
Localization and Mapping of Surveillance Cameras
in City Map

Wee Kheng Leow
Dept. of Computer Science
National Univ. of Singapore

Computing 1
Singapore 117590, Singapore
leowwk@comp.nus.edu.sg

Cheng-Chieh Chiang
Dept. of Info. Tech.

Takming U. of Science & Tech.
No. 56, Sec. 1, Huanshan Rd.
Taipei 11451, Taiwan, R.O.C.
kevin@csie.ntnu.edu.tw

Yi-Ping Hung
Dept. Comp. Sci. & Info. Eng.

National Taiwan University
No. 1, Sec. 4, Roosevelt Road

Taipei 106, Taiwan, R.O.C.
hung@csie.ntu.edu.tw

ABSTRACT
Many large cities have installed surveillance cameras to mon-
itor human activities for security purposes. An important
surveillance application is to track the motion of an object of
interest, e.g., a car or a human, using one or more cameras,
and plot the motion path in a city map. To achieve this
goal, it is necessary to localize the cameras in the city map
and to determine the correspondence mappings between the
positions in the city map and the camera views. Since the
view of the city map is roughly orthogonal to the camera
views, there are very few common features between the two
views for a computer vision algorithm to correctly identify
corresponding points automatically. This paper proposes a
method for camera localization and position mapping that
requires minimum user inputs. Given approximate corre-
sponding points between the city map and a camera view
identified by a user, the method computes the orientation
and position of the camera in the city map, and determines
the mapping between the positions in the city map and the
camera view. The performance of the method is assessed in
both quantitative tests and practical application. Quantita-
tive test results show that the method is accurate and robust
in camera localization and position mapping. Application
test results are very encouraging, showing the usefulness of
the method in real applications.

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Appli-
cations

General Terms
Algorithms, Experimentation

Keywords
camera localization, position mapping, surveillance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’08, October 26–31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-303-7/08/10 ...$5.00.

1. INTRODUCTION
Surveillance cameras are becoming an important asset in

homeland security. Many large cities have installed surveil-
lance cameras along city streets to monitor and record hu-
man activities. The recorded videos provide valuable infor-
mation to the police for solving crimes ranging from theft
to terrorist activities. To use the information in the videos,
it is necessary to sieve through the videos manually to iden-
tify the relevant video segments. A computer system for
automatic analysis of videos will save a lot of manual effort.

An important surveillance application is to track the mo-
tion of an object of interest, e.g., a car or a human, using one
or more cameras, and plot the motion path in a city map.
To achieve this goal, it is necessary to localize the cameras in
the city map and to determine the correspondence mappings
between the positions in the city map and the camera views.
The localization and mapping problems are non-trivial be-
cause a city map is a drawing of the top-down view, which
is roughly orthogonal to the camera view (Fig. 1). Since the
viewing angles of the city map and the camera view differ
significantly, there are very few common features between
the two views for a computer vision algorithm to correctly
identify corresponding points automatically. This is true
even if a satellite image of the city is available, let alone a
city map that lacks distinct features.

Surveillance cameras are often stationary and are typi-
cally placed far apart such that their views do not overlap.
This removes the possibility of using the method of multiple-
view geometry to calibrate and localize the cameras. Even
if the cameras can pan and tilt, thus permitting the use
of multiple-view geometry, it is still a challenge to localize
the cameras in the city map because the camera views are
orthogonal to the view in the city map.

This paper proposes a method for camera localization and
position mapping that requires minimal user inputs. The
user simply identifies approximate corresponding 3D points
in the city map and 2D points in the camera view. The
method will then computes accurate camera orientation and
position in the city map, and accurate mapping between
the positions in the two views. It can obtain the best-fit
solutions even though the user-specified correspondence is
inaccurate. Both quantitative tests and practical application
tests have been performed to assess the method’s accuracy.

Quantitative test results show that the method is accu-
rate and robust in camera localization and position mapping.
Application test results are very encouraging, showing the
usefulness of the method in real applications.

(a) (b)

Figure 1: Camera localization and position mapping. The view in (a) the city map is roughly orthogonal to
(b) the camera view. Red crosses denote the approximate corresponding points.

2. RELATED WORK
Visual surveillance is a very active research area and many

visual surveillance systems have been developed. For exam-
ple, the W4 system [8] is a real-time system that detects
and tracks multiple people and monitors their activities in
an outdoor environment. The Video Surveillance and Mon-
itoring (VSAM) system [4] adopts a distributed network of
active video cameras, and allows a single human operator to
monitor human activities in a cluttered environment. Other
multimedia surveillance systems are reviewed in [5]. A more
detailed review of existing work related to visual surveil-
lance is given in [12], which includes motion detection, object
tracking, human detection, understanding of human behav-
ior, and fusion of data from multiple cameras. A common
theme in such systems is the detection, tracking, and moni-
toring of human activities using one or more video cameras.
However, they do not transfer the tracked paths in the cam-
era views into a city map, as is performed in our work.

There are several systems that are somewhat similar to
our work but differ in important ways. The ViewFinder
system [6] provides a 3D world model like GoogleEarth. It
allows a user to indicate a 3D location in the world model,
and displays the 2D photo at the specified location. Unlike
our work, it does not map 3D locations in world model to
2D positions in the camera view. The system in [16] does
not perform automatic placement of cameras. Instead, a vi-
sualization tool is provided for the user to manually position
and orientate the cameras in the world model. The system
in [15] proposes the use of a virtual environment simulator
for evaluating the design of a visual surveillance system. It
provides camera views as well as a top-down view of the
environment under surveillance, but it is implemented for a
virtual environment instead of a real environment.

Camera calibration is a necessary step in real applications
of visual surveillance. A variety of camera calibration algo-
rithms have been proposed [3, 9, 19, 21]. In our work, the
Camera Calibration Toolbox for Matlab [3] is used to com-
pute the intrinsic parameters of a camera.

Computation of the extrinsic parameters of a camera is of-
ten called the absolute orientation problem. That is, given
two sets of corresponding 3D points, compute the rotation
and translation between the two sets. Closed-form solutions
of this problem are available [1, 10, 11, 20]. In contrast, our
paper illustrates a method for computing a camera’s extrin-

sic parameters with respect to a city map, given approximate
correspondence between the 3D points in the city map and
2D points in the camera view.

Related to the localization of cameras in a city map is the
localization of robots in a working environment. Typically,
the robot localization problem seeks to determine the 2D ori-
entation and position of the robot within a 2D environment,
which is different from 3D localization of cameras in our
work. Robot localization can be achieved using laser, sonar,
or stereo sensor [14]. GPS is another practical technique and
has been widely used in many applications. However, it has
a localization error of about 10–20 meters [7].

Vision-based methods for robot localization use visual land-
marks in the images (i.e., camera views) to perform robot
localization [2, 13, 17]. The method in [2] assumes that the
robots can identify visual landmarks and measure bearings
relative to each other. The method in [13] uses both image
features as well as a known 3D model of the environment.
Known 2D-2D correspondences between camera views and
3D-2D correspondences between the 3D model and the cam-
era views are used for camera localization. The method in
[17] solves the localization problem by comparing the visual
landmarks in the camera view with those in known database
images. Minerva, a museum tour-guide robot, applies Monte
Carlo method to compute 2D robot location based on sensor
inputs [18]. In contrast, this paper illustrates a method that
performs 3D camera localization using approximate corre-
sponding points between a city map and a camera view.

3. OVERVIEW OF THE PROBLEMS
As discussed in Section 1, the view in a city map is roughly

orthogonal to the camera view. There are very few common
features between the two views for a computer vision algo-
rithm to correctly identify corresponding points automati-
cally. One way to establish correspondence is to manually
locate the corresponding points in the city map and the cam-
era view. These user inputs can be facilitated by a graphical
user interface (GUI) that allows the user to select landmark
points and measures the direction and distance between any
two landmark points. User’s knowledge of the environment
can also help the user identify corresponding points.

With the GUI, a point xi = (xi, yi)
⊤ in the camera view

can be accurately located using subpixel algorithms because
the user can clearly identify important landmarks or feature

points in the image. On the other hand, it is impossible
to accurately locate the corresponding 3D point in the city
map. At best, the user can only locate its position (Xi, Yi)
approximately, and estimate the height Zi. It is imprac-
tical for the user to physically measure the directions and
distances of the landmark points in the actual environment.

There is another source of inherent inaccuracy in manual
localization in a city map. To locate a point in the map, the
user needs to judge relative distances from some landmarks
in the map such as street lanes and corners. So, a map
area of at least one city block needs to be displayed on the
computer screen to include at least the four street corners
of the city block. Assume that a city block of 100m×100m
can be displayed on the computer screen at a resolution of
1000×1000 pixels. Then, the limit of accuracy of manual
localization is 0.1m (i.e., one pixel). The localization uncer-
tainly can be as large as 10 pixels, which is 1m.

In conclusion, although the correspondence between 3D
positions in city map and 2D image positions are known,
the 3D positions Xi = (Xi, Yi, Zi)

⊤ are approximate while
the 2D image positions xi are accurate. The challenge is
to determine the camera’s orientation and position, and the
mapping between the positions in the city map and the cam-
era view, given such approximate correspondence.

Let x̂i denote the homogeneous form of xi such that x̂i =
(xi, yi, 1)⊤. Then, the the 3D position in city map is related
to the 2D image position by the equation

ρix̂i = KR (Xi − C) (1)

where ρi is a scaling parameter, K contains the camera’s
intrinsic parameters, and R and C are the camera rotation
matrix and camera center in the world coordinate frame. In
this paper, we assume that K is known because it can be
computed using camera calibration algorithms [3, 21].

Now, we can formulate the camera localization problem:

Camera Localization

Given n pairs of corresponding 3D positions Xi

and 2D image positions xi, where Xi are approx-
imate and xi are accurate, and a known camera
parameter matrix K, determine the camera ro-
tation matrix R and camera center C relative to
the world coordinate frame of the city map.

The algorithms for camera localization and position map-
ping will be discussed in the following sections.

4. CAMERA LOCALIZATION
The 3D coordinates Xi of a 3D point in the world co-

ordinate frame are related to its 3D coordinates X′

i in the
camera coordinate frame by the equation

X′

i = R (Xi − C). (2)

The projection line Pi from 3D point pi to the image plane
is given by

Pi = K−1x̂i. (3)

It passes through the 2D image point x̂i and the camera
center C (Fig. 2).

Suppose that the 3D points Xi can be accurately deter-
mined. In this case, if R and C are accurately estimated,
X′

i would lie on Pi. Otherwise, X′

i would be located at some
distance from Pi (Fig. 2).

i

P i

X’iX i ()Y’

X’

X

O

Z

Y

C Q

Z’

Figure 2: World coordinate frame (XY Z) and cam-
era coordinate frame (X ′Y ′Z′). Ideally, the 3D point
Xi should lie on its projection line Pi derived from
its corresponding 2D image point xi.

In practice, the 3D points Xi can only be approximately
determined. In this case, X′

i does not lie on Pi even if
the correct R and C are used to compute X′

i. Then, an
iterative algorithm can be used to determine the best fitting
R and C by iteratively moving the set of points X′

i onto
their corresponding projection lines Pi. This is the basis of
our camera localization algorithm.

Camera Localization Algorithm

Initialize R = I and C = 0.
Repeat until convergence:

1. Compute 3D points in camera coordinate frame:

X′

i = R (Xi − C). (4)

2. Compute projection lines:

Pi = K−1x̂i. (5)

3. Compute ideal position Qi of X′

i:
The ideal position Qi = ρiPi lies on its corresponding
project line Pi. That is, Qi = ρiPi for an appropriate
ρi. The value of ρi can be obtained by substituting
Eq. 2 and 3 into Eq. 1 to obtain

ρiPi = X′

i (6)

ρi =
P⊤

i X′

i

P⊤

i Pi
. (7)

Eq. 7 is the best-fit solution when ρiPi is not exactly
equal to X′

i. In addition, ρiPi is also the projection of
X′

i on Pi.

The mean distance of X′

i to its corresponding projec-
tion line Pi is given by the difference EQ:

EQ =
1

n

n
∑

i=1

‖Qi − X′

i‖. (8)

By iteratively minimizes EQ, the algorithm updates
R and C by moving the set of points X′

i onto their
corresponding projection lines Pi.

4. Compute best-fitting camera rotation matrix R:
This step computes the best-fitting camera rotation
matrix using the method in [11]:

(a) Remove translation:
Remove translational components of the 3D points
by computing

ri = Xi − X̄,

r′i = Qi − Q̄
(9)

where

X̄ =
1

n

n
∑

i=1

Xi,

Q̄ =
1

n

n
∑

i=1

Qi.

(10)

(b) Perform eigen-decomposition of the point set: Form
matrix M .
Form matrix M .

M =

n
∑

i=1

r′ir
⊤

i (11)

and compute U = M⊤M. Perform eigenvalue
decomposition of U to obtain the eigenvectors vj

and eigenvalues λj , for j = 1, 2, 3. The matrix U
is related to the eigenvectors and eigenvalues by

U =

3
∑

j=1

λjvjv
⊤

j . (12)

(c) Compute the new camera rotation matrix R:

R = MU−1/2 (13)

where

U−1/2 =
3

∑

j=1

1
√

λj

vjv
⊤

j . (14)

5. Compute new camera center C:
The new camera center C can be estimated by substi-
tuting the means of the point sets into Eq.2:

C = R−1
(

RX̄ − Q̄
)

. (15)

Initially, when R and C are inaccurate, the rigid trans-
formations X′

i of Xi are located at some distances from Pi.
The algorithm computes new R and C from Xi and Qi, and
brings X′

i closer to Pi. Therefore, as the algorithm iterates,
X′

i will approach Pi. If Xi are accurate, then X′

i will even-
tually fall on Pi. Otherwise, X′

i will remain at some distance
from Pi depending on the inaccuracy of Xi. The average
inaccuracy of Xi is given by EQ (Eq. 8).

Our tests show that with n = 3, the algorithm in [11]
sometimes produces a best-fit reflection matrix instead of a
rotation matrix for R. On the other hand, with n ≥ 4, a
rotation matrix is always produced.

At first glance, it may appear that the algorithm should
somehow refine the positions of the 3D points Xi in the hope
that more accurate R and C can be estimated. However,
our experiments show that refining Xi without additional

knowledge can cause C to move away from the true camera
center even when both R and EQ are reduced. That is, the
algorithm can obtain a best-fit R even when C is inaccu-
rate. Therefore, our current algorithm does not refine the
positions of the 3D points.

5. POSITION MAPPING
After camera localization, the correspondence mapping

between the positions in the city map and the camera view
can be established. 3D-to-2D position mapping is straight-
forward. Given a 3D position X in the city map, compute
x = (x, y)⊤ as follows:

u

v

w

 = KR(X − C),

x =
u

w
,

y =
v

w
.

(16)

The inverse 2D-to-3D position mapping is less trivial be-
cause multiple 3D positions can map to the same 2D image
position. However, if the Z-coordinate of the 3D position is
known, then it is possible to compute the 3D position given
the corresponding 2D image position.

From Eq. 1, we obtain

ρ x̂ = KR (X − C). (17)

Rearranging Eq. 17 gives

X

Y

Z

 = ρR−1K−1x̂ +

CX

CY

CZ

 . (18)

Let V = (VX , VY , VZ)⊤ denote R−1K−1x̂. Then, X and Y

can be computed from the equations:

ρ =
Z − CZ

VZ
,

X = ρVX + CX ,

Y = ρVY + CY .

(19)

6. QUANTITATIVE TESTS

6.1 Test Setup
To quantitatively evaluate the performance of the algo-

rithms, it is necessary to generate synthetic test data with
known ground truth. Typically, a surveillance camera is
placed at a height of 2.5m or more, and is oriented slightly
downward to capture the street area in front of it. So, the
camera center was set at C = (20, 20, 2.5)⊤ in unit of m.
The camera coordinate frame was placed such that it was
pointing down towards the ground plane at an angle of 15◦.
Its X ′-axis was aligned with the Y -axis of the world coor-
dinate frame, and its Z′-axis was rotated downward by an
angle of θ = 15◦ (Fig. 3). In this configuration, the rotation
matrix R was given by

R =

0 1 0
sin θ 0 cos θ

cos θ 0 sin θ

 . (20)

Z’
X

Z

O

C θ

Y’

Figure 3: Ground truth camera coordinate frame in
the quantitative tests. Camera’s X ′-axis and world’s
Y -axis are aligned and point into the page.

The angle θ was set at 15◦. The camera parameter matrix K
was obtained by applying the Camera Calibration Toolbox
for Matlab [3] to a real camera, whose image size was set at
640×480 pixels.

A set of n = 30 3D points X∗

i were randomly generated in
front of the camera at a distance of at least 5m away and in
a space of 50m×50m×5m. The maximum height was set at
5m because most interesting moving objects such as humans
and cars do not exceed 5m in height. The corresponding 2D
image points x∗

i were computed from X∗

i using Eq. 1. These
data form the ground truth set S∗ = (X∗

i ,x∗

i).
Noisy data sets were generated by adding random noise to

the ground truth 3D positions. In data set S(µ) = (Xi,x
∗

i),
Xi = X∗

i + µi and µi is the random noise term. The X-
and Y -components of µi fall in the range [−µ, +µ] and the
Z-component falls in the range [−0.1µ, +0.1µ]. S(0) = S∗.
The noise level in the Z-direction is smaller than those in
the X- and Y -direction because the vertical height can be
more accurately estimated. For example, the actual height
of a wall can be measured using a measuring tape.

Seven data sets S(µ) were used for camera localization
tests, with noise level µ ranging from 0 to 1m. After cam-
era localization, 3D-to-2D and 2D-to-3D mappings were per-
formed to compute the mapping errors.

Five error measures were used to assess the performance
of the algorithms:

• EQ: Optimization quality
This is the mean distance between X′

i and Qi. It mea-
sures how far away are the 3D points from their corre-
sponding project lines. At convergence, EQ should be
close to 0. The unit of EQ is m.

• EC : Camera position error
This is the distance between the computed and ground
truth camera centers. The unit of EC is m.

• ER: Camera orientation error
This is the root-mean-squared difference between the
elements in the computed and ground truth rotation
matrices. ER has no unit.

• Ex: 3D-to-2D position mapping error
This is the mean distance between computed and ground
truth 2D image positions. The unit of Ex is pixel.

• EX : 2D-to-3D position mapping error
This is the mean distance between the computed and
ground truth 3D positions. The unit of EX is m.

6.2 Convergence
The data set S(1) with noise level of 1m was used to test

the convergence of the camera localization algorithm. This
data set was used to show that the algorithm can converge
efficiently even in the presence of large amounts of noise.
The algorithm was executed for 100 iterations.

Figure 4 shows that the algorithm stabilizes very quickly
after about 45 iterations. In particular, the optimization
quality EQ stabilized at about 0.4, and the errors in cam-
era orientation and position ER and EC stabilized at about
0.0002 and 0.2 respectively.

The convergence of the algorithm goes through two phases.
In the first phase, the optimization quality EQ decreases
by an order of magnitude over just the first few iterations
(Fig. 4(a)). This rapid convergence is due to the computa-
tion of the best-fitting R in Step 4. That is, at each iteration
of the algorithm, a linear least-square fit of R is computed
using eigen-decomposition technique. If the 3D coordinates
were accurate, the 3D points Xi and their coordinates X′

i in
the camera frame would differ by only a rigid transformation
defined by R and C, and a single iteration of Step 4 would
be sufficient to compute the correct R and C.

In the second phase, the algorithm goes through a more
gradual refinement process where EQ decreases by another
order of magnitude over about 40 iterations (Fig. 4(a)). This
phase iteratively refines R and C by re-estimating the 3D
coordinates X′

i of the 3D points and their ideal positions Qi

on the projection lines Pi (Steps 1–3). It allows R and C to
be refined smoothly, which is evident in the smooth decrease
of ER and EC (Fig. 4(b, c)).

6.3 Accuracy
The data set S(µ) with noise level µ ranging from 0 to 1m

were used to test the accuracy of the algorithms. Figure 5
illustrates the test results. At low-noise levels, the errors
in camera orientation ER and position EC are small. As a
result, the mapping errors Ex and EX are also small.

As the noise level increases, ER remains practically zero
at all noise levels tested. On the other hand, the error of
camera center EC grows with increasing noise level. That is,
camera rotation R can be more accurately estimated than
camera center C. The 3D-to-2D mapping error Ex and 2D-
to-3D mapping error EX also grow with increasing noise
level. These results suggest that mapping errors are influ-
enced by EC more than by ER. Nevertheless, it is interesting
to note that, while the growth of EC with increasing noise
level seems to be faster-than-linear, the growth of Ex and
EX remain linear. The slower growth in error could be the
result of high accuracy in estimating camera rotation.

7. PRACTICAL APPLICATIONS

7.1 Test Setup
The city map and camera view shown in Fig. 6 were

used for qualitative evaluation in practical application. The
user manually marked 15 approximate corresponding points
(Fig.6(a, b)) in the city map and the camera view. The
points chosen were along road sides and at road corners.
The user only needed to click the respective positions in the
city map and the camera view in the GUI, which was ac-
complished fairly easily for a user who was familiar with the
actual environment. The GUI automatically computed the

0 20 40 60 80 100
0.1

1

10

100
EQ (m)

iteration

0 20 40 60 80 100
0.0001

0.001

0.01

0.1

1

10
ER

iteration

EC (m)

0 20 40 60 80 100
0.1

1

10

100

1000

10000

iteration

(a) (b) (c)

Figure 4: Convergence of camera localization algorithm. Convergence of (a) EQ, (b) ER, and (c) EC .

0 0.2 0.4 0.6 0.8 1
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

EC
ER

noise

error (m)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
Ex (pixel)

noise (m)
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

noise (m)

EX (m)

(a) (b) (c)

Figure 5: Test results at various noise levels. (a) Camera localization results. (b) 3D-to-2D position mapping
error. (c) 2D-to-3D position mapping error.

pixel locations of the 2D points in the camera view and the
approximate physical X- and Y -coordinates in the city map.
The approximate Z-coordinates were entered by the user.

Most of the points lied on the ground and had Z-value of
0. The point on the top of the car had a non-zero Z value
that was an estimate of the height of the car. Note that
the area in the city map where the points were marked was
relatively featureless. Therefore, the positions in the city
map could not be accurately marked manually. The cam-
era parameter matrix K was determined using the Camera
Calibration Toolbox for Matlab [3].

Even though most test points have Z = 0, it does not imply
that a 2D-to-2D mapping is performed in our algorithm. It
only means that the points happen to fall onto a plane in
3D space. This plane is not parallel to the camera’s image
plane. The equations given in the algorithm still perform
3D-to-2D and 2D-to-3D mapping.

7.2 Accuracy
Given the manually marked corresponding points, the cam-

era localization algorithm was executed. After camera local-
ization, 3D-to-2D position mapping was performed using the
3D points in Fig. 6(a), and 2D-to-3D position mapping was
performed using the 2D points in Fig. 6(b).

The camera’s position estimated by the algorithm is in-
dicated by the blue cross near the right edge of the image
in Fig. 6(c). The mapped 2D points (Fig. 6(d)) computed
by the position mapping algorithm are virtually identical

to those in the manually marked points (Fig. 6(b)). On
the other hand, the mapped 3D points (Fig. 6(c)) are dis-
placed slightly from the positions of the manually marked
points (Fig. 6(a)). Nevertheless, the relative positions of the
points are preserved. These test results show that the algo-
rithm can perform camera localization and position mapping
reasonably accurately in real application.

In the previous position mapping tests, the test data were
the same as those used for camera localization. To evaluate
the accuracy of the algorithm in mapping novel data points,
two additional sets of tests were performed.

In the first set of tests, 3D points were manually marked in
the city map to emulate the walking paths of different peo-
ple. The Z-coordinates were all set at 0 to correspond to the
positions of the people’s feet. These 3D points were different
from those used for camera localization. The 3D-to-2D map-
ping algorithm was executed to compute the corresponding
2D positions in the camera view. Figure 7 shows that the 2D
positions in the camera view correspond very well to those
in the city map. In particular, the relative positions of the
points in the city map are preserved in the camera view.

In the second set of tests, 2D points were manually marked
in the camera view to emulate the tracked paths of different
people. These 2D points were different from those used for
camera localization. The 2D-to-3D mapping algorithm was
executed to compute the corresponding 3D points in the city
map. It was assumed that the people’s feet were tracked in
the camera view. So, the Z-coordinates of the corresponding

(a) (b)

(c) (d)

Figure 6: Mapping positions between city map and camera view. Corresponding points (red crosses) are
manually marked in (a) city map and (b) camera view. (c) 2D-to-3D mapping results. Blue cross: recovered
camera position. (d) 3D-to-2D mapping results.

Figure 7: 3D-to-2D position mapping test results. (Top) Input 3D positions indicating human’s walking
paths. (Bottom) Mapped 2D positions in the camera view.

Figure 8: 2D-to-3D position mapping test results. (Top) Input 2D positions indicating human’s walking
paths. (Bottom) Mapped 3D positions in the city map.

3D points were all set to 0. Figure 8 shows that the 3D
positions in the city map correspond very well to those in
the camera view. In particular, the relative positions of the
points in the camera view are preserved in the city map.

A plausible method of improving the algorithms’ accu-
racy is to impose constraints on the points during camera
localization. For example, the points selected for camera lo-
calization may fall on some straight lines. Our preliminary
test results indicate that imposing linear constraints on the
algorithm alone does not produce significant improvement
because the algorithm converges very rapidly.

Another plausible method is to refine the coordinates of
the 3D points after an application of the camera localiza-
tion algorithm. The refined 3D points are constrained to
lie on the same straight lines. After refinement, the cam-
era localization algorithm is applied again. Unfortunately,
this method does not necessarily produce more accurate re-
sults. In Fig. 9, the mapped points are constrained to lie on
straight lines. But, a group of points on a straight line can
be displaced from its actual location. The reason is that the
3D points can be moved quite far away from their actual
positions even when they are constrained to lie on straight
lines. Therefore, other forms of constraints are required if
we wish to further improve the accuracy of the algorithms.

7.3 Consistency
To evaluate the consistency of the camera localization al-

gorithm, it was re-evaluated on the same city map and cam-
era view but with different user-selected approximate corre-
sponding points (Fig. 10). The test results exhibit similar
characteristics as those in the first test (Section 7.2, Fig. 6).
In particular, the relative positions of the mapped points are
preserved. The root-mean-squared difference between the
camera rotation matrices R obtained in the first and second
tests is 0.0309. The distance between the camera center C

obtained in the two tests is 1.04m. These errors are rea-
sonably small in practical application but larger than those
obtained in the quantitative tests with synthetic data (Sec-
tion 6.2). That is, the variation in user inputs and amount
of noise are larger in practical applications.

In the next set of tests, 3D-to-2D and 2D-to-3D position
mappings were performed on the same set of test data using
the camera matrices R and centers C obtained in the first
and second tests. Test results show that, due to the differ-
ences in the R and C obtained in the two tests, the same 3D
points were mapped to slightly different 2D points, and vice
versa (Fig. 11). Nevertheless, the points were consistently
mapped and their relative positions were preserved.

8. CONCLUSION
This paper has presented a method for localizing cam-

eras in a city map and mapping the positions between the
city map and the camera view. The camera localization
and position mapping problems are non-trivial because the
view in the city map is roughly orthogonal to the camera
view. Since the two views differ by a very large viewing an-
gle, there are very few common features between them for a
computer vision algorithm to identify corresponding points
automatically.

The proposed method requires minimal user inputs. The
user simply identifies approximate corresponding 3D points
in the city map and 2D points in the camera view. Given
the approximate correspondence, the method computes ac-
curate camera orientation and position in the city map, and
accurate mapping between the positions in the city map and
camera view. It can obtain the best-fit solutions even though
the user-specified correspondence is inaccurate.

Both quantitative tests and practical application test have
been conducted to assess the performance of the algorithm.

(a) (b)

Figure 9: Camera localization with linear constraints. (a) 2D-to-3D position mapping results and (b) 3D-to-
2D position mapping results. Blue lines indicate the lines on which the points are supposed to lie.

Quantitative test results show that the camera localization
algorithm can converge rapidly even in the presence of large
amounts of inaccuracy in the 3D positions. Moreover, the
algorithms are accurate and robust in camera localization
and position mapping. In practical application tests, the
2D positions can be mapped very accurately after camera
localization. 3D position mapping has some errors but their
relative positions are still correct. By combining the cam-
era localization results of multiple runs, one may be able
to reduce the influence of noise and user inconsistency to
further improve the accuracy of camera localization and po-
sition mapping. These test results show that the method
proposed in the paper has great potential for camera local-
ization and position mapping in practical applications.

Acknowledgment
This research is supported by National Science Council, Tai-
wan, under Grant NSC-97-2221-E-147-005.

9. REFERENCES

[1] K. S. Arun, T. S. Huang, and S. D. Blostein.
Least-squares fitting of two 3-D points sets. IEEE

Trans. PAMI, 9(5):698–700, 1987.

[2] M. Betke and L. Gurvits. Mobile robot localization
using landmarks. IEEE Trans. on Robotics and

Automation, 13(2):251–262, 1997.

[3] J.-Y. Bouguet. Camera Calibration Toolbox for
Matlab, www.vision.caltech.edu/ bouguetj/calib doc/.

[4] R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade.
Algorithms for cooperative multisensor surveillance.
Proc. of the IEEE, 89(10):1456–1477, 2001.

[5] R. Cucchiara. Multimedia surveillance systems. In
Proc. ACM VSSN, 2005.

[6] P. Debevec and H. Hoberman. Viewfinder.
interactive.usc.edu/viewfinder/.

[7] Globsl positioning system, en.wikipedia.org/wiki/gps.

[8] I. Haritaoglu, D. Harwood, and L. S. Davis. W4

real-time surveillance of people and their activities.
IEEE Trans. PAMI, 22:809–830, 2000.

[9] J. Heikkila and O. Silven. A four-step camera
calibration procedure with implicit image correction.
In Proc. IEEE CVPR, 1997.

[10] Y. Hel-Or and M. Werman. Absolute orientation from
uncertain data: A unified approach. In Proc. IEEE

CVPR, pages 77–82, 1992.

[11] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour.
Cloed-form solution of absolute orientation using
orthonormal matrices. J. Optical Society of America

A, 5(7):1127–1135, 1988.

[12] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey
on visual surveillance of object motion and behaviors.
IEEE Trans. on SMC, Part C, 34(3):334–352, 2004.

[13] K. Josephson, M. Byrod, F. Kahl, and K. Astrom.
Image-based localization using hybrid feature
correspondences. In Proc. IEEE CVPR, 2007.

[14] P. Newman, J. Leonard, J. Neira, and J.Tardos.
Explore and return: Experimental validation of real
time concurrent mapping and localization. In Proc.

Int. Conf. Robotics and Auto., pages 1802–1809, 2002.

[15] F. Qureshi and D. Terzopoulos. Surveillance in virtual
reality: System design and multicamera control. In
Proc. IEEE CVPR, 2007.

[16] E. G. Rieffel, A. Girgensohn, D. Kimber, T. Chen,
and Q. Liu. Geometric tools for multicamera
surveillance systems. In Porc. IEEE Int. Conf. on

Distributed Smart Camera, 2007.

[17] S. Se, D. Lowe, and J. Little. Vision-based global
localization and mapping for mobile robots. IEEE

Trans. on Robotics, 21(3):364–375, 2005.

[18] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B.
Cremers, F. Dellaert, D. Fox, D. Hähnel,
C. Rosenberg, N. Roy, J. Schulte, and D. Schulz.
Probabilistic algorithms and the interactive museum
tour-guide robot minerva. Int. J. of Robotics Research,
19(11):972–999, 2000.

[19] R. Y. Tsai. A versatile camera calibration technique
for high accuracy 3D machine vision metrology using
off-the-shelf TV cameras and lenses. IEEE J. Robotics

and Automation, 3(4):323–344, 1987.

[20] S. Umeyama. Least-squares estimation of
transformation parameters between two point
patterns. IEEE Trans. PAMI, 13(4), 1991.

[21] Z. Zhang. A flexible new technique for camera
calibration. IEEE Trans. PAMI, 22(11):1330–1334,
2000.

(a) (b)

(c) (d)

Figure 10: Mapping positions between city map and camera view. Corresponding points (red crosses) are
manually marked in (a) city map and (b) camera view. (c) 2D-to-3D mapping results. Blue cross: recovered
camera position. (d) 3D-to-2D mapping results.

(a) (b) (c)

Figure 11: Comparison of position mappings. (Top row) 3D-to-2D mapping. (Bottom row) 2D-to-3D map-
ping. (a) Input points. (b, c) Mapping results using camera parameters obtained in, respectively, first and
second tests.

