Supplementary Material for Monte Carlo Value Iteration with Macro-Actions

Lemma 1 Given value functions U and $V,\|H U-H V\|_{\infty} \leq \gamma\|U-V\|_{\infty}$.

Proof.

Let b be an arbitrary belief and assume that $H V(b) \leq H U(b)$ holds. Let \mathbf{a}^{*} be the optimal macro action for $H U(b)$. Then

$$
\begin{aligned}
0 & \leq H U(b)-H V(b) \\
& \leq \mathbf{R}\left(b, \mathbf{a}^{*}\right)+\gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}\left(\mathbf{0} \mid \mathbf{a}^{*}, b\right) U\left(\tau\left(b, \mathbf{o}, \mathbf{a}^{*}\right)\right)-\mathbf{R}\left(b, \mathbf{a}^{*}\right)-\gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}\left(\mathbf{o} \mid \mathbf{a}^{*}, b\right) V\left(\tau\left(b, \mathbf{o}, \mathbf{a}^{*}\right)\right) \\
& =\gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}\left(\mathbf{o} \mid \mathbf{a}^{*}, b\right)\left[U\left(\tau\left(b, o, \mathbf{a}^{*}\right)-V\left(\tau\left(b, o, \mathbf{a}^{*}\right)\right)\right]\right. \\
& \leq \gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}\left(\mathbf{o} \mid \mathbf{a}^{*}, b\right)\|U-V\|_{\infty} \\
& \leq \gamma\|U-V\|_{\infty} .
\end{aligned}
$$

Since $\|\cdot\|_{\infty}$ is symmetrical, the result is the same for the case of $H U(b) \leq H V(b)$. By taking $\|\cdot\|_{\infty}$ over all weighted belief, we get

$$
\|H U-H V\|_{\infty} \leq \gamma\|U-V\|_{\infty} .
$$

Thus, H is a contractive mapping.
Theorem 2 The value function for an m-step policy is piecewise linear and convex and can be represented as

$$
\begin{equation*}
V_{m}(b)=\max _{\alpha \in \Gamma_{m}} \sum_{s \in S} \alpha(s) b(s) \tag{1}
\end{equation*}
$$

where Γ_{m} is a finite collection of α-vectors.

Proof.

We prove this property by induction. When $m=1$, the intial value function V_{1} is the best expected reward and can be written as

$$
V_{1}(b)=\max _{\mathbf{a}} \mathbf{R}(b, \mathbf{a})=\max _{\mathbf{a}} \sum_{s \in S} \mathbf{R}(s, \mathbf{a}) b(s) .
$$

This has the same form as $V_{m}(b)=\max _{\alpha_{m} \in \Gamma_{m}} \sum_{s \in S} \alpha_{m}(s) b(s)$ where there is one linear α-vector for each macro action. $V_{1}(b)$ can therefore be represented as a finite collection of α-vectors.
Assuming the optimal value function for any b_{i-1} is represented using a finite set of α-vector $\Gamma_{i-1}=$ $\left\{\alpha_{i-1}^{0}, \alpha_{i-1}^{1}, \ldots\right\}$ and

$$
\begin{equation*}
V_{i-1}\left(b_{i-1}\right)=\max _{\alpha_{i-1} \in \Gamma_{i-1}} \sum_{s \in S} b_{i-1}(s) \alpha_{i-1}(s) \tag{2}
\end{equation*}
$$

Substituting

$$
b_{i-1}(s)=\sum_{j=1}^{\infty} \gamma^{j-1} \sum_{s^{\prime}} p\left(s, \mathbf{o}, j \mid s^{\prime}, \mathbf{a}\right) b_{i}\left(s^{\prime}\right) / p_{\gamma}\left(\mathbf{o} \mid \mathbf{a}, b_{i}\right)
$$

into (2), we get

$$
V_{i-1}\left(b_{i-1}\right)=\max _{\alpha_{i-1} \in \Gamma_{i-1}} \sum_{s \in S} \frac{\sum_{j=1}^{\infty} \gamma^{j-1} \sum_{s^{\prime}} p\left(s, \mathbf{o}, j \mid s^{\prime}, \mathbf{a}\right) b_{i}\left(s^{\prime}\right)}{p_{\gamma}\left(\mathbf{o} \mid \mathbf{a}, b_{i}\right)} \alpha_{i-1}(s) .
$$

Substituting it into the backup equation gives

$$
\begin{aligned}
V_{i}\left(b_{i}\right) & =\max _{\mathbf{a}}\left(\mathbf{R}\left(b_{i}, \mathbf{a}\right)+\gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}\left(\mathbf{o} \mid \mathbf{a}, b_{i}\right) \max _{\alpha_{i-1} \in \Gamma_{i-1}} \sum_{s \in S} \frac{\sum_{j=1}^{\infty} \gamma^{j-1} \sum_{s^{\prime}} p\left(s, \mathbf{o}, j \mid s^{\prime}, \mathbf{a}\right) b_{i}\left(s^{\prime}\right)}{p_{\gamma}\left(\mathbf{o} \mid \mathbf{a}, b_{i}\right)} \alpha_{i-1}(s)\right) \\
& =\max _{\mathbf{a}}\left(\mathbf{R}\left(b_{i}, \mathbf{a}\right)+\gamma \sum_{\mathbf{0} \in \mathcal{O}} \max _{\alpha_{i-1} \in \Gamma_{i-1}} \sum_{s \in S} \sum_{j=1}^{\infty} \gamma^{j-1} \sum_{s^{\prime}} p\left(s, \mathbf{o}, j \mid s^{\prime}, \mathbf{a}\right) b_{i}\left(s^{\prime}\right) \alpha_{i-1}(s)\right) \\
& =\max _{\mathbf{a}} \max _{\alpha_{i-1}^{1} \in \Gamma_{i-1}, \ldots, \alpha_{i-1}^{\prime \mathcal{O}}} \sum_{s^{\prime} \in S} b_{i}\left(s^{\prime}\right)\left[\mathbf{R}\left(s^{\prime}, \mathbf{a}\right)+\gamma \sum_{\mathbf{o} \in \mathcal{O}} \sum_{s \in S} \sum_{j=1}^{\infty} \gamma^{j-1} p\left(s, \mathbf{o}, j \mid s^{\prime}, \mathbf{a}\right) \alpha_{i-1}^{\mathbf{0}}(s)\right]
\end{aligned}
$$

The expression in the square bracket can evaluate to $|\mathcal{A}|\left|\Gamma_{i-1}\right|^{|\mathcal{O}|}$ different vectors. We can rewrite $V_{i}\left(b_{i}\right)$ as:

$$
V_{i}\left(b_{i}\right)=\max _{\alpha_{i} \in \Gamma_{i}} \sum_{s \in S} \alpha_{i}(s) b_{i}(s)
$$

Hence $V_{i}\left(b_{i}\right)$ can be represented by a finite set of α-vector.

