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1 Proof of Theorem 1

We will need two lemmas for proving Theorem 1. The first one is Haussler’s bound given in [1,
p. 103] (Lemma 9, part (2)).

Lemma 1 (Haussler’s bound) Let Z1, . . . , Zn be i.i.d random variables with range 0 ≤ Zi ≤M ,
E(Zi) = µ, and µ̂ = 1

n

∑n
i=1 Zi, 1 ≤ i ≤ n. Assume ν > 0 and 0 < α < 1. Then

Pr (dν(µ̂, µ) > α) < 2e−α
2νn/M

where dν(r, s) = |r−s|
ν+r+s . As a consequence,

Pr

(
µ <

1− α
1 + α

µ̂− α

1 + α
ν

)
< 2e−α

2νn/M .

Let Πi be the class of policy trees in Πb0,D,K and having size i. The next lemma bounds the size of
Πi.

Lemma 2 |Πi| ≤ i(i−2)(|A||Z|)i.

Proof. Let Π′i be the class of rooted ordered trees of size i. |Π′i| is not more than the number of
all trees with i labeled nodes, because the in-order labeling of a tree in Π′i corresponds to a labeled
tree. By Cayley’s formula [3], the number of trees with i labeled nodes is i(i−2), thus |Π′i| ≤ i(i−2).
Recall the definition of a policy derivable from a DESPOT in Section 4 in the main text. A policy
tree in Πi is obtained from a tree in Π′i by assigning the default policy to each leaf node, one of the
|A| possible action labels to all other nodes, and one of at most |Z| possible labels to each edge.
Therefore

|Πi| ≤ i(i−2) · |A|i · |Z|(i−1) ≤ i(i−2)(|A||Z|)i.
�

In the following, we often abbreviate Vπ(b0) and V̂π(b0) as Vπ and V̂π respectively, since we will
only consider the true and empirical values for a fixed but arbitrary b0. Our proof follows a line of
reasoning similar to [2].

Theorem 1 For any τ, α ∈ (0, 1) and any set Φb0 of K randomly sampled scenarios for belief b0,
every policy tree π ∈ Πb0,D,K satisfies

Vπ(b0) ≥ 1− α
1 + α

V̂π(b0)− Rmax

(1 + α)(1− γ)
·

ln(4/τ) + |π| ln
(
KD|A||Z|

)
αK

.

with probability at least 1− τ , where V̂π(b0) denotes the estimated value of π under Φb0 .
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Proof. Consider an arbitrary policy tree π ∈ Πb0,D,K . We know that for a random scenario φ for the
belief b0, executing the policy π w.r.t. φ gives us a sequence of states and observations distributed
according to the distributions P (s′|s, a) and P (z|s, a). Therefore, for π, its true value Vπ equals
E (Vπ,φ), where the expectation is over the distribution of scenarios. On the other hand, since
V̂π = 1

K

∑K
k=1 Vπ,φk , and the scenarios φ0,φ1, . . . ,φK are independently sampled, Lemma 1

gives

Pr

(
Vπ <

1− α
1 + α

V̂π −
α

1 + α
ε|π|

)
< 2e−α

2ε|π|K/M (1)

where M = Rmax/(1− γ), and εi is chosen such that

2e−α
2ε|π|K/M = τ/(2i2|Πi|). (2)

By the union bound, we have

Pr

(
∃π ∈ Πb0,D,K

[
Vπ <

1− α
1 + α

V̂π −
α

1 + α
ε|π|

])
≤
∞∑
i=1

∑
π∈Πi

Pr

(
Vπ <

1− α
1 + α

V̂π −
α

1 + α
ε|π|

)
.

By the choice of εi’s and Inequality (1), the right hand side of the above inequality is bounded by∑∞
i=1 |Πi| · [τ/(2i2|Πi|)] = π2τ/12 < τ , where the well-known identity

∑∞
i=1 1/i2 = π2/6 is

used. Hence,

Pr

(
∃π ∈ Πb0,D,K

[
Vπ <

1− α
1 + α

V̂π −
α

1 + α
ε|π|

])
< τ. (3)

Equivalently, with probability 1− τ , every π ∈ Πb0,D,K satisfies

Vπ ≥
1− α
1 + α

V̂π −
α

1 + α
ε|π|. (4)

To complete the proof, we now give an upper bound on ε|π|. From Equation 2, we can solve for

ε|π| to get εi = Rmax

α(1−γ) ·
ln(4/τ)+ln(i2|Πi|)

αK . For any π in Πb0,D,K , its size is at most KD, and
i2|Πi| ≤ (i|A||Z|)i ≤ (KD|A||Z|)i by Lemma 2. Thus we have

ε|π| ≤
Rmax

α(1− γ)
· ln(4/τ) + |π| ln(KD|A||Z|)

αK
.

Combining this with Inequality (4), we get

Vπ ≥
1− α
1 + α

V̂π −
Rmax

(1 + α)(1− γ)
· ln(4/τ) + |π| ln(KD|A||Z|)

αK
.

This completes the proof. �

2 Proof of Theorem 2

We need the following lemma for proving Theorem 2.

Lemma 3 For a fixed policy π and any τ ∈ (0, 1), with probability at least 1− τ .

V̂π ≥ Vπ −
Rmax

1− γ

√
2 ln(1/τ)

K

Proof. Let π be a policy and Vπ and V̂π as mentioned. Hoeffding’s inequality [4] gives us

Pr
(
V̂π ≥ Vπ − ε

)
≥ 1− e−Kε

2/(2M2)
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Let τ = e−Kε
2/(2M2) and solve for ε, then we get

Pr

(
V̂π ≥ Vπ −

Rmax

1− γ

√
2 ln(1/τ)

K

)
≥ 1− τ.

�

Theorem 2 Let π∗ be an optimal policy at a belief b0. Let π be a policy derived from a DESPOT
that has height D and are constructed from K randomly sampled scenarios for belief b0. For any
τ, α ∈ (0, 1), if π maximizes

1− α
1 + α

V̂π(b0)− Rmax

(1 + α)(1− γ)
· |π| ln(KD|A||Z|)

αK
, (5)

among all policies derived from the DESPOT, then

Vπ(b0) ≥ 1−α
1+αVπ∗(b0)− Rmax

(1+α)(1−γ)

(
ln(8/τ)+|π∗| ln

(
KD|A||Z|

)
αK + (1− α)

(√
2 ln(2/τ)

K + γD
))
. (6)

Proof. By Theorem 1, with probability at least 1− τ/2,

Vπ ≥
1− α
1 + α

V̂π −
Rmax

(1 + α)(1− γ)

[
ln(8/τ) + |π| ln(KD|A||Z|)

αK

]
.

Suppose the above inequality holds on a random set of K scenarios. Note that there is a π′ ∈
Πb0,D,K which is a subtree of π? and has the same trajectories on these scenarios up to depth D. By
the choice of π in Inequality (5), it follows that with probability at least 1− τ/2,

Vπ ≥
1− α
1 + α

V̂π′ −
Rmax

(1 + α)(1− γ)

[
ln(8/τ) + |π′| ln(KD|A||Z|)

αK

]
.

Note that |π?| ≥ |π′|, and V̂π′ ≥ V̂π? − γDRmax/(1− γ) since π′ and π? only differ from depth D
onwards, under the chosen scenarios. It follows that with probability at least 1− τ/2,

Vπ ≥
1− α
1 + α

(
V̂π? − γD

Rmax
1− γ

)
− Rmax

(1 + α)(1− γ)

[
ln(8/τ) + |π?| ln(KD|A||Z|)

αK

]
. (7)

By Lemma 3, with probability at least 1− τ/2, we have

V̂π? ≥ Vπ? −
Rmax

1− γ

√
2 ln(2/τ)

K
. (8)

By the union bound, with probability at least 1 − τ , both Inequality (7) and Inequality (8) hold,
which imply Inequality (6) holds. This completes the proof. �
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