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Abstract

3D Human posture sequence estimation from single or meliiphge se-
quences is essential in many applications, such as visisaebsport coach-
ing and physical rehabilitation. However, 3D posture segaecannot be
accurately estimated from single image sequence due td depbiguity
and self-occlusion, and pre-calibration is often requisden estimating 3D
posture sequence from multiple image sequences. In thirpap present
an algorithm to accurately estimate 3D human posture seguieom two
un-calibrated image sequences by combining a modified Nanpegtric Be-
lief Propagation (MNBP) method with an improved camera-calibration
method. The mMNBP estimates posture even when there islgifimcclusion
and when the human model scale is different from that of bothge in im-
age sequences. The improved self-calibration guarantdesitthe optimal
rotation and relative scale between two fixed but un-caiatscaled ortho-
graphic cameras, without a nonlinear optimization proc€ssntitative and
qualitative experiment results show that the algorithnhig &0 estimate 3D
posture sequence from a pair of un-calibrated image segaenc

1 Introduction

3D Human posture sequence estimation from one or more imeagesaces is essential
in many human motion analysis applications, such as vibased sport coaching and
physical rehabilitation. In this paper, we present an atlgor to accurately estimate 3D
human posture sequence from two un-calibrated image segsi&y combining a modi-

fied Nonparametric Belief Propagation (MNBP) with a cametfaalibration.

There has been much work on posture sequence estimatioridolaied human
body tracking [3, 1, 2, 9, 10, 16], which sequentially esti@sa3D or 2D human pos-
ture sequence from monocular or multiple image sequencesa fhonocular image se-
quence [1, 9, 10, 16], 3D postures cannot be accurately astthuue to depth ambiguity
and self-occlusion, and even 2D postures are not easy tdibeésd due to self-occlusion
and body rotation in depth. From multiple image sequencgf][8D postures may be
estimated quite accurately based on the pre-calibrationutiple cameras. However in
practice, the number of cameras may be limited to two or thaed the camera informa-
tion is often unknown beforehand [6]. As a result, selffmaltion is necessary to alleviate
the issues in estimating body posture from a limited numbéire two here) cameras.



Several work has been done on camera self-calibration franthtiman motion image
sequences [6, 15]. However, they assume that 2D posturechniggge is known in
advance. In fact, it is not trivial and even difficult to get pbsture from each image.
In this paper, we introduce a mMNBP method to automaticallyredge 2D posture from
the images, and at the same time, we develop an improveadadfation method in
which the optimal camera information can be directly foumidhout requiring a nonlinear
optimization process which is the case in [6, 15].

In the following, based on a graphical model (Section 2), tiiéBP algorithm is
briefly introduced (Section 3) to estimate 2D (or 3D) postinoen single (or multiple)
image. Then one self-calibration method is improved (8ect). By iterating the mNBP
and the self-calibration two or three times, accurate 3yesequence can be estimated
from a pair of un-calibrated image sequences, which has $feamn by the experiments
(Section 6).

2 Articulated Human Body M odel

A human skeleton model (Figure 1(a)) is used to represent jmidts and bones, and a
triangular mesh model (Figure 1(b)) is used to represenbditly shape. Each vertex in
the mesh is attached to the related body part (Figure 1(o}).e&ch body part’'s shape,
two parameters (length and width) are used to represenizbe s

Human body posture?” is represented
by a set of body parts’ poseg” = {x;|i €
¥}, where? is the set of body parts. Body
part pose; = (pj, 6;) represent thé" body
part’s 3D positiorp; and 3D orientatior®;. i
Given the shape and size of human body,
any body postureZ” can be rendered and |
projected to generate a synthetic image ob- ©) ()
servation. During posture estimation, each
Synthetic observation will be used to com- Figure 1: Human body model.
pare with a real image observatio#f =
{zi € 7}, wherez represents the real image observation for itAébody part. The
relationship betweer; andz is represented by the observation functigfx;,z). In
addition due to the articulation, every pair of adjacentybpdrtsx; andx; must be con-
nected. This constraint is enforced by the potential fumogi ; (x;, Xj).

A tree-structured graphical model (Figure 1(d)) is usedeforeésent the articulated
human body model. The tree consists of a set of nodemnd a set of edge$. Each
nodei € ¥ is associated witlx; andz of thei" body part, and each edgg j) € & is
associated with the potential functig; (x;, ;).

3 Posture Estimation by mNBP

A modified NBP (mNBP) method is introduced that can cope wéttipl self-occlusion
and different body image sizes in estimating 2D (or 3D) humesture from single (or
multiple) image.



NBP [11, 12, 4] can be used to estimate each body part’s poseever, it assumes
that observation of each part can be obtained independédtly2]. This limits it to cases
where there is no self-occlusion. We modify NBP to handldwusion by changing the
joint probability of body posture?” and image observatio” to Equation (1). Similar
to NBP [11], we may calculate marginal distributions by Eiprgs (2) and (3),

p(2,2) = |_| Wij(xi.xj) [ @(2.2) (1)
(i,)e& ey
mj(xj) O 0’2/ i (% X)) @0, £z m{li H(xi)dx ()
Xi ker(l
p(xj|2) O asg(x), 2" z) I_! (%)) 3)
ier(j)

wherenﬂ- (xj) is the message propagated from nottej in iterationn. " (i) = {k|(i,k) €
&} is the neighbor of nodg andr (i)\ j is the neighbor of exceptj. 3&7_”(1 is the set of
body parts’ pose estimations except tfdody part from then— 1)th iteration.

When body pari is partially occluded by some others, its image observatjas
generated by both this part and the others. Together witbttiex body parts’ estimations
5&1"(1 coming from previous iteration, each estimatexptan generate corresponding
observations to measure the observation functions.

As another limitation, NBP assumes that the size ratio betv3D human model and
each body image is known such that each body posture can Hereghand compared
with the real image in the same scale. However, the body irsemgemay often change
overtime due to the body translation in depth. The mNBP cae awith such case by
updating human model scales when estimating egadfor each possible model scakg,
and 3&1"(1 are used to generate a corresponding observation to mehsuoeservation
functions. Based on the measurement, the scale can be dpdatech iteration.

Compared to these existing NBP algorithms [12, 4], the mNBR aope with self-
occlusion and the change of body image size overtime. Fumitie, the mNBP embeds
the simulated annealing idea into the algorithm by usingaedesing factoA to modify
potential functions in each NBP iteration. For more dethdw@ how to design potential
function g (xi, X;j) and observation functioq (x;, 5&”” 1 ,Zi), and how to implement the
modified NBP, please refer to [13].

4 Sedf-calibration of Two Cameras

Based on the estimated 2D posture in each image, a selfatédib method is improved
to reconstruct 3D body postures and camera relative rotatia scale from two un-
calibrated image sequences by using kinematic constrafitmsman body [6, 15]. In the
following, we introduce our method by assuming that the tameras are scaled ortho-
graphic and the two camera scales are fixed throughout thgeirsequences. Then the
method is easily extended to the case of changing scaleslefdsorthographic cameras.

41 Related Methods

Our improved self-calibration method is based on the ided6,il15]. Supposeij (i =
1,...,F:j=1,...,N) is the unknown 3D position of thE" body joint in theit" frame,yij1



andyij» are the two correspondingly estimated 2D body points in evseguence 1 and 2
respectively. Then each sequence of estimated 2D bod jcémt be viewed as the scaled
orthographic projection df N body joints in a static scene [6]. Assuming thatandy;;
are centralized, Equation (4) can be obtained by SVD [14]

W = Y111 -+ Yini Y211 - .o YENL
Y112 .- YNz Y212 ... o YEN2
Ri 115 s ,
= [ Q; } [ P11 ... PN P22 -+ . PEN ] (4)

whereR; and R, are the reconstructed two camera projection matrices,pgrslare
the reconstructed 3D body joints. All the reconstructiores @ to an unknown affine
transformatiorA, i.e.,

s1R1 o Iil 1 pn
[SQRZ]'pu—{IQZ]A Apij (5)

whereA is a full rank 3x 3 matrix,s; ands, are the unknown scales of the two cameras,
andR; = (R11 R12)" andR, = (Rz1 R22)T are the unknown true projection matrices
whose rows (e.gRIl) are unit vectors. To reconstruct the structure (pg),and camera
motion (i.e.,.s1R1 andsR>), a reasonable affine transformatiarhas to be found.

By QR decompositionA = SU, whereS is an orthonormal rotation matrix and is
an upper triangular matrix. In gener&can be ignored and may only be obtained up
to a scale [15].

In order to findU that has six unknown (but five independent) parameters, aneca
views are not enough when the cameras are scaled orthogiaphiAssuming that the
two cameras have zero skew and unit aspect ratio, only fonera constraints can be
obtained. Therefore, other constraints have to be usecelmethod of Liebowitz and
Carlson [6, 15], two kinds of rigid link constraints are uséd) every two body parts have
a constant length ratio, and (2) each body part has a coretagth over time.

Let A; andA; be the two end joints of body patfa, B; andB; be the ends of body
part.Zg. LetXija = pia, — Pia, andXis = pig, — Pig, denote the two estimated body parts
atit" frame. Given the length ratigg of body partZ to g, from the first kind of rigid
link constraint, there is [6K/,QXia = r2gX{5QXig, whereQ = UTU. Similarly, from
the second kind of rigid link constraint, thereXg,QX; a = X[, 1 ,QXi;1a. The two
constraint equations are actually linear in term of the Bix {ive independent) unknown
parameters in the symmetrical matx By combining the equations coming from all
the frames, a linear solution 6f can be obtained by solving over-constraint linear equa-
tions [6]. Unfortunately, such solution 6f is seldom positive definite due to the noise in
estimated 2D joints [15]. Sindd can be recovered (up to reflection transformation) by
Cholesky factorization of2 if and only if Q is positive definite, the method of Liebowitz
and Carlson often gets into trouble in practice.

Furthermore, since the scaled orthographic camera camtsteae linearly related not
to Q but to Q~1, the camera constraints cannot easily be combined withigi limk
constraints. As a resulQ has to be solved numerically by a nonlinear optimization
process in [6]. By contrast, the method of Tresadern and R8&iccan first eliminate four
degrees of freedom i1 by considering the camera constraints, and then numaricall
find the other two unknown parameters®f! by a nonlinear optimization process.



4.2 Thelmproved Method

Compared with the above two methods, we observe that one divthcamera scales can
be absorbed intt)~1. As a resultU~! and correspondin@ ! will have six indepen-
dently unknown parameters, and at the same time cameraa&iotstan eliminate five of
the six DOFs of2~1. We show that the remained single unknown parameter caly basi
embedded into the rigid link constraints which are relate@tand the single unknown
parameter can be directly obtained by solving an equatiamefvariable six-order poly-
nomial. Our method can guarantee to find the optimal solutioh(or U) in the sense of
mean squared error, without any nonlinear optimizatiorc@ss like others [6, 15].
Lets=sy/s be the camera relative scale, Equation (5) can be transtbron@®)

R R 1
][]

whereU has six DOFs. From the camera constraints, there is

RILQ 'Ry = 1 (7)
RLO 'R = 1 (8)
RLQ R = 0 9)
RHQ 'R —RLQ MRz, = 0 (10)
R}IQ Ry, = 0 (11)

The five equations are actually linear equations in terme$ix independent parameters
of Q~1. Denote the particular and the homogeneous solution of tidersconstrained
linear equations b, L andQI1 respectively, all the possible solutions®f? that satisfy
the camera constraints can then be represente&d 8y3) = le + Ble. Since a real
matrix Q~1(B) is positive definite if and only if the determinants of all iitg left corner
submatrix are positive, and the determinants are simpletifums of 3, the valid range
(Brmin, Bmax) Of B that satisfy the positive definite property@f-1(8) can be obtained.
Noticing thatQ () is a 3x 3 matrix with parametef, we can geR(B),

L [ e Be) e
QB) = @ | wl) BB L6
1) 1HE) Ee)

wherefll(B) is anit" order polynomial in terms gB.
Then from the rigid link constraints, over-constraint etipu@s can be obtained:

EB)=+w—=Ch = 0 (12)
whereC is the constraint matrix which combine all the rigid link abraints in all frames,

andZ = (B> B 1)T.Inthe presence of noise in estimated 2D joii&3) will not be
0 and we can usk(f3) to evaluate the goodness Bf

F(B)=ET(B)E(B) = ¥ (B)/{1¥(B)}? (13)



where the besB corresponds to one minimum Bf(3). All the possible minima can be
found by solving the first derivative equation®ff),

F'(B)=f9(B)/{f¥(B)}* =0 (14)

i.e., fl6/(B) = 0. The roots of the sixth-order polynomial can be easily iole, and
the bestf solution is the one on whick () is global minimum in the valid range
(Bmin, Brax)- Note that such solution must exist because the non-neda(f?) increase
to infinity at Brin and Brax-

Given the besf and then th& (), the affine matrixtJ can be got from the Cholesky
factorization ofQ () up to a reflection transformation, and then the camera velatio-
tion and the metric 3D structure can be obtained. Note tleatdfiection ambiguity can
be eliminated by re-measuring the observation functiongughe reconstructed camera
motion and the estimated postures by mNBP.

4.3 TheExtension of the Improved M ethod

In practice, each camera scale can change over time dueg® Haotion in depth. In
this case, one affine transformationhas to be estimated for each frame pair in the two
image sequences. Since eatlis obtained in a single frame pair, the second rigid link
constraints on consecutive frames cannot be used. Evemesoomstraint on cameras and
the first kind of rigid constraint are enough to reconstracte).

When the two cameras are fixed, the reconstructéor different frame pairs should
be different only in a scale factor. Although independerbrestruction ofU’s cannot
assure such constraint, this issue can be easily solvednalafindle adjustment [15].

5 Iteration Process

By combining the above two sections, an iteration procesdté&n required to estimate
more accurate 3D human postures. In the first iteration, 2BRgdn each image are es-
timated independently of the other image sequence, duestortknown camera relative
motion. Therefore, the estimated 2D joints may not be atewaough especially when
severe self-occlusion between body parts happens. The motbe 2D joints will then
make the reconstruction of camera relative motion and 3Dy hoidts not be accurate.
As a result, an iteration process is required to improve #tenation accuracy. In the
next iteration, the reconstructed (approximate) caméasive motion can be used to help
estimate both 2D and 3D positions of body joints, by comlgjrtime image information
coming from the two camera views. The more accurate 2D jaiatsbe used to recon-
struct 3D camera relative motion and 3D joints more acclysatghich can be shown by
our test results.

6 Experimental Results

Quantitative and qualitative evaluation of our algorithre performed with three tests.
The first test evaluates the modified NBP’s capability foineating human posture when
the scales of 3D human model and the body image in the inpugéraee different. For



estimating posture in the case of self-occlusion and langili posture, please refer to
our previous work [13]. The second test evaluates the acguaad robustness of the
improved self-calibration algorithm. The third one eva@sathe capability of 3D posture
sequence estimation by combining the mNBP and the selfreaibn algorithm.

To quantitatively evaluate our algorithm, we capture humation using Gypsy mo-
tion capture system and extract a 3D posture sequence f@mation. Every posture is
mapped to a 54-DOF human skeleton model with mesh model oy akd rendered us-
ing OpenGL from two viewpoints to get the two input image ssmpes. To obtain initial
posture for each input image, we add some uniform randonenoifint angles of the
true posture. Note that the estimated posture of previamdrcan also be used as the
initial posture for the current frame image.

6.1 Posture Estimation under Different Human Model Scales

In the first test, the mNBP algorithm is used to estimate pesttom a single image,
therefore the depth information cannot be accurately @séich As a result, 2D joint
position erroiEzp = = S, [|92i — il is computed to assess the algorithm performance,
where¥, andy,; are the estimated and the true 2D image position of'thieody joint
respectivelyh is the articulated body height and it is about 195 pixels entdst.

human model starts from a
oz | o-- smaller scale

3 —— medium scale
o1 f - larger scale

human model starts from a,
-5 larger scale

&~ medium scale

- smaller scale

2D joint error

Human model scale
o

5 10 15 20 2 30 3 4

NBP iteration NBP iteration

(h) @

o 5 10 15 20 25 3 3B 40

Figure 2: Test 1. (a), (b) and (c) are the images of an initatpre corresponding to three
different human model scales. (d) is the input image. (¢)arttl (g) are images of the
estimated postures respectively. (h) is the elfgy, starting from different human model
scales. (i) is the scale changing of human model.

Figures 2 (a)-(g) illustrate one example to estimate bodyype from different human
model scales. We can see that the estimated (projected 2D)rpds very close to the
true posture, whatever the model scale is. For this exarRgare 2 (h) shows that, after
15 iterations or so, the errdt,p has decreased to a relatively small value. Figure 2 (i)
tells us that the human body model can be modified to the appad& body size in the
input image in several (i.e. 6 or so) iterations.



6.2 Reconstruction of Camera Motion and Body Posture

In the second test, a 3D posture sequence of 30 frames are\Wsadse the orthographic
projection of the 3D posture sequence from two fixed viewfso@s the pair of input 2D
posture sequences. For each 2D posture pair, uniform ramdise of each 2D joint
position is increased from 0 to 9% of the body height in botlage row and column
directions. The two fixed camera relative rotation angleg atl0°, —60°, 20°).

Three kinds of error measurements are used to assess toalgmihtion performance:
(1) 3D joint position erroilEzp = n—lh 2{21 >4 |IPti — piill, wherepy andpyi are respec-
tively the reconstructed and the true 3D positions ofith@int at framet, h is the body
height and it is 195pixels here; (2) camera relative scate & = ||S— 5|, wheresands
are the reconstructed and the true camera relative scatésjsal in this test; (3) camera
relative rotation erroE;j = ||6; — 6j|, j = 1,2,3 wheref; and 6; are the reconstructed
and the true rotation angles around jHeaxis direction.

In this test, two cases are tested: (1) self-calibratiomfegpair of 2D input sequences
and (2) from a single pair of 2D input images. We use the sanoe mreasurements in the
second case as in the first one, except that the errors areutednipom each individual
pair and then averaged over the 30 frames.

Figure 3(a) illustrates that the 3D joint errBgp increases linearly when 2D joint
position noise increases. Because each reconstructed diflopds determined by the
2D joint positions, large noisy 2D joints obviously will idsin large error in 3D joint
reconstruction. Figure 3(b) tells us that the egincreases little when the camera scale
is reconstructed from two sequences. However, when the soahes from a single pair,
the errorEs increase with respect to 2D joint noise. The result is reakBlenbecause
reconstruction from two sequences can capture more gtatigiformation on camera
scale compared to the reconstruction from a single pair.sénge reason may explain the
errorEj around x-axis (Figure 3(c)) and z-axis (Figure 3(e)).

However, the erroE; j around y-axis (Figure 3(d)) from two sequences is not rediuce
much compared with that from a single pair. It is reasondidé the 2D joint noise will
cause more reconstruction uncertainty in the y-axis doacround which there is a large
rotation angle (i.e.-60° here), which has been verified by our more experiments.

6.3 Combination of the mMNBP and the Camer a Self-calibration

In the third test, we show that the 3D posture sequence dftimean be accurately
estimated from two un-calibrated cameras by iterativelpgithe modified NBP and the
self-calibration algorithms. Almost all the time is spemtihe MNBP where each mNBP
iteration costs around 20 seconds. Here a pair of sequeftieisee images are used as
the input.

Figure 4(a) illustrates the 3D joint reconstruction errathwespect to the iteration.
We can see that the error is still relatively large after th&t fteration because each 2D
posture sequence is estimated from a single image sequéfteethe first iteration, the
camera relative rotation and scale (Figure 4(b)(c)) arenastd by the self-calibration
algorithm. The 3D joint error has been reduced largely ingbeond iteration because
our modified NBP has been able to use two camera viewpointgyéinformation. Fig-
ure 4(b) and (c) tell us the camera relative rotation andescah be estimated accurately
enough to help improve the 2D posture estimation in the neration. Figure 4(d) and
(e) respectively illustrate the true and the reconstrudt@gosture of one image pair in
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Figure 3: Test 2. The reconstruction errors.

the second iteration, from which we can see that a very sirBibaposture to the truth is
obtained in the second iteration.
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Figure 4: Test 3. (a) 3D joint error. (b) Camera relative tiotaerror. (c) The estimated
camera relative scale. (d) True posture, and (e) Reconstrgposture, viewed from six
viewpoints respectively.

7 Conclusion and Future Work

This paper introduces a modified NBP algorithm and presenssfficient camera self-
calibration algorithm. By combining the two algorithms, 3@sture sequence can be



estimated from a pair of image sequences captured by twalibrated but fixed cameras.
Quantitative and qualitative evaluation on the algoritlaingw that (1) the modified NBP
can estimate posture even if the human model scale is différem the body image
size, (2) the self-calibration algorithm can efficientlydithe rotation and relative scale
between two scaled orthographic cameras by solving an iequaft single-variable six-
order polynomial, without requiring a nonlinear optimipatprocess, and (3) accurate 3D
posture sequence can be estimated by iterating the twathlgsrquite a few times. In the
future work, tests on real image sequences will be perforriesb, the computation cost
of mMNBP should be reduced in order to apply our algorithm &oltimg image sequences.

Acknowledgement
Thank Saurabh Garg, Sheng Zhang and Hanna Kurniawati fonvideable suggestions.

References

[1] T.J. Cham and J.M. Rehg, “A multiple hypothesis approach to figaeking,” Proc. |EEE Int.
Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 239-245, 1999.

[2] J. Deutscher, A. Blake and I. Reid, “Articulated body motion captayeannealed particle
filtering,” Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 126-133,
2000.

[3] D.M. Gavrila and L.S. Davis, “3-D model-based tracking of husmanaction: a multi-view
approach,”Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, pp. 73-80, 1996.

[4] G. Huaand Y. Wu, “Multi-scale visual tracking by sequential beliefgagation,”Proc. |IEEE
Int. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 826-833, 2004.

[5] M. Isard, “PAMPAS: Real-valued graphical models for computision,” Proc. |EEE Int.
Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 613-620, 2003.

[6] D. Liebowitz and S. Carlsson, “Uncalibrated motion capture exploitingwated structure
constraints,"Proc. |EEE Int. Conf. Computer Mision, vol. 2, pp. 230-237, 2001.

[7] L. Quan, “Self-calibration of an affine camera from multiple viewhjternational Journal of
Computer Vision, 19(1):93-110, 1996.

[8] L. Sigal, S. Bhatia, S. Roth, M.J. Black and M. Isard, “Trackingdedimbed people,Proc.
|EEE Int. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 421-428, 2004.

[9] C. Sminchisescu and B. Triggs, “Covariance scaled sampling éoratular 3D body tracking,”
Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 447-454, 2001.
[10] C. Sminchisescu and B. Triggs, “Kinematic jump processes faraoolar 3D human track-

ing,” Proc. |IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 69-76, 2003.

[11] E.B. Sudderth, A.T. lhler, W.T. Freeman and A.S. Willsky, ‘i@rametric belief propaga-
tion,” Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 605-612,
20083.

[12] E.B. Sudderth, M.I. Mandel, W.T. Freeman and A.S. Willsky,isyal hand tracking using
nonparametric belief propagatiorProc. |EEE CVPR Workshop on GMV, 2004.

[13] R. Wang and W.K. Leow, “Human body posture refinement bypasametric belief propaga-
tion,” Int. Conf. Image Processing, 2005.

[14] C. Tomasi and T. Kanade, “Shape and motion from image stresnder orthography: A
factorization approach 'nternational Journal of Computer Vision, 9(2):137-154, 1992.

[15] P. Tresadern and I. Reid, “Uncalibrated and Unsynchronizech&h Motion Capture: A
Stereo Factorization ApproachProc. |EEE Int. Conf. Computer Vision and Pattern Recogni-
tion, vol. 1, pp. 128-134, 2004.

[16] Y. Wu, G. Hua and T. Yu, “Tracking articulated body by dynamicrktav network,” Proc.
|EEE Int. Conf. Computer Vision, vol. 2, pp. 1094-1101, 2003.



