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Abstract. Segmentation of femurs in Anterior-Posterior x-ray images is
very important for fracture detection, computer-aided surgery and surgi-
cal planning. Existing methods do not perform well in segmenting bones
in x-ray images due to the presence of large amount of spurious edges.
This paper presents an atlas-based approach for automatic segmentation
of femurs in x-ray images. A robust global alignment method based on
consistent sets of edge segments registers the whole atlas to the image un-
der joint constraints. After global alignment, the femur models undergo
local refinement to extract detailed contours of the femurs. Test results
show that the proposed algorithm is robust and accurate in segmenting
the femur contours of different patients.

1 Introduction

Segmentation of bones in medical images is very important for medical appli-
cations such as quantitative analysis [1,2,3], fracture detection [4,5], computer-
aided surgery and surgical planning [6,7]. It has been performed on various types
of medical images such as CT [6,8], MR [9], and x-ray [1,2,3,5,7]. Segmentation
of bones in CT and MR are easier than that in x-ray images because bones
have clearer boundaries in CT and MR. In contrast, segmentation of bones in
x-ray images is a very difficult and challenging task that is not well solved. For
example, in an anterior-posterior pelvis x-ray image, the femurs are overlapped
by other body parts such as the pelvis bone, the thigh muscles, etc. As a result,
some boundary edges of the femurs may be obscured while others may appear
to be connected to the boundary edges of other body parts (Fig. 3). More-
over, the region within a femur’s boundary has inhomogeneous image features.
These difficulties render general segmentation methods such as thresholding and
region-based methods inappropriate.

This paper presents an atlas-based approach for automatic segmentation of
femurs in x-ray images. The atlas describes not only the femurs but also the pelvis
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and the joints between them. The segmentation algorithm consists of two stages:
global alignment (Section 4) and local refinement (Section 5). A robust method
globally aligns the model of each bone in the atlas to the edges in the image
subject to joint constraint. The pelvis and femur models constrain each other’s
position and orientation, making the algorithm more robust against supurious
features in the image. After global alignment, a level set method with shape
constraint is applied to deform the femur models to extract detailed contours
of the femurs. Compared to existing segmentation algorithms, this approach is
more robust and accurate in segmenting the femur contours of different patients.

2 Related Work

Existing medical image segmentation methods fall into several categories [10].
Region-based methods assume intra-region homogeneity, and usually produce
over-segmented results. Classfication-based methods do not consider spatial in-
formation. Therefore, the segmented regions are disjoint. Deformable model-
based algorithms need good initialization. The deformation needs to be well
controlled to prevent leakage. In comparison, atlas-based methods [7,8,11,12],
which register reference atlases to the target images, are more promising because
the atlases contain domain knowledge that guides the segmentation process.

For femur segmentation in x-ray images, the method of Chen et al. [5] seg-
ments femurs by first detecing parallel lines in the shaft region and circles in the
femoral heads to initialize a 2D model. The model is then deformed by a snake
algorithm with curvature constraint. Spurious edges can affect the initialization
of the snake model, and attract the snake towards them.

The method of Boukala et al. [7] segments pelvis and femurs in AP x-ray
images. It registers the mean shape of the training samples to the input image
by explicitly finding correspondence using shape context descriptor [13], which
is a log-polar edge point histogram. Active shape model is applied to deform the
registered atlas to extract detailed bone contours. Note that randomly located
spurious edges in the image may cause edge points counting in shape context to
fail. This problem is very serious for AP x-ray images due to the presence of large
amount of spurious edges. As a result, it will lead to incorrect correspondence.

In contrast, the proposed algorithm does not rely only on feature matching
to determine correspondence from the atlas contours to the extracted edges.
Instead, it generates multiple possible matches and adopts a robust method to
identify the more likely candidates based on consistent sets of edge segments.
Level set method with shape constraint is used to deform the aligned atlas to
extract detailed femur contours.

3 Pelvis Atlas

Our approach constructs an atlas that captures not only the femurs but also
the pelvis and the joints that connect them (Fig. 1(c)). Each bone model is
constructed from 20 manually segmented training samples that are represented
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(a) (b) (c)

Fig. 1. Pelvis atlas. (a) Superposition of 20 aligned training samples. (b) Level set
representation of the mean shape. White curve: zero level set. (c) Constructed atlas.

as level set functions (signed distance maps, Fig. 1(b)). The shaft regions of these
samples are cut to the same length. These samples are automatically aligned
under rigid transformations by maximizing their overlapping areas (Fig. 1(a)).
Next, Principal Component Analysis (PCA) is applied to compute the eigen-
shapes of the model. The mean shapes of femurs are then connected to that of
the pelvis at the joint positions (Fig. 1(c)). The shafts of the femur model are
extended for matching long femurs in the images.

4 Global Alignment

The goal of global alignment is to align the model’s position and orientation to
match the bones in the image. The scale ratio is assumed to be approximately
1. Each of the three model contours of the bones (two femurs and one pelvis) in
the atlas needs to be aligned under a different rigid transformation subject to
the joint constraints because the femurs can rotate about the joints.

The algorithm contains four main stages:

1. Extraction of edge segments from the input x-ray image.
2. Estimation of possible correspondence between model contours and edge

segments.
3. Determination of a consistent set of edge segments that correspond to each

model contour.
4. Compute transformations and register each model contour to the image.

These stages are discussed in the following sections.

4.1 Edge Segment Extraction

Histogram equalization is first applied to the input image to roughly normalize
the intensity and contrast of the image. Next, edges are extracted from the nor-
malized image using Canny edge detector, and edge direction at each edge point
is computed. Finally, connected edge points are joined to form edge segments.
Edge segments that are too short are regarded as noise and discarded.
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4.2 Estimation of Possible Correspondence

This stage determines the possible correspondence between the edge segments and
the bone models. Let e denote an edge segment with edge points pi, i = 1, . . . , m,
whose edge directions are givenby the unit vectorsui. Let c denote a model contour
of a bone with contour points qj , j = 1, . . . , n and contour directions vj . If c is a
closed contour, then qn+1 = q1. As an edge segment of a bone may contain edge
points that do not correspond to the model contour, the objective of this stage is to
find the longest sub-sequence e′ = e(a, l) = (pa, . . . ,pa+l) of e that corresponds
to a sub-sequence c′ = c(b, l) = (qb, . . . ,qb+l) of c, for some a and b, where l is the
length of the sub-sequence. If c is an open contour, then the following boundary
condition holds for the longest corresponding sub-sequences e′ and c′: either (1)
pa = p1 and qb+l = qn or (2) pa+l = pm and qb = q1. Otherwise, the longest
e′ = e.

The similarity s(e′, c′) between e′ and c′ is defined in terms of three factors:

s(e′, c′) = η(e′, c′)ρ(e′, c′)ψ(e′, c′). (1)

The global direction similarity η(e′, c′) measures the overall directional alignment
between e′ and c′ based on the global direction vectors θ of e′ and c′:

η(e′, c′) =
{

exp[−λ1(1 − θ(e′) · θ(c′))] if θ(e′) · θ(c′) > τ
0 otherwise (2)

where τ is a threshold, and λ1 is a constant parameter. The global direction
θ(e′) of e′ (similarly for c′) is estimated by the mean of its edge point directions:
θ(e′) =

∑a+l
i=a ui/(l + 1).

The local direction similarity ρ(e′, c′) measures the degree of match between
the edge point directions of e′ and c′. It is computed as the similarity between
their edge point directions relative to their global directions:

ρ(e′, c′) =
1

l + 1

a+l∑
i=a

(ui − θ(e′)) · (vf(i) − θ(c′)) (3)

where f is a mapping function that maps pi to qj , i.e., j = f(i).
The local position similarity ψ(e′, c′) measures the degree of match between

the positions of the edge points of e′ and c′:

ψ(e′, c′) = exp

[
− λ2

l + 1

a+l∑
i=a

‖pi − qf(i)‖2

]
. (4)

where λ2 is a constant parameter.
Given the similarity s(e′, c′), the longest best matching sub-sequences of e and

c are the pair e(a∗, l∗) and c(b∗, l∗) that maximize the sub-sequence similarity:

s(e(a∗, l∗), c(b∗, l∗)) = max
a,b,l

s(e(a, l), c(b, l)). (5)
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4.3 Determination of Consistent Sets

The previous stage will find many possible corresponding edge segments for each
model contour. Some of them are correct correspondences while the others are
not. Since the bone is rigid, it must be possible to register the model contour to
a set of consistent edge segments under the same rigid transformation.

Let e′k correspond to sub-sequence c′k of c. The rigid transformation Tk from
c′k to e′k is computed using the algorithm in [14]. The computed transformation
Tk is then applied to the whole model contour c. Two transformations Ti and
Tk on c are consistent if they produce similar transformations of c:

d(c, Ti, Tk) =
1
|c|

∑
qj∈c

‖Ti(qj) − Tk(qj)‖2. (6)

The smaller the d, the more consistent are the transformations. Given a set S(c)
of edge segments e′k for model contour c with associated transformations Tk, the
overall consistency of the set is then defined by the maximum difference D(S):

D(S(c)) = max
e′

i,e
′
k∈S(c)

d(c, Ti, Tk). (7)

The smaller the D, the more consistent is the set. Given a consistent set S(c), the
overall transformation T between c and every e′k ∈ S(c) is computed using the
algorithm in [14]. For each model contour, multiple consistent sets are sampled
using RANSAC [15], each having an overall transformation (Fig. 2). So a model
contour c has a set Γ (c) of possible transformations that map c to consistent
sets of edge segments.

(a) (b)

Fig. 2. Determine optimal transformations. (a) Correct correspondence of edge seg-
ments (black line) leads to registration (green) with small registration error. (b) Incor-
rect correspondence leads to incorrect registration with large error.

4.4 Computation of Optimal Transformations

This step computes the optimal transformation for each model contour c subject
to joint constraints. Let J denote a set of joints and x(cr , cs) ∈ J denote the
position where model contour cr and cs are connected to form a joint. The joint
constraint is satisfied if the penalty P is small:
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P =
∑

x(cr,cs)∈J

‖Tr(x(cr, cs)) − Ts(x(cr, cs))‖2 (8)

for some Tr ∈ Γ (cr) and Ts ∈ Γ (cs). The registration error R measures the
degree of match between the models and the edges in the image:

R =
M∑

r=1

∑
qj∈cr

‖Tr(qj) − g(qj)‖2 (9)

where M is the number of model contours and g(qj) is the closest edge point in
the image to qj . So, the optimal transformations of the models are obtained by
determining the optimal Tr from the set Γ (cr) of each model cr that together
minimize the total error E:

E = R + λ3P (10)

where λ3 is a weighting parameter. Fig. 3(a) shows a global alignment result.

5 Local Refinement

This stage deforms the globally aligned model contours to register to the fe-
murs in the image. It iteratively evolves a level set function under dynamic
directional gradient vector flow (DDGVF) [16] subject to statistical shape con-
straint. DDGVF is an extension of GVF that computes GVF in both the positive
and negative directions. It is originally proposed as an image force in the snake
framework. In our algorithm, it is incorporated into the level set framework.
When the level set function is evolving, only those edges having similar edge
directions as the zero level set will contribute to the GVF. This allows the final
zero level set to have the same edge point directions as the edges that attract it.

The shape constraint is incorporated into the level set function based on the
method in [17]. In each iteration, the level set function is updated according to
the linear combination of DDGVF, curvature and shape constraint as follows:

φ(t + 1) = φ(t) + α1F · ∇φ(t) + α2∇ · ∇φ(t)
|∇φ(t)| + α3(φ∗(t) − φ(t)) (11)

where F is the force produced by DDGVF, φ∗ is the maximum a posterori
(MAP) shape estimated based on the training samples, and αi are weighting
parameters. The evolution of the level set is guided by the DDGVF term, kept
smooth by the curvature term, and does not deform the shape too drastically.
A sample local alignment result is shown in Fig. 3(b).

6 Experiment and Discussion

An experiment was performed to evaluate the accuracy of the atlas-based algo-
rithm. The test set contained another 20 AP pelvis images of different patients,
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(a) (b)

Fig. 3. Sample results. (a) Global alignment result (red curve). (b) Segmented femur
(black region) after local refinement.

Table 1. Quantitative segmentation results

Image No. 1 2 3 4 5 6 7 8 9 10

RMSD 3.90 3.60 3.46 2.50 1.77 3.99 2.77 3.97 2.80 3.74

Image No. 11 12 13 14 15 16 17 18 19 20

RMSD 3.26 3.10 2.17 1.53 1.68 3.91 1.69 2.70 4.57 3.28

including both males and females. Test results show that on average, each femur
contains 7 consistent sets, and each set contains 2 edge segments. For pelvis, the
numbers are 7 and 3 respectively.

The root-mean-squared distances (RMSD) (in pixel) between the segmented
femur contours and the manually segmented ground truth were computed (Ta-
ble 1). The average RMSD is 3.02 with standard deviation of 0.90. Compared to
the image size of 534× 440, an error of 3 pixels can be considered very accurate.

The segmentation problem becomes very challenging if the femur bones to be
segmented are fractured. For minor (hairline) fractures, the proposed algorithm
can still work since the femurs’ shapes are unchanged. It is extremely difficult if fe-
murs to be segmented contain major fractures, i.e., not only the shapes but also the
topologies of femur contours can change. This problem requires further research.

7 Conclusion

This paper presents an atlas-based approach for automatic segmentation of femurs
in x-ray images. The atlas describes the femurs, the pelvis, and the joints that con-
nect them. A robust method globally aligns the atlas to the input image by gener-
ating multiple possible matches, and identifying the more likely candidates based
on consistent sets of edge segments. Level set method deforms the aligned atlas to
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extract detailed femur contours. Test results show that the proposed algorithm is
robust and accurate in segmenting the femur contours of different patients.
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