Supplementary Material for Monte Carlo Value Iteration with Macro-Actions

Lemma 1 Given value functions U and V, $||HU - HV||_{\infty} \leq \gamma ||U - V||_{\infty}$.

Proof.

Let b be an arbitrary belief and assume that $HV(b) \leq HU(b)$ holds. Let \mathbf{a}^* be the optimal macro action for HU(b). Then

$$\begin{aligned} 0 &\leq HU(b) - HV(b) \\ &\leq \mathbf{R}(b, \mathbf{a}^*) + \gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}(\mathbf{o} | \mathbf{a}^*, b) U(\tau(b, \mathbf{o}, \mathbf{a}^*)) - \mathbf{R}(b, \mathbf{a}^*) - \gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}(\mathbf{o} | \mathbf{a}^*, b) V(\tau(b, \mathbf{o}, \mathbf{a}^*)) \\ &= \gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}(\mathbf{o} | \mathbf{a}^*, b) [U(\tau(b, o, \mathbf{a}^*) - V(\tau(b, o, \mathbf{a}^*))] \\ &\leq \gamma \sum_{\mathbf{o} \in \mathcal{O}} p_{\gamma}(\mathbf{o} | \mathbf{a}^*, b) ||U - V||_{\infty} \\ &\leq \gamma ||U - V||_{\infty}. \end{aligned}$$

Since $|| \cdot ||_{\infty}$ is symmetrical, the result is the same for the case of $HU(b) \leq HV(b)$. By taking $|| \cdot ||_{\infty}$ over all weighted belief, we get

$$|HU - HV||_{\infty} \le \gamma ||U - V||_{\infty}.$$

Thus, H is a contractive mapping. \Box

Theorem 2 The value function for an m-step policy is piecewise linear and convex and can be represented as

$$V_m(b) = \max_{\alpha \in \Gamma_m} \sum_{s \in S} \alpha(s) b(s)$$
(1)

where Γ_m is a finite collection of α -vectors.

V

Proof.

We prove this property by induction. When m = 1, the initial value function V_1 is the best expected reward and can be written as

$$Y_1(b) = \max_{\mathbf{a}} \mathbf{R}(b, \mathbf{a}) = \max_{\mathbf{a}} \sum_{s \in S} \mathbf{R}(s, \mathbf{a}) b(s).$$

This has the same form as $V_m(b) = \max_{\alpha_m \in \Gamma_m} \sum_{s \in S} \alpha_m(s)b(s)$ where there is one linear α -vector for each macro action. $V_1(b)$ can therefore be represented as a finite collection of α -vectors.

Assuming the optimal value function for any b_{i-1} is represented using a finite set of α -vector $\Gamma_{i-1} = \{\alpha_{i-1}^0, \alpha_{i-1}^1, \ldots\}$ and

$$V_{i-1}(b_{i-1}) = \max_{\alpha_{i-1} \in \Gamma_{i-1}} \sum_{s \in S} b_{i-1}(s) \alpha_{i-1}(s)$$
(2)

Substituting

$$b_{i-1}(s) = \sum_{j=1}^{\infty} \gamma^{j-1} \sum_{s'} p(s, \mathbf{o}, j | s', \mathbf{a}) b_i(s') / p_{\gamma}(\mathbf{o} | \mathbf{a}, b_i)$$

into (2), we get

$$V_{i-1}(b_{i-1}) = \max_{\alpha_{i-1} \in \Gamma_{i-1}} \sum_{s \in S} \frac{\sum_{j=1}^{\infty} \gamma^{j-1} \sum_{s'} p(s, \mathbf{o}, j | s', \mathbf{a}) b_i(s')}{p_{\gamma}(\mathbf{o} | \mathbf{a}, b_i)} \alpha_{i-1}(s).$$

Substituting it into the backup equation gives

$$V_{i}(b_{i}) = \max_{\mathbf{a}} \left(\mathbf{R}(b_{i},\mathbf{a}) + \gamma \sum_{\mathbf{o}\in\mathcal{O}} p_{\gamma}(\mathbf{o}|\mathbf{a},b_{i}) \max_{\alpha_{i-1}\in\Gamma_{i-1}} \sum_{s\in S} \frac{\sum_{j=1}^{\infty} \gamma^{j-1} \sum_{s'} p(s,\mathbf{o},j|s',\mathbf{a}) b_{i}(s')}{p_{\gamma}(\mathbf{o}|\mathbf{a},b_{i})} \alpha_{i-1}(s) \right)$$
$$= \max_{\mathbf{a}} \left(\mathbf{R}(b_{i},\mathbf{a}) + \gamma \sum_{\mathbf{o}\in\mathcal{O}} \max_{\alpha_{i-1}\in\Gamma_{i-1}} \sum_{s\in S} \sum_{j=1}^{\infty} \gamma^{j-1} \sum_{s'} p(s,\mathbf{o},j|s',\mathbf{a}) b_{i}(s') \alpha_{i-1}(s) \right)$$
$$= \max_{\mathbf{a}} \max_{\alpha_{i-1}^{1}\in\Gamma_{i-1},\dots,\alpha_{i-1}^{|\mathcal{O}|}} \sum_{s'\in S} b_{i}(s') \left[\mathbf{R}(s',\mathbf{a}) + \gamma \sum_{\mathbf{o}\in\mathcal{O}} \sum_{s\in S} \sum_{j=1}^{\infty} \gamma^{j-1} p(s,\mathbf{o},j|s',\mathbf{a}) \alpha_{i-1}^{\mathbf{o}}(s) \right]$$

The expression in the square bracket can evaluate to $|\mathcal{A}||\Gamma_{i-1}|^{|\mathcal{O}|}$ different vectors. We can rewrite $V_i(b_i)$ as:

$$V_i(b_i) = \max_{\alpha_i \in \Gamma_i} \sum_{s \in S} \alpha_i(s) b_i(s).$$

Hence $V_i(b_i)$ can be represented by a finite set of α -vector. \Box