

The Tourist Problem

Organization

* The Tourist Problem
* Analysis and Simplifications
* Problem Modeling (with Graphs)
* Solving the Graph Model
* Mapping back the Solution
* Moral of the Story

Experience the fun of problem solving
Hon Wai Leong, SoC, NUS
Copyright © 2007-- by Leong Hon Wai
(The Tourist Problem) Page 2
,

The Tourist Problem (Entities)

- Good to know the entities we are dealing with...
* The Tourists:

$$
T=\{A, B, C, D, E, F, G, H\}
$$

* The Attractions (Places):

$$
P=\{B G, C G, J B, J G, O R, S I, V C, S Z G\}
$$

... Places of Attraction ...			
Place	Common Name	Place	Common Name
BG	Botanical Gardens	CG	Chinese Gardens
JB	Jurong Birdpark	JG	Japanese Gardens
OR	Orchard Road	SI	Sentosa Island
SZG	Spore Zoological Gardens	VC	VivoCity

[^0]
The Tourist Problem (Analysis...)

Hon Wai Leong, SoC, NUS Copyright © 2007-- by Leong Hon Wai (The Tourist Problem) Page 5

The Tourist Problem - v0

Given: A list of tourist, each with his/her list of places to visit.
To do: Schedule bus rides for them so that
each tourist visits all the places in his/her list.

The (Reduced) Tourist Problem...

Given: A list of tourist, each with his/her list of places to visit.
To do: Schedule bus rides for them so that
each tourist visits all the places in his/her list.

An Instance of Tourist Problem	
Tourist	Places of Interest
Aaron	SZG, BG, JB
Betty	CG, JG, BG
Cathy	VC, SI, OR
David	JG, CG, OR
Evans	CG, JG, SZG

$T=\{A, B, C, D, E\}$
$P=\{B G, C G, J B, J G, O R, S I, V C, S Z G\}$

| Hon Wai Leong, SoC, NUS Copyright © 2007-- by Leong Hon Wai \quad (The Tourist Problem) Page 6 |
| :---: | :---: | :---: |

The Tourist Problem - v0.5

Given: A list of tourist, each with his/her list of places to visit.
To do: Schedule bus rides for them so that
each tourist visits all the places in his/her list, and
C1: Each tourist visits at most one place a day.

Simple Solution:
Schedule one trip to every place every day.

An Instance of	Tourist Problem
Tourist	Places of Interest
Aaron	SZG, BG, JB
Betty	CG, JG, BG
Cathy	VC, $\mathbf{S I}, \mathbf{O R}$
David	JG, CG, OR
Evans	CG, JG, SZG

What's Good: It works! Finish in 3 days. (minimum!) What's Bad: Wasteful! 24 bus trips.

Hon Wai Leong, SoC, NUS
Copyright © 2007-- by Leong Hon Wai
(The Tourist Problem) Page 8

The Tourist Problem - v0.8

Given: A list of tourist, each with his/her list of places to visit.
To do: Schedule bus rides for them so that
each tourist visits all the places in his/her list,
C1: Each tourist visits at most one place a day, and
C2: There is at most one bus trip to each place

```
Simple Solution:
Schedule one trip per day, each to a different place.
```

What's Good: It works! 8 trips.
What's Bad: It takes $\mathbf{8}$ days!

An Instance of Tourist Problem	
Tourist	Places of Interest
Aaron	SZG, bG, JB
Betty	CG, JG, BG
Cathy	vc, SI, OR
David	JG, CG, OR
Evans	CG, JG, SZG

But wait... Did you see
something interesting?

Activity Period \#1:

Bus Scheduling DIY (Do It Yourself)
(5 minutes)

The Tourist Problem - v1.0

Given: A list of tourist, each with his/her list of places to visit.
To do: Schedule bus rides for them so that
each tourist visits all the places in his/her list,
C1: Each tourist visits at most one place a day,
C2: There is at most one bus trip to each place, and
C3: minimize the number of days to complete mission.

```
Observation:
On the same day,
    cannot schedule SZG and BG
    can schedule SZG and OR
```

 How to model all these
 constraints?
 | Hon Wai Leong, SoC, NUS \quad Copyright © 2007-- by Leong Hon Wai | |
| :--- | :--- |

Review of Activity \#1

How many days did you use?

* \qquad days
- What was the main difficulty?
* What if we are talking about 100 tourists?
*... and 20 different attractions?
\square Was there a lot of repetitive task?
* How was the task?
- How can we do better?

The Graph Model

\square What is a graph?

* eg: $y=\sin (b x)$

No. Not this type of graph.

Graph Model for the Tourist Problem

The Graph Model

\square Graph $G=(V, E)$

* V is a set of vertices, nodes (circles)
* E is a set of edges (connections)

Copyright © 2007-- by Leong Hon Wai

Graph Model for the Tourist Problem

\square What's good about the graph model?

* very simple!
* easy to spot conflicts and the non-conflicts

can schedule SZG, OR [Any more? Why?] On Day 2,
can schedule JB, CG, VC
On Day 3,
can schedule BG, SI
On Day 4,
can schedule JG

Graph Coloring Problem

\square Given a graph $G=(V, E)$, colour the vertices in V so that any two vertices that are connected by an edge in E will have different colors.
We want to minimize the number of colors.

$\begin{gathered}\text { Number of colours used } \\ \text { to colour the graph } \boldsymbol{G}\end{gathered}=\begin{gathered}\text { Number of days needed } \\ \text { to complete the schedule }\end{gathered}$
Hon Wai Leong, SoC, NUS Copyright © 2007- by Leong Hon Wai (The Tourist Problem) Page 17

Review of Activity \#2

Is Graph Colouring fun?

* Did you really used different colours?
- How many colours was did you use (Q1)?
- What about the cycles (Q2):
* Q2(a): C_{6} (a cycle of length 6)?
* Q2(b): C_{5} (a cycle of length 5)?
* What else can you say?
- What about the graph in Q3?
\square What about Q4?
* Why

Hon Wai Leong, SoC, NUS
Get Solution to Tourist Problem - 1

- Coloured graph \Rightarrow "Bus Schedule"

COLORED GRAPH

1. What about the list of tourists on each bus? Can we get it from the graph model? NO. Why NOT.

The Tourist Problem...

Get Solutions to Tourist Problem (3)
Coloured graph \Rightarrow "Bus Schedule"

COLORED GRAPH

Color Day	Place	
-1	SZG, OR	
0	2	JB, CG, VC
\bigcirc	3	BG, SI
\bigcirc	4	JG

1. What about the list of tourists on each bus?
2. What if you only have 2 buses?
3. What if BG is closed on Day 3?

- Can we re-order the colours?

Hon Wai Leong, SoC, NUS Copyright © 2007-- by Leong Hon Wai

Get Solutions to Tourist Problem (2)

1. What about the list of tourists on each bus?
2. What if you only have 2 buses?

- can colour vertex VC green.

Get Solutions to Tourist Problem (3)
\square Coloured graph \Rightarrow "Bus Schedule"

1. What about the list of tourists on each bus?
2. What if you only have 2 buses?
3. What if BG is closed on Day 3?
4. Can we use fewer colours (fewer days)? Hon Wai Leong, SoC, NUS Copyright © 2007-- by Leong Hon Wai (The Tourist Problem) Page 24

Graph Modelling...

Modelling: Another example
\square Bend a steel bar

Man bending steel rod
Hon Wai Leong, SoC, NUS
Copyright © 2007-- by Leong Hon Wai

Modelling...

\square Nothing new. You do it all the time.

Modelling: Another example (2)
-Bend a steel bar (using transformation)

Tourist Problem \& Graph Colouring

Moral of the Story

- The Tourist Problem:

* Some problems are EASY. (don't complicate them)
* Get a simple solution first.
then analyze it, improve it, refine it.
* Solution depend on the questions asked
* It is important to ask questions.
* Theoretical modeling and analysis are beneficial
\square Modeling
* Abstract modeling simplifies problem and solution!
* Abstract model is transferable.
* Models don't answer everything.

Modelling in Tourist Problem

Recap: Our Graph modelling...

Graph Model	Tourist Problem			
Nodes	places			
Edges / Conflicts	tourist want to visit both places			
Colors	bus trips to places			
Others	The tourists			

[^1]
Graph Colouring \& Applications

\square Where else is Graph Colouring used?
\% The Tourist Problem [done]

* Map Colouring
* Fish in a Tank
* Frequency assignment in wireless networks
* Time Table Scheduling
* And a whole lot more...

Experience the fun of problem solving

The Map Coloring Problem

We want to color countries, oceans, lakes, and islands on a map so that no two adjacent areas have the same color.


```
Three colors
```


The Map Coloring Problem

We want to color countries, oceans, lakes, and islands on a map so that no two adjacent areas have the same color.

The Four Color Conjecture

Question:

Can all map be coloured using only four colours?

Coloring the graph Hon Wai Leong, SoC, NUS

Copyright © 2007-- by Leong Hon Wai

Hon Wai Leong, SoC, NUS

Does four colour suffices?

Martin Gardner published in Scientific American (April 1975) this map of 110 regions. He claimed that the map requires five colors and constitutes a counterexample to the our-color theorem.
However, the coloring of Wagon, obtained algorithmically using Mathematica, clearly shows that this map is, in fact, four-colorable.
Source: http://mathworld.wolfram.com/Four-ColorTheorem.html
Hon Wai Leong, SoC, NUS
Copyright © 2007-- by Leong Hon Wai

Four Color Theorem Proof @ UIUC

FOUR COLORS

In Fall 1979 CS313 Combinatorics by Ken Appel

[^2]
Review of Hands-on Activity \#3

\square How many colours did the map need?

* You should never need more than 4 colours

D Did you know about the "Four-Colour Theorem"?

How many fish tanks did you need?

Summary of Problem Modelling

	Tourist Problem	Fish in a tank	Frequency Assignment	Map Coloring
Nodes	places	fishes	radio stations	Countries
Edges / Conflicts	tourist want to visit both places	cannot be placed in same tank	interference if placed too near	share a common border
Colors	bus trips to places	fish tanks	signal frequencies	color
Others	The tourists	--		

References...

On Graph Coloring and Applications:

1. http://www.geom.uiuc.edu/~arembe/graph3.html
2. http://www.colorado.edu/education/DMP/activities/graph/ddghnd03.html
3. Lots of other links available

On the Four Color Theorem:

1. http://en.wikipedia.org/wiki/Four_color_theorem
2. http://www.maa.org/reviews/fourcolors.html
3. http://www.math.gatech.edu/-thomas/FC/fourcolor.html
4. http://www.mathpages.com/home/kmath266/kmath266.htm

End of Talk on

Tourist Problem!

If you want to contact me, go email, MSN, FB at leonghw@comp.nus.edu.sg

[^0]: Hon Wai Leong, SoC, NUS
 Copyright © 2007-- by Leong Hon Wai
 (The Tourist Problem) Page 4

[^1]: Hon Wai Leong, SoC, NUS
 Copyright © 2007-- by Leong Hon Wai
 (The Tourist Problem) Page 30

[^2]: Hon Wai Leong, SoC, NUS
 Copyright © 2007-- by Leong Hon Wai

