bounds at
the root of TR. These heuristics are designed to bias sampling
towards regions that will likely lead to improvement in the
value function approximation. If b is a leaf node, then we
use the same criteria to choose a belief b′ among all beliefs
reachable from b after a single action a ∈ A and an observation
o ∈ O. We compute b′ = τ(b, a, o) using particle filtering and
create a new node for b′ in TR as a child of b. The sampling
path terminates when it reaches a sufficient depth to improve
the bounds at the root of TR. We then go back up this path to
the root and perform backup at each node along the way to
update the policy graph G as well as to improve the upper and
lower bound estimates. We repeat the sampling and backup
procedures until the gap between the upper and lower bounds
at the root of TR is smaller than a pre-specified value.

The lower bound at a tree node b is computed from the
policy graph G. Since G represents a valid policy, VG(b) is



TABLE II
PERFORMANCE COMPARISON OF THREAT RESOLUTION LOGIC.

Model Algorithm Sensor Risk Ratio v a |π|
(ft/s) (ft/s2)

3D continuous-state POMDP MCVI EO/IR 0.000657 27.85 1.89 59
2D continuous-state POMDP MCVI 0.017409 31.00 1.22 362
2D discrete-state POMDP SARSOP 0.035100 28.61 1.48 n/a
3D continuous-state POMDP MCVI Radar 0.000892 26.85 1.83 43
2D continuous-state POMDP MCVI 0.021739 29.50 1.67 766
2D discrete-state POMDP SARSOP 0.063370 23.63 1.26 n/a
TCAS II TCAS 0.061220 5.09 0.35 n/a
Nominal n/a 1.000000 4.25 0.17 n/a

a lower bound of V ∗(b). We initialize G with fixed-action
policies, each performing a single fixed action a ∈ A. Since
there are nine actions for our collision avoidance POMDPs,
G initially contains nine nodes. To update the lower bound at
b, we perform MC-backup on G at b. As a result, we obtain
an updated policy graph G′ and an MC estimate of the value
at b with respect to G′ as an improved lower bound.

In a collision avoidance POMDP, all reward values are
negative. So we use the zero initial bound at a new belief node
and update it with the standard point-based backup operator.

To summarize, the main technical innovation of MCVI is
to use Monte Carlo sampling in conjunction with dynamic
programming to compute an approximate POMDP solution.
It captures the α-functions implicitly as a policy graph and
retains their main benefits after paying a computational cost.
The idea of approximate dynamic programming through sam-
pling has also been used in policy search for Markov decision
processes (MDPs) and POMDPs, but without exploiting the
benefits of α-functions [1].

V. SIMULATION RESULTS

We constructed two collision avoidance POMDPs in 3-
D space with EO/IR and radar sensors, respectively. We
used MCVI to solve each model and evaluated the resulting
policy in the CASSATT simulator [12]. CASSATT is a fast,
parallelized simulator for testing threat resolution logic. It has
been used to test TCAS for manned aircraft [3]. Our tests used
the same 15,000-encounter data set from earlier work [25].
This data set was generated from a model derived from nine
months of radar data in the United States airspace [11]. Each
encounter lasts about 50 seconds, and the collision avoidance
system generates a command every six seconds.

To compare with discrete-state POMDP models [25], we
also constructed POMDPs in 2-D space by projecting the state-
transition dynamics and observations of our 3-D models onto
the vertical plane containing the two aircraft. The action space
of the 2-D models contains the vertical acceleration v, but not
the turn rate ω. In the CASSATT simulator, policies generated
from 2-D models control only v, and the aircraft maintains its
nominal turn rate.

Table II summarizes the simulation results. Column 1 and 2
list the model and the algorithm that produced the threat
resolution logic. All POMDP models used the uniform initial
belief and the same reward function described in Section III-E.

TABLE III
RISK RATIO VERSUS MANEUVER PENALTY.

Rm Risk Ratio v a ω
(ft/s) (ft/s2) (deg/s)

-0.1 0.000657 27.85 1.89 0.0269
-0.5 0.001297 25.14 2.42 0.0239

-1 0.002230 26.90 1.80 0.0264
-2 0.097492 23.92 2.09 0.0148
-5 0.247996 6.32 0.83 0.0065

For each continuous-state model, it took a maximum of 8 hours
to compute a policy on a computer server with two 4-core
2.4 GHz CPUs. The results for the discrete-state models and
TCAS are based on the reports in [25].

Column 4 of Table II lists the risk ratio, the main perfor-
mance measure of collision avoidance systems. Risk ratio is
the probability that an encounter leads to NMAC when using
the system divided by that when not using the system. The
last row of Table II shows the risk ratio for nominal flight,
which maintains the current flight path without any collision
avoidance maneuver. Column 5 and 6 list the mean magnitudes
of vertical velocity v and acceleration a. It is desirable to have
low velocity and acceleration without much sacrifice in the risk
ratio. Column 6 lists the number of nodes in the policy graphs
produced by MCVI.

Compared with 2-D discrete-state models, 2-D continuous-
state models reduced the risk ratio by 2–3 times, even though
both types of models have the same underlying flight dynam-
ics, the same action space, and the same observation space.

Our 3-D continuous-state models reduced the risk ratio by
58 times with the EO/IR sensor and 70 times with the radar
sensor. MCVI enabled us to model aircraft maneuver in the full
3-D space, allowing the risk ratio to be significantly reduced. It
is impossible for discrete-state POMDPs to handle such high-
dimensional state spaces.

All our models produced logic with lower risk ratio than
the TCAS logic. Since TCAS is not optimized for automated
unmanned aircraft control, a direct comparison is not fair, but
this nevertheless indicates the potential of our approach.

We also examined how the level of maneuver affects the
risk ratio by varying the maneuver penalty Rm in the 3-D
continuous-state model with the EO/IR sensor. As expected,
when the cost increases, the risk ratio increases, and the level
of maneuver decreases, though the relationships are not exactly
monotonic (Table III).

Fig. 3 shows a policy graph for our 3-D continuous-state



Fig. 3. A subgraph of the policy graph for the 3-D continuous-state POMDP
model with EO/IR. Each node is labeled with START, an arrow, or a dot.
START indicates the start node. An arrow indicates the directions of vertical
acceleration and turn. A dot indicates zero acceleration and turn. Doubly-
circled nodes represent initial policies. Each edge is color-coded and labeled
with BL (below-left), BR (below-right), AL (above-left), AR (above-right),
or N (no detection).

model with the EO/IR sensor. Only a subgraph can be shown in
the limited space. It provides several interesting observations:
• The own aircraft executes various maneuvers for informa-

tion gathering. When the observation is NO-DETECTION,
the aircraft turns right for two steps (node 1 and 2), in
order to overcome the sensor’s limited FoV and scan a
larger region for the intruder aircraft. The own aircraft
may also ascend and then descend (node 3 and 4) based
on the observations to localize the intruder aircraft better.

• After turning right for two steps (node 1 and 2), the
aircraft switches to level flight (node 5) in response to
further NO-DETECTION, rather than turn left to continue
searching for the intruder aircraft. Several successive NO-
DETECTION observations indicate that the space to the
right is likely clear. Continuing the search is unlikely to
be fruitful, whether the intruder aircraft is detected in
the end or not. This shows the policy’s ability to balance
information exploration and exploitation, a key benefit of
the POMDP approach.

• The policy graph contains several reused components,
e.g., the parts starting at node 6 and 7, respectively. They
can be regarded as sub-policies.

VI. DISCUSSION

Computing an optimal policy to a POMDP is PSPACE-hard
in the worst case [15]. Furthermore, under the assumption
PSPACE 6= Σp2, no polynomial-sized policy exists [15].
Surprisingly, MCVI found small and effective policies for
collision avoidance POMDPs (see Table II). In this section,
we try to find out the reasons.

Our main intuition is that once the intruder aircraft is
detected, a simple policy is often sufficient to bring the own
aircraft to safety. More precisely, consider the belief tree TR
for a POMDP with time horizon h. Conceptually, a planning
algorithm, such as MCVI, chooses one action at each node
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a1

o1
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Fig. 4. The belief tree for an SD POMDP. The part in black indicates a
policy that makes use of simple sub-policies, each represented as a “4”.

of TR, thereby converting TR into a policy tree Tπ . Every
node of Tπ has at most |O| branches, each corresponding to
an observation o ∈ O, and the size of Tπ is Θ(|O|h) in the
worst case. Assume now that all but one branch at each node
of Tπ admits a sub-policy of size at most M . This implies the
existence of an optimal policy π∗ with size at most Θ(|O|Mh),
which is polynomial in h (Fig. 4). If the sub-policies are all
polynomial-sized, then so is π∗. In this case, we say that the
POMDP is simple after detection (SD).

It is reasonable to expect that in collision avoidance
POMDPs, simple policies do exist for every branch of a belief
tree node except for the one with NO-DETECTION. To verify
that collision avoidance POMDPs are SD, we measured the
gap between the upper and lower bounds of randomly sampled
nodes from TR for the 3-D continuous-state model with the
EO/IR sensor, as small gap size indicates the existence of
good sub-policies. Specifically, we randomly sampled NO-
DETECTION paths of various lengths from the belief tree and
performed a single backup operation at the last node along
each path. We then measured the gaps between the upper
and lower bounds of these nodes, using the same bounds as
those in MCVI. We did the same with randomly sampled
first-detection paths, which are paths having NO-DETECTION

observations except for the last one. While the gap sizes for
NO-DETECTION paths vary widely from small to large, the gap
sizes for first-detection paths are all concentrated at the small
end (Fig. 5). The sharp difference suggests that our collision
avoidance POMDP models are approximately SD.

Various uncertainty planning tasks in robotics and beyond
may possess the SD property. For example, once a robot finds
a target, following the target around is often not difficult.
Similarly, suppose that a robot has relatively accurate motion
control. Once the robot is localized, navigation becomes easy.

A small policy does not imply that it can be computed effi-
ciently, but the SD property indeed seems to bring substantial
computational advantages to MCVI. The belief tree TR for
a POMDP with time horizon h has size Θ(|A|h|O|h) in the
worst case. However, our measurements (Fig. 5) indicate that
at each node of TR, the existence of simple sub-policies allows
a single backup to substantially narrow the gap between the
upper and lower bounds for all observation branches except
for the one with NO-DETECTION. Thus MCVI can prune most
branches of TR, and the size of TR is only about Θ(|A|h),
which is exponentially smaller than the worst case. In our
collision avoidance POMDPs, |O| is 2–5 times as large as |A|,



(a) (b)

Fig. 5. Gap size distributions for the EO/IR model. (a) NO-DETECTION
paths. (b) First-detection paths.

and the reduction in the size of TR is significant. Furthermore,
an encounter of two aircraft must be resolved within tight time
limits. Thus, the time horizon h is relatively short. All these
limit the size of TR and contribute to the strong performance
of MCVI.

VII. CONCLUSIONS

We modeled unmanned aircraft collision avoidance as
continuous-state POMDPs and generated the threat resolution
logic automatically by solving these models using Monte
Carlo Value Iteration. Simulation results show that our 3-D
continuous-state models reduce the collision risk by up to
70 times compared with previous 2-D discrete-state POMDP
models. A key enabler of this significant progress is MCVI’s
ability in handling high-dimensional continuous state spaces.
The combination of continuous-state POMDP modeling and
the MCVI algorithm provides a powerful approach for colli-
sion avoidance and potentially a variety of other robotic tasks
that require planning under uncertainty.

We are extending both our POMDP models and the MCVI
algorithm in several directions. One important issue is to han-
dle continuous observation space, which may further improve
the performance of our models. It would also be interesting to
apply our approach to collision avoidance systems for multiple
aircraft and to explore interoperability with collision avoidance
systems for manned aircraft.
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