
PERCEPTUAL CONSISTENCY FOR IMAGE RETRIEVALWEE KHENG LEOWDepartment of Computer Siene, National University of Singapore,3 Siene Drive 2, Singapore 117543, Singapore.leowwk�omp.nus.edu.sgAn ideal image retrieval system should retrieve images that satisfy the user's need,and should, therefore, measure image similarity in a manner onsistent with hu-man's pereption. Unfortunately, pereptual onsisteny is very diÆult to ahieve,even for simple features suh as olor and texture. This paper summarizes urrentresults of pereptual onsisteny and suggests possible future work in this dire-tion. Striving for pereptual onsisteny should be a goal of the next-generationmultimedia retrieval systems.1 IntrodutionAn ideal image retrieval system should retrieve images that satisfy the user's need.It should, therefore, measure image similarity in a manner onsistent with human'spereption. Unfortunately, this goal turns out to be very diÆult to ahieve. Thisproblem leads to retrieval results that do not always meet the users' expetations.38Existing systems often make use of relevane feedbak tehniques to improve thequality of the retrieved results.26;32;40 However, very few users are willing to gothrough endless iterations of feedbak in hope of retrieving the best results. More-over, previous feedbak results are typially not retained in the system and eah newquery always begins in an unre�ned state. A user has to go through the feedbakproess even if the same feedbak information has been given in the past.Striving for pereptual onsisteny should be the goal of a good image retrievalsystem. At present, progress has been made only for simple features suh as olorand texture. This artile summarizes urrent results of pereptual onsisteny andsuggests possible future work in this diretion.2 Overview of Pereptual ConsistenyThere are many ways of de�ning pereptual onsisteny. This setion disussessome ommon de�nitions. Let pij denote the pereptual distane between samplesi and j, and dij denote the orresponding measured or omputational distane. Asimple notion of pereptual onsisteny is that dij is proportional to pij . That is,there exists a linear funtion f suh thatpij = f(dij); 8i; j : (1)Then, pereptual onsisteny an be measured in terms of the mean squared error(MSE) e of linear regression:e = 1N Xi;j (pij � f(dij))2 (2)where N is the number of sample pairs. The smaller the MSE, the better is theonsisteny. A perfet onsisteny has an MSE of 0.book-leow: submitted to World Sienti� on February 20, 2002 1



A less stringent notion of pereptual onsisteny is to require that f be a mono-toni funtion whih an be nonlinear. The problem with this de�nition is that itis diÆult to determine the best nonlinear funtion to use in pratie.An alternative de�nition is to require that dij be statistially orrelated to pij .In this ase, it is useful to transform the populations fdijg and fpijg to equivalentzero-mean unit-variane populations fd0ijg and fp0ijg:p0ij = pij � �p�p ; d0ij = dij � �d�d (3)where �p and �d are the means and �p and �d are the standard deviations of the pop-ulations. Then, pereptual onsisteny an be measured in terms of the orrelationr: r =Xi;j p0ij d0ij : (4)Substituting Eq. 3 into Eq. 4 yields the Pearson's orrelation oeÆient:r = Xi;j (pij � �p )(dij � �d )24Xi;j (pij � �p )2Xi;j (dij � �d )2351=2 : (5)The oeÆient r ranges from �1 to +1.With perfet onsisteny (e = 0 or r = 1), we obtain the following ondition:dij � dkl ) pij � pkl for any samples i; j; k; l: (6)That is, if perfet onsisteny is ahieved, omputational similarity would implypereptual similarity.3 Color3.1 Color Spaes and Color Di�erenesVarious olor spaes have been used in image retrieval. The more ommonly usedspaes inlude HSV, CIELUV, and CIELAB. The HSV spae onsists of hue, sat-uration, and value dimensions. It is used in VisualSeek 43 and PiHunter,9 and byVailaya et al.50 CIELUV and CIELAB are olor spaes developed by the Interna-tional Commission on Illumination (Commission International de l'�Elairage, CIE).They onsist of a luminane dimension L� and two hromati dimensions namelyu�; v� and a�; b�. Among these three spaes, CIELUV and CIELAB are more per-eptually uniform than HSV.4 CIELUV is used in ImageRover 42 and by Mehtre etal.30 while CIELAB is used in Quiklook.8In reent years, there is also a move to standardize the onversion formulabetween RGB and various CIE spaes. This e�ort gives rise to the so-alled sRGB,whih is a proposed standard or default RGB olor spae for the internet.1;46 Itbook-leow: submitted to World Sienti� on February 20, 2002 2



aptures the averaged harateristis of most omputer monitors. With sRGB,there is now a unique formula for onverting to and from CIE olor values.The di�erene between two olors is typially measured as the Eulidean dis-tane in the target olor spae. Several improvements over the CIELAB Eu-lidean olor di�erene equation have been proposed, inluding CIE94, CMC, andBFD.4 Reent psyhologial tests show that these olor di�erene equations aremore pereptually uniform than Eulidean distane in the CIELAB and CIELUVspaes.4;14;18;31;45 In partiular, CIE94 has a simpler form, whih is a weightedEulidean distane:4�E�94 = "� �L�kLSL�2 +��C�abkCSC�2 +��H�abkHSH �2#1=2 (7)where �L�, �C�ab, and �H�ab are the di�erenes in lightness, hroma, and hue,SL = 1, SC = 1 + 0:045 �C�ab, SH = 1 + 0:015 �C�ab, and kL = kC = kH = 1 forreferene onditions. The variable �C�ab is the geometri mean between the hromavalues of the two olors, i.e., �C�ab =qC�ab;1C�ab;2.In addition to these olors spaes, the modi�ed Munsell HVC spae, whihonsists of hue, value, and hromatiity dimensions, and is used in QBIC 33 andby Gong et al.13 It is pereptually quite uniform, but is less ommonly used thanCIELAB. Gong et al. uses the Godlove equation 12 to measure olor di�erene. Itwas derived by Godlove to improve the pereptual uniformity of olor di�erenemeasured in the Munsell spae. Reent psyhologial studies show that CIE94 ismore aurate in measuring human olor pereption than the modi�ed Judd andAdams-Nikerson formulae,18 whih are similar to the Godlove equation.3.2 Color Histograms and DissimilarityAn image or image region typially ontains more than one olor. Therefore, olorhistograms are used to represent the distributions of olors in images. There aretwo general approahes to generating olor histograms from images: �xed binningand adaptive binning. The �xed binning approah indues histogram bins by par-titioning the olor spae into �xed olor bins. One the bins are derived, they are�xed and the same binning is applied to all images. On the other hand, adaptivebinning adapts the bins to the atual distributions of the images. As a result,di�erent binnings are indued for di�erent images.There are two types of �xed binning shemes: regular partitioning and luster-ing. The �rst method simply partitions the axes of a target olor spae into regularintervals, thus produing retangular bins.9;42;43 The seond method partitions aolor spae into a large number of retangular ells, whih are then lustered by alustering algorithm, suh as k-means, into a smaller number of bins.8;15;50Adaptive binning is similar to olor spae lustering in that k-means lusteringor its variants are used to indue the bins.20;37 However, the lustering algorithmis applied to the olors in an image instead of the olors in an entire olor spae.Therefore, adaptive binning produes di�erent binning shemes for di�erent images.Experimental results show that adaptive-binning histograms an represent olordistributions more aurately than an �xed-binning histograms and yet use fewerbook-leow: submitted to World Sienti� on February 20, 2002 3
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Figure 1. Comparison of mean olor errors of regular, lustered, and adaptive histograms.
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Figure 2. Average perentage of empty bins in regular and lustered histograms. Adaptive his-tograms have no empty bins.bins and no empty bins 20 (Fig. 1, 2). In partiular, adaptive histograms anahieve a mean olor error below the human olor aeptability threshold of 4.5,45whih is a threshold below whih two olors are regarded as pratially identi-al. Note that the aeptability threshold is slightly higher than the pereptibilitythreshold of 2.2,45 whih is the threshold below whih two olors are pereptuallyindistinguishable.Although olor di�erene measured using CIE94 in CIELAB olor spae is per-eptually onsistent, the di�erene between olor histograms measured by variousdissimilarity measures have not been shown to be pereptually onsistent. Em-pirial tests performed by Puziha et al.34 and Leow and Li 20 on�rmed that theEulidean distane between olor histograms is not as reliable as other measuresare in omputing dissimilarity. In partiular, the results of Puziha et al. showthat dissimilarities suh as �2, Kullbak-Leibler divergene, and Jessen di�erenebook-leow: submitted to World Sienti� on February 20, 2002 4



divergenea (JD) performed better than other measures do for large sample size(i.e., number of pixels sampled in an image), while Earth Mover's Distane (EMD),Kolmogorov-Smirnov, and Cramer/von Mises performed better for small samplesize.The study of Leow and Li show that JD is most reliable for image retrieval. JDmeasures the di�erene between two histograms G and H , with bin ounts gi andhi, as follows: d(G;H) =Xi �gi log gimi + hi log himi� (8)where mi = (gi + hi)=2. Although JD is reliable, it an be applied only on �xed-binning histograms. On the other hand, the weighted orrelation dissimilarity 20(WC) an be applied to adaptive histograms.An adaptive histogram H = (n; C;H) is a 3-tuple onsisting of a set C of n binsi, i = 1; : : : ; n, and a set H of orresponding bin ounts hi � 0. The similarityw(b; ) between bins b and  is given by a monotoni funtion inversely related tothe distane d(b; ) between them. For olor histograms, the weight w(b; ) an bede�ned in terms of the volume of intersetion Vs between the bins:w(b; ) = w(�) = VsV =8><>: 1� 34�+ 116�3 if 0 � � � 20 otherwise (9)where �R is the distane between the bins and R is the radius of a bin.The weighted orrelation G � H between histograms G = (m; fbig; fgig) andH = (n; fig; fhig) is de�ned as follows:G �H = mXi=1 nXj=1w(bi; j) gihj : (10)For a histogramH , its norm kHk = pH �H , and its normalized form H = H=kHk.The similarity s(G;H) between histograms G and H is s(G;H) = G �H, and thedissimilarity d(G;H) = 1� s(G;H).The retrieval performane of WC dissimilarity is omparable to that of JD(Fig. 3). Unlike EMD, whih is also appliable to adaptive histograms, WC doesnot require an optimization proess. It is, thus, more eÆient to ompute thanEMD.4 Texture4.1 Texture Features and DissimilarityCommonly used texture features an be divided into two main ategories: sta-tistial and spetral. Statistial features haraterize textures in terms of loalstatistial measures (suh as oarseness, diretionality, ontrast 47), simultaneousaThe formula that Puziha et al.34 alled \Je�reys divergene" is more ommonly known as\Jessen di�erene divergene" in Information Theory literature.6;7;48book-leow: submitted to World Sienti� on February 20, 2002 5
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Figure 3. Preision-reall urves of various ombinations of binning methods (: lustered, dashedline; a: adaptive, solid line) and dissimilarities (JD: Jessen di�erene divergene, WC: weightedorrelation, L2: Eulidean, EMD: Earth Mover's Distane).autoregressive model 29 (MRSAR), or Markov random �eld 10 (MRF). In general,these features are good at modeling random patterns suh as sand and pebbles, butnot suitable for modeling strutured patterns suh as briks and roof tile.21 Amongthem, the statistial features of Tamura et al.47 are used in QBIC,33 and MRSARis used in PhotoBook.21The spetral approah is based on the response of a set of band-pass �lters, typ-ially 2D Gabor and wavelet �lters.5 Eah �lter responds most strongly to the pat-terns at a spei� spatial-frequeny and orientation band. These features have beenused in NeTra,27;28 VisualSeek,43 et. In addition, features derived diretly fromDisrete Fourier Transform (DFT) has also been used, for instane, in PhotoBook.21Various dissimilarity measures have been de�ned for omputational texturefeatures, inluding Eulidean and saled Eulidean distane,41, Mahalanobisdistane,21 and weighted mean-variane,27;28 most of whih are variations of theweighted Eulidean distane. As expeted, these dissimilarity measures are notpereptually onsistent (see next Setion for details).An interesting exeption is Santini and Jain's Fuzzy Features Contrast model(FFC).41 FFC is based on Tversky feature ontrast model 49 whih an aountfor various peuliarities of human's pereptual similarity. Santini and Jain appliedFFC to measure similarity of Gabor texture features, and obtained enouragingresults.4.2 Pereptual Texture ModelsThe earliest study of human's pereption of texture similarity was onduted byTamura et al.47 In their experiments, 48 human subjets were asked to judge thesimilarity of texture pairs aording to six visual properties, namely, oarseness,ontrast, diretionality, line-likeness, regularity, and roughness. Similarity judg-book-leow: submitted to World Sienti� on February 20, 2002 6



ments were measured and eah texture was assigned a pereptual rating valuealong eah of the six visual sales. Due to the ombinatorial nature of the task,only 16 textures were used. Amadasun and King 2 and Benke et al.3 ondutedsimilar ranking experiments to measure similarity judgments aording to variousvisual properties inluding some of the features of Tamura et al. as well as busyness,omplexity, bloblikeness, and texture strength.The major diÆulty with these studies is that the subjets were asked to judgetexture similarity aording to subjetive visual properties. Unfortunately, the sub-jets' interpretations of the meaning of these visual properties are expeted to varyfrom one person to the next. Therefore, it is unertain whether the individualranking results an be ombined into group ranking results that represent the per-eption of a typial person. The seond diÆulty is that the ranking results weremeasured aording to individual visual properties. But, the relative sale betweentwo visual properties is unknown. For example, one unit di�erene in oarsenessmay not be pereptually equal to one unit di�erene in regularity. So, the di�erentvisual dimensions annot be easily ombined to form a pereptual texture spae.To avoid these diÆulties, Rao and Lohse 35 performed an experiment in whih20 subjets were asked to sort 30 textures into as many groups as the subjetswished suh that the textures in eah group were pereptually similar. The textureswere sorted based on the subjets' pereption of overall texture similarity withoutusing subjetive visual properties. A o-ourrene matrix of the sorting results wasomputed and multidimensional saling 16 was performed to derive a 3D pereptualspae. The experiment was repeated in another study using 56 textures.36 Raoand Lohse onluded that the 3 dimensions of the spae strongly orrelate with thevisual properties of repetitiveness, orientation, and omplexity.Heaps and Handel 17 onduted further studies using the same methodology.However, they arrived at di�erent onlusions than those of Rao and Lohse. Theyonluded that it is not possible to reliably assoiate a visual property to eahdimension of the texture spae. In addition, pereption of texture similarity dependson the ontext in whih the similarity is judged. That is, how similar two texturesappear to humans depends not only on the two textures being judged, but also onthe whole set of textures with whih pairwise judgments are made.Long and Leow 24 applied a similar approah to develop a pereptual texturespae. However, they do no attempt to assign visual properties to the dimensionsof the spae. In addition, the inuene of the ontext problem is redued by nor-malizing the intensity, ontrast, sale, and orientation of the textures used in thepsyhologial experiment. In measuring pereptual distane, both the o-ourrenematrix and the information measurement of Donderi 11 were used.A omparison of the above pereptual texture spaes show that they are veryonsistent with eah other (Table 1). Heaps and Handel reported a good orrelation(r = 0:790) with Rao and Lohse's data.17 The pereptual spae of Long and Leowonstruted using o-ourrene has a better orrelation with Rao and Lohse'sspae ompared to that using Donderi's information measurement. This is expetedbeause Rao and Lohse's spae was developed using o-ourrene as well. Table 1shows that the spaes are mutually onsistent, thus establishing the pereptualtexture spae as a reliable measurement of human's pereption of texture similarity.book-leow: submitted to World Sienti� on February 20, 2002 7



Table 1. Comparison of various pereptual texture spaes with that of Rao & Lohse. Pearson'sorrelation oeÆients show that the spaes are onsistent with eah others.pereptual spae 3D 4D 5DHeaps & Handel 0.790 { {Long & Leow (o-ourrene) 0.722 0.732 0.713Long & Leow (info. measure) 0.726 0.694 0.695Table 2. Assessment of omputational texture dissimilarity measures. r = Pearson's orrelationoeÆient; e = mean squared error.feature distane r eTamura Eulidean 0.251 0.132Gabor Eulidean 0.273 0.131Gabor saled Eulidean 0.282 0.121Gabor FFC 0.430 0.098MRSAR Eulidean 0.144 0.139MRSAR Mahalanobis 0.061 0.1524.3 Mapping Computational FeaturesPereptual onsisteny of omputational dissimilarity measures an be assessedby omparing them with the distanes measured in the pereptual spae. Thefollowing features are onsidered: Tamura's features, Gabor, and MRSAR. For allthe features, Eulidean distane is used to provide baseline results. In addition,Gabor is also paired with FFC (following Santini and Jain 41) and MRSAR is alsopaired with Mahalanobis distane (following Liu and Piard 21).Table 2 summarizes the results of omparing the omputational distanes tothe distanes measured in the 4-D pereptual texture spae of Long and Leow.24Gabor feature and Gabor with FFC are most onsistent with the pereptual spae.In partiular, measuring Gabor similarity with FFC does improve Gabor feature'spereptual onsisteny. Measuring MRSAR similarity with Eulidean distane ispereptually more onsistent than measuring with Mahalanobis distane. The de-grees of onsisteny of omputational features (r � 0:43) are, however, not very highompared to those between various pereptual spaes (Table 1, r � 0:7). Therefore,it an be onluded that these omputational features and similarity measures arenot onsistent with human's pereption.The de�ieny of omputational dissimilarity measures an be mitigated bymapping texture features into the pereptual texture spae and then measuringtexture dissimilarity in the pereptual spae. Long and Leow explored the appli-ation of neural networks and support vetor mahines (SVMs) for the mappingtask,22;24;25 and �ve test ases were examined:1. I: test with new instanes not in the training set, anonial sale and orien-tationbook-leow: submitted to World Sienti� on February 20, 2002 8



Table 3. Mean squared errors of texture mapping tests under various onditions. The �rst threerows are the results of mapping various features by SVM. The last three rows are the resultsof mapping Gabor features. The last two olumns show the pereptual onsisteny of mappingtexture features by SVM under the T ondition: r = Pearson's orrelation oeÆient; e = meansquared error. mapping tests onsistenyI T Iv Tv R e rTamura 0.144 0.256 | | | 0.020 0.857MRSAR 0.096 0.244 | | | 0.019 0.859SVM 0.0052 0.216 0.244 0.245 0.240 0.019 0.859NN 0.0099 0.238 0.0074 0.148 0.016 | |NN+SVM 0.0065 0.226 0.0061 0.143 0.012 | |2. T: test with new texture types not in the training set, anonial sale andorientation3. Iv : test with new instanes not in the training set, variable sale and orientation4. Tv: test with new texture types not in the training set, variable sale andorientation5. R: test with randomly seleted samples not in the training setTable 3 summarizes the testing results. Tamura features and MRSAR weretested only for the ases of anonial sale and orientation beause it is unknownhow to perform sale- and orientation-invariant mapping of these features. Asexpeted, for all the features, testing errors for new instanes are smaller than thosefor new texture types. Moreover, being most onsistent with the pereptual spae(Table 2), Gabor features an be mapped to the pereptual spae more auratelythan other features.For the ases of anonial sale and orientation (I, T), SVM an map Ga-bor features more aurately than other texture features to the pereptual texturespae. The hybrid system (NN+SVM) is omposed of a onvolutional neural net-work, for performing invariant mapping, and four SVMs, for performing pereptualmapping to the four dimensions of the pereptual spae.25 The hybrid system per-forms better than pure neural network but marginally poorer than SVM. This resultis expeted sine pure SVM regression takes the original Gabor features as the in-puts. On the other hand, the SVMs of the hybrid system take the outputs of theonvolutional network as the inputs, and inevitably, some information is loss bynetwork proessing.For the ases of variable sale and orientation (Iv , Tv, R), the hybrid systemperforms muh better than pure SVM beause the hybrid system performs invariantmapping whereas pure SVM does not. It's performane is also better than thatof pure neural network. As a whole, the integration of the onvolutional neuralnetwork and SVM produes better overall mapping auray than individual neuralnetwork and individual SVM.book-leow: submitted to World Sienti� on February 20, 2002 9



After mapping omputational features to pereptual spae, one would expet themapped oordinates to be more pereptually onsistent. An evaluation of the om-putational features mapped by SVM is performed for the test ase of new texturetypes under anonial sale and orientation T. The distane orrelation results areshown in the last two olumns of Table 3. Comparing Table 3 with Table 2 showsthat mapping omputational features to pereptual spae does improve the perep-tual onsisteny of the features. In summary, it an be onluded that auratemapping to the pereptual spae an be ahieved, at least for Gabor features.4.4 Inremental Pereptual SpaeTo improve retrieval performane, relevane feedbak tehnique is often used to tuneomputational similarity measures.9;26;32;39;40;44 Typially, eah new query resetsthe similarity measure bak to its initial state, whih is not pereptually onsistent.Subsequent feedbak for the query is used to adjust the weighting fators of thesimilarity measure to improve retrieval performane.The main diÆulty with this method is that very few users are willing to gothrough endless iterations of feedbak in hope of retrieving the best results. Asuessful relevane feedbak proess must yield positive results within three or fouriterations.19 So, feedbak methods that require many iterations to improve retrievalperformane are not pratially useful. Another shortoming of this method is thatprevious feedbak results are typially not retained in the system. Eah new querystarts with a similarity measure that is not pereptually onsistent. The users haveto go through the relevane feedbak proess even if the same feedbak informationhas been given in the past. This problem is partially alleviated with user pro�ling.A diret method of improving pereptual onsisteny is to onstrut a pereptualspae of images using psyhologial experiments (suh as the methods disussed inSetion 4.2). The Eulidean distanes measured in this pereptual spae would beonsistent with human's judgments. Then, images an be mapped to the pereptualspae and retrieval performed in the pereptual spae would yield results that areonsistent with human's judgments.This diret approah is appropriate if the onstrution of the pereptual spaeinvolves a small data set, suh as the 100 or so images in the Brodatz album. Forgeneral image retrieval appliations, it is not feasible to onstrut a pereptualspae using thousands of images beause it is pratially impossible to ondutpsyhologial experiments involving suh a large number of images.Long and Leow presented a method of inrementally measuring pereptual dis-tanes and onstruting pereptual spae based on relevane feedbak.23 Only asmall number of relevant judgments is required in eah feedbak iteration. Feed-bak results from multiple queries are aumulated and inrementally update themeasurements of pereptual distanes between images. If the feedbak results areprovided by the same user, then the pereptual distanes measured would be on-sistent with a single user's pereption. Otherwise, the measurements would reetthe average pereption of typial users. In the ase of a single user, the measure-ments would eventually stabilize if the user's relevant judgment remains onsistentover time. Otherwise, the measurements would adapt to the hanges in the user'sbook-leow: submitted to World Sienti� on February 20, 2002 10
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Figure 5. Phase shifts of inremental spae. The line indiates the degree of pereptual onsistenyat various perentage of information overage. The labels along the line mark the positions ofthe four texture models (E: Eulidean, SE: saled Eulidean, FFC, and SVM mapping) aordingto their pereptual onsisteny. At low overage, the inrementally onstruted spae behaves asa omputational spae. It shifts towards a mixed spae at moderate overage, and a pereptualspae at high overage.� The omponents of a feature annot be onsidered as forming the orthogonaldimensions of a multidimensional feature spae that is onsistent with human'spereption. For instane, the various bins of a olor histograms are not mutu-ally independent. Likewise, the various texture measurements do not form apereptually onsistent texture spae.Knowing the above, it is not surprising that ombining di�erent features to form alinear vetor spae annot support pereptually onsistent retrieval. Unfortunately,most existing systems adopt this method of ombining di�erent features due to itsmathematial simpliity.The problem of pereptually onsistent retrieval is further ompliated by thefat that many interesting images ontain more than one region or objet of interest.For example, a beah sene image ontains regions of sky, sea, sand, and oftenhuman and other objets. Moreover, the same image an be interpreted di�erentlyby di�erent users in di�erent appliation ontext.To deal with these ompliations in an unbiased manner, the Bayesian approahseems to be a natural hoie.1. Training StageAn image I ontains a set of features f1; : : : ; fn. Given a set of training im-ages, whih are ategorized into various pereptually meaningful lasses i (alsoalled semanti lasses), estimate the probability P (ijf1; : : : ; fn) that a set offeatures fj reliably haraterizes a lass i. Sine di�erent feature types arebook-leow: submitted to World Sienti� on February 20, 2002 12



independent of eah other, we have:P (ijf1; : : : ; fn) = P (i; f1; : : : ; fn)Yj P (fj) = ������i \\j fj������Yj jfj j (11)The set i \Tj fj an be omputed reursively from the sets i \ fj . That is,the various feature types an be deoupled and the sets i\fj an be estimatedaording to eah individual feature type. This method overomes the problemof arbitrarily ombining feature types to form a vetor spae. After training,eah image Ij an be assoiated with a semanti lass i by the probabilityP (ijIj).2. Retrieval by CategoryGiven a query Q whih is a single semanti lass, the images Ij an be retrievedby ordering them in dereasing order of P (QjIj).3. Retrieval by ExampleGiven a query Q whih ontains sample features fi, estimate for eah semantilass i the probability P (ijQ) = P (ijf1; : : : ; fn). Next, ompare the prob-abilities P (ijQ) of the query Q with the probabilities P (ijIj) of the imagesIj using an appropriate dissimilarity measure, for instane, JD (Equation 8).Finally, the images an be retrieved by ordering them in inreasing order ofdissimilarity.The estimation of P (ijf1; : : : ; fn) is ertainly a non-trivial task. At the everyleast, eÆient algorithms will be needed beause brute fore methods will be om-putationally too expensive. Nevertheless, the above approah is viable as it ansuessfully ombine various features without resorting to an unreliable ombinedfeature spae and an relate low-level features to semantially meaningful lasses.6 ConlusionPereptual onsisteny is important for supporting good image retrieval perfor-mane but is very diÆult to ahieve. Currently, di�erene between individualolor an be measured in a pereptually uniform olor spae, but the dissimilaritymeasure between olor histograms have not been shown to be pereptually onsis-tent. Nevertheless, empirial tests have shown that non-Eulidean measures aremore reliable than Eulidean ones.In the ase of texture, known pereptual texture spaes have yielded onsistentresults. As for olor histograms, omputational dissimilarity measures of texture arenot onsistent with the distanes measured in the pereptual spae. Fortunately,it is possible to map omputational features, partiularly Gabor features, to apereptual spae aurately. In this way, texture di�erene an be measured in thepereptual spae to yield pereptually onsistent dissimilarity measurement.book-leow: submitted to World Sienti� on February 20, 2002 13
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