DESPOT: Online POMDP Planning with Regularization

Supplementary Material

Adhiraj Somani Nan Ye David Hsu Wee Sun Lee
Department of Computer Science, National University of Singapore
adhirajsomani@gmail.com, \{yenan, dyhsu,leews\}@comp.nus.edu.sg

1 Proof of Theorem 1

We will need two lemmas for proving Theorem 1. The first one is Haussler's bound given in [1, p. 103] (Lemma 9, part (2)).

Lemma 1 (Haussler's bound) Let Z_{1}, \ldots, Z_{n} be i.i.d random variables with range $0 \leq Z_{i} \leq M$, $\mathbb{E}\left(Z_{i}\right)=\mu$, and $\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}, 1 \leq i \leq n$. Assume $\nu>0$ and $0<\alpha<1$. Then

$$
\operatorname{Pr}\left(d_{\nu}(\hat{\mu}, \mu)>\alpha\right)<2 e^{-\alpha^{2} \nu n / M}
$$

where $d_{\nu}(r, s)=\frac{|r-s|}{\nu+r+s}$. As a consequence,

$$
\operatorname{Pr}\left(\mu<\frac{1-\alpha}{1+\alpha} \hat{\mu}-\frac{\alpha}{1+\alpha} \nu\right)<2 e^{-\alpha^{2} \nu n / M} .
$$

Let Π_{i} be the class of policy trees in $\Pi_{b_{0}, D, K}$ and having size i. The next lemma bounds the size of Π_{i}.

Lemma $2\left|\Pi_{i}\right| \leq i^{(i-2)}(|A||Z|)^{i}$.
Proof. Let Π_{i}^{\prime} be the class of rooted ordered trees of size i. $\left|\Pi_{i}^{\prime}\right|$ is not more than the number of all trees with i labeled nodes, because the in-order labeling of a tree in Π_{i}^{\prime} corresponds to a labeled tree. By Cayley's formula [3], the number of trees with i labeled nodes is $i^{(i-2)}$, thus $\left|\Pi_{i}^{\prime}\right| \leq i^{(i-2)}$. Recall the definition of a policy derivable from a DESPOT in Section 4 in the main text. A policy tree in Π_{i} is obtained from a tree in Π_{i}^{\prime} by assigning the default policy to each leaf node, one of the $|A|$ possible action labels to all other nodes, and one of at most $|Z|$ possible labels to each edge. Therefore

$$
\left|\Pi_{i}\right| \leq i^{(i-2)} \cdot|A|^{i} \cdot|Z|^{(i-1)} \leq i^{(i-2)}(|A||Z|)^{i}
$$

In the following, we often abbreviate $V_{\pi}\left(b_{0}\right)$ and $\hat{V}_{\pi}\left(b_{0}\right)$ as V_{π} and \hat{V}_{π} respectively, since we will only consider the true and empirical values for a fixed but arbitrary b_{0}. Our proof follows a line of reasoning similar to [2].

Theorem 1 For any $\tau, \alpha \in(0,1)$ and any set $\mathbf{\Phi}_{b_{0}}$ of K randomly sampled scenarios for belief b_{0}, every policy tree $\pi \in \Pi_{b_{0}, D, K}$ satisfies

$$
V_{\pi}\left(b_{0}\right) \geq \frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}\left(b_{0}\right)-\frac{R_{\max }}{(1+\alpha)(1-\gamma)} \cdot \frac{\ln (4 / \tau)+|\pi| \ln (K D|A||Z|)}{\alpha K}
$$

with probability at least $1-\tau$, where $\hat{V}_{\pi}\left(b_{0}\right)$ denotes the estimated value of π under $\boldsymbol{\Phi}_{b_{0}}$.

Proof. Consider an arbitrary policy tree $\pi \in \Pi_{b_{0}, D, K}$. We know that for a random scenario ϕ for the belief b_{0}, executing the policy π w.r.t. ϕ gives us a sequence of states and observations distributed according to the distributions $P\left(s^{\prime} \mid s, a\right)$ and $P(z \mid s, a)$. Therefore, for π, its true value V_{π} equals $\mathbb{E}\left(V_{\pi, \phi}\right)$, where the expectation is over the distribution of scenarios. On the other hand, since $\hat{V}_{\pi}=\frac{1}{K} \sum_{k=1}^{K} V_{\pi, \phi_{k}}$, and the scenarios $\phi_{0}, \phi_{1}, \ldots, \phi_{K}$ are independently sampled, Lemma 1 gives

$$
\begin{equation*}
\operatorname{Pr}\left(V_{\pi}<\frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}-\frac{\alpha}{1+\alpha} \epsilon_{|\pi|}\right)<2 e^{-\alpha^{2} \epsilon_{|\pi|} K / M} \tag{1}
\end{equation*}
$$

where $M=R_{\text {max }} /(1-\gamma)$, and ϵ_{i} is chosen such that

$$
\begin{equation*}
2 e^{-\alpha^{2} \epsilon_{|\pi|} K / M}=\tau /\left(2 i^{2}\left|\Pi_{i}\right|\right) \tag{2}
\end{equation*}
$$

By the union bound, we have

$$
\operatorname{Pr}\left(\exists \pi \in \Pi_{b_{0}, D, K}\left[V_{\pi}<\frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}-\frac{\alpha}{1+\alpha} \epsilon_{|\pi|}\right]\right) \leq \sum_{i=1}^{\infty} \sum_{\pi \in \Pi_{i}} \operatorname{Pr}\left(V_{\pi}<\frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}-\frac{\alpha}{1+\alpha} \epsilon_{|\pi|}\right)
$$

By the choice of ϵ_{i} 's and Inequality (1), the right hand side of the above inequality is bounded by $\sum_{i=1}^{\infty}\left|\Pi_{i}\right| \cdot\left[\tau /\left(2 i^{2}\left|\Pi_{i}\right|\right)\right]=\pi^{2} \tau / 12<\tau$, where the well-known identity $\sum_{i=1}^{\infty} 1 / i^{2}=\pi^{2} / 6$ is used. Hence,

$$
\begin{equation*}
\operatorname{Pr}\left(\exists \pi \in \Pi_{b_{0}, D, K}\left[V_{\pi}<\frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}-\frac{\alpha}{1+\alpha} \epsilon_{|\pi|}\right]\right)<\tau \tag{3}
\end{equation*}
$$

Equivalently, with probability $1-\tau$, every $\pi \in \Pi_{b_{0}, D, K}$ satisfies

$$
\begin{equation*}
V_{\pi} \geq \frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}-\frac{\alpha}{1+\alpha} \epsilon_{|\pi|} \tag{4}
\end{equation*}
$$

To complete the proof, we now give an upper bound on $\epsilon_{|\pi|}$. From Equation 2 we can solve for $\epsilon_{|\pi|}$ to get $\epsilon_{i}=\frac{R_{\max }}{\alpha(1-\gamma)} \cdot \frac{\ln (4 / \tau)+\ln \left(i^{2}\left|\Pi_{i}\right|\right)}{\alpha K}$. For any π in $\Pi_{b_{0}, D, K}$, its size is at most $K D$, and $i^{2}\left|\Pi_{i}\right| \leq(i|A||Z|)^{i} \leq(K D|A||Z|)^{i}$ by Lemma2. Thus we have

$$
\epsilon_{|\pi|} \leq \frac{R_{\max }}{\alpha(1-\gamma)} \cdot \frac{\ln (4 / \tau)+|\pi| \ln (K D|A||Z|)}{\alpha K}
$$

Combining this with Inequality (4), we get

$$
V_{\pi} \geq \frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}-\frac{R_{\max }}{(1+\alpha)(1-\gamma)} \cdot \frac{\ln (4 / \tau)+|\pi| \ln (K D|A||Z|)}{\alpha K}
$$

This completes the proof.

2 Proof of Theorem 2

We need the following lemma for proving Theorem 2.
Lemma 3 For a fixed policy π and any $\tau \in(0,1)$, with probability at least $1-\tau$.

$$
\hat{V}_{\pi} \geq V_{\pi}-\frac{R_{\max }}{1-\gamma} \sqrt{\frac{2 \ln (1 / \tau)}{K}}
$$

Proof. Let π be a policy and V_{π} and \hat{V}_{π} as mentioned. Hoeffding's inequality [4] gives us

$$
\operatorname{Pr}\left(\hat{V}_{\pi} \geq V_{\pi}-\epsilon\right) \geq 1-e^{-K \epsilon^{2} /\left(2 M^{2}\right)}
$$

Let $\tau=e^{-K \epsilon^{2} /\left(2 M^{2}\right)}$ and solve for ϵ, then we get

$$
\operatorname{Pr}\left(\hat{V}_{\pi} \geq V_{\pi}-\frac{R_{\max }}{1-\gamma} \sqrt{\frac{2 \ln (1 / \tau)}{K}}\right) \geq 1-\tau
$$

Theorem 2 Let π^{*} be an optimal policy at a belief b_{0}. Let π be a policy derived from a DESPOT that has height D and are constructed from K randomly sampled scenarios for belief b_{0}. For any $\tau, \alpha \in(0,1)$, if π maximizes

$$
\begin{equation*}
\frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}\left(b_{0}\right)-\frac{R_{\max }}{(1+\alpha)(1-\gamma)} \cdot \frac{|\pi| \ln (K D|A||Z|)}{\alpha K} \tag{5}
\end{equation*}
$$

among all policies derived from the DESPOT, then

$$
\begin{equation*}
V_{\pi}\left(b_{0}\right) \geq \frac{1-\alpha}{1+\alpha} V_{\pi^{*}}\left(b_{0}\right)-\frac{R_{\max }}{(1+\alpha)(1-\gamma)}\left(\frac{\ln (8 / \tau)+\left|\pi^{*}\right| \ln (K D|A||Z|)}{\alpha K}+(1-\alpha)\left(\sqrt{\frac{2 \ln (2 / \tau)}{K}}+\gamma^{D}\right)\right) \tag{6}
\end{equation*}
$$

Proof. By Theorem 1, with probability at least $1-\tau / 2$,

$$
V_{\pi} \geq \frac{1-\alpha}{1+\alpha} \hat{V}_{\pi}-\frac{R_{\max }}{(1+\alpha)(1-\gamma)}\left[\frac{\ln (8 / \tau)+|\pi| \ln (K D|A||Z|)}{\alpha K}\right]
$$

Suppose the above inequality holds on a random set of K scenarios. Note that there is a $\pi^{\prime} \in$ $\Pi_{b_{0}, D, K}$ which is a subtree of π^{\star} and has the same trajectories on these scenarios up to depth D. By the choice of π in Inequality (5), it follows that with probability at least $1-\tau / 2$,

$$
V_{\pi} \geq \frac{1-\alpha}{1+\alpha} \hat{V}_{\pi^{\prime}}-\frac{R_{\max }}{(1+\alpha)(1-\gamma)}\left[\frac{\ln (8 / \tau)+\left|\pi^{\prime}\right| \ln (K D|A||Z|)}{\alpha K}\right]
$$

Note that $\left|\pi^{\star}\right| \geq\left|\pi^{\prime}\right|$, and $\hat{V}_{\pi^{\prime}} \geq \hat{V}_{\pi^{\star}}-\gamma^{D} R_{\max } /(1-\gamma)$ since π^{\prime} and π^{\star} only differ from depth D onwards, under the chosen scenarios. It follows that with probability at least $1-\tau / 2$,

$$
\begin{equation*}
V_{\pi} \geq \frac{1-\alpha}{1+\alpha}\left(\hat{V}_{\pi^{\star}}-\gamma^{D} \frac{R_{\max }}{1-\gamma}\right)-\frac{R_{\max }}{(1+\alpha)(1-\gamma)}\left[\frac{\ln (8 / \tau)+\left|\pi^{\star}\right| \ln (K D|A||Z|)}{\alpha K}\right] \tag{7}
\end{equation*}
$$

By Lemma 3 , with probability at least $1-\tau / 2$, we have

$$
\begin{equation*}
\hat{V}_{\pi^{\star}} \geq V_{\pi^{\star}}-\frac{R_{\max }}{1-\gamma} \sqrt{\frac{2 \ln (2 / \tau)}{K}} \tag{8}
\end{equation*}
$$

By the union bound, with probability at least $1-\tau$, both Inequality 77 and Inequality 8 hold, which imply Inequality (6) holds. This completes the proof.

References

[1] David Haussler. Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications. Information and computation, 100(1):78-150, 1992.
[2] Yi Wang, Kok Sung Won, David Hsu, and Wee Sun Lee. Monte Carlo Bayesian Reinforcement Learning. arXiv preprint arXiv:1206.6449, 2012.
[3] Arthur Cayley. A Theorem on Trees. Quart. J. Math, 23(376-378):69, 1889.
[4] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American statistical association, 58(301):13-30, 1963.

