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Abstract. Determining dense correspondence between 3D skull mod-
els is a very important but difficult task due to the complexity of the
skulls. Non-rigid registration is at present the predominant approach for
dense correspondence. It registers a reference model to a target model
and then resamples the target according to the reference. Methods that
use manually marked corresponding landmarks are accurate, but manual
marking is tedious and potentially error prone. On the other hand, meth-
ods that automatically detect correspondence based on local geometric
features are sensitive to noise and outliers, which can adversely affect
their accuracy. This paper presents an automatic dense correspondence
method for skull models that combines the strengths of both approaches.
First, anatomical landmarks are automatically and accurately detected
to serve as hard constraints for non-rigid registration. They ensure that
the correspondence is anatomically consistent and accurate. Second, con-
trol points are sampled on the skull surfaces to serve as soft constraints
for non-rigid registration. They provide additional local shape constraints
for a closer match between the reference and the target. Test results show
that, by combining both approaches, our algorithm can achieve more ac-
curate automatic dense correspondence.
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1 Introduction

Determining dense correspondence between 3D mesh models is a very important
task in many applications such as remeshing, shape morphing, and construction
of active shape models. Among existing approaches for dense correspondence,
non-rigid registration is at present the predominant approach due to its flexibil-
ity. Non-rigid registration methods deform a reference mesh to match the target
mesh and resample the target by mapping reference mesh vertices to the tar-
get surface. They are typically preceded by rigid registration to globally align
the sizes, positions, and orientations of the meshes. Various deformable methods
have been used including energy minimization [11, 12], mass-spring model [15],
local affine transformations [1], trilinear transformation [2], graph and manifold
matching [20], octree-splines [6], and thin-plate spline (TPS) [4, 5, 7–10, 14, 18].



Most of these methods are demonstrated on models with simple surfaces such
as faces [8, 12, 20], human bodies [1, 15], knee ligaments [6], and lower jaws [2].
TPS is particularly effective for mesh models with highly complex surfaces such
as brain sulci [4], lumbar vertebrae [10], and skulls [5, 7, 9, 14, 18]. Skull models
are particularly complex because they have holes, missing teeth and bones, and
interior as well as exterior surfaces.

Like all non-rigid registration methods, TPS registration of skull models re-
quires known correspondence on the reference and the target, which can be
manually marked or automatically detected. The first approach manually marks
anatomical landmarks on the reference and the target [5, 9, 14], and uses the
landmarks as hard constraints in TPS registration. This approach is accurate,
but manual marking is tedious and potentially error prone. The second approach
automatically detects surface points on the reference mesh, which are mapped
to the target surface. These surface points can be randomly sampled points [7]
or distinctive feature points such as local curvature maximals [18], and they
serve as soft constraints in TPS registration. This approach is sensitive to noise,
outliers, and false correspondences. Turner et al. [18] apply multi-stage coarse-
to-fine method to reduce outliers, and forward (reference-to-target) and back-
ward (target-to-reference) registrations to reduce false correspondences. How-
ever, there is no guarantee that the correspondences detected anatomically are
consistent and accurate, despite the complexity of the method.

This paper presents an automatic dense correspondence algorithm for skull
models that combines the strengths of both approaches. First, anatomical land-
marks are automatically and accurately detected to serve as hard constraints
in TPS registration. They ensure anatomically consistent correspondence.
The number of such landmarks is expected to be small because automatic detec-
tion of anatomical landmarks is a very difficult task (Section 2). Second, control
points are sampled on skull surfaces to serve as soft constraints in TPS regis-
tration. They provide additional local shape constraints for a close matching
of reference and target surfaces. Compared to [18], our method also uses multi-
stage coarse-to-fine approach, except that our landmark detection algorithm is
based on anatomical definitions of landmarks, which ensures the correctness and
accuracy of the detected landmarks.

Quantitative evaluation of point correspondence is a challenging task. Most
works reported only qualitative results. The quantitative errors measured in [2,
8, 19] are non-rigid registration error instead of point correspondence error. This
paper proposes a method for measuring point correspondence error, and shows
that registration error is not necessarily correlated to correspondence error.

2 Automatic Craniometric Landmark Detection

In anatomy [16] and forensics [17], craniometric landmarks are feature points on
a skull that are used to define and measure skull shapes. Automatic detection
of craniometric landmarks is very difficult and challenging due to a form of
cyclic definition. Many craniometric landmarks are defined according to the three
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Fig. 1. Skull models and craniometric landmarks. (1) Reference model. (1a) Frankfurt
plane (FP) is the horizontal (red) plane and mid-sagittal plane (MSP) is the vertical
(green) plane. (1b–1d) Blue dots denote landmarks used for registration and yellow dots
denote Landmarks used for evaluation. (2) Detected registration landmarks (blue) and
50 control points (red) on two sample test targets.

anatomical orientations of the skull (Fig. 1(a)): lateral (left-right), anterior-
posterior (front-back), and superior-inferior (up-down). These orientations are
defined by the Frankfurt plane (FP) and the mid-sagittal plane (MSP), which
are in turn defined as the planes that pass through specific landmarks.

Our automatic landmark detection algorithm is an adaptation of our previous
work on automatic identification of FP and MSP [3]. It overcomes the cyclic
definition of craniometric landmarks by first mapping known landmarks on a
reference model to a target model, and then iteratively refining FP, MSP and
their landmarks on the target model. It can be summarized as follows:

Craniometric Landmark Detection Algorithm

1. Register a reference model with known landmarks to the target model.
2. Locate the landmarks on the target based on the registered reference and fit

FP and MSP to their landmarks on the target.
3. Repeat until convergence:

(a) Refine the locations of the FP landmarks on the target, and fit FP to
the refined FP landmarks.

(b) Refine the locations of the MSP landmarks on the target, and fit MSP
to the refined MSP landmarks, keeping it orthogonal to FP.

Step 1 registers the reference to the target using Fractional Iterative Closest
Point (FICP) [13], a variant of ICP robust to noise, outliers, and missing bones.



Like ICP, FICP iteratively computes the best similarity transformation (scaling,
rotation, and translation) that registers the reference to the target. The difference
is that in each iteration, FICP computes the transformation using only a subset
of reference points whose distances to the target model are the smallest.

After registration, Step 2 maps the landmarks on the reference to the target.
First, closest points on the target surface to the reference landmarks are identi-
fied. These closest points are the initial estimates of the landmarks on the target,
which may not be accurate due to shape variations among the skulls. Next, FP
and MSP are fitted to the initial estimates using PCA.

In Step 3, an elliptical landmark region R is identified around each initial
estimate. The orientation and size of R are empirically predefined. R varies for
different landmark according to the shape of the skull around the landmark.
These regions should be large enough to include the landmarks on the target
model. Accurate landmark locations are searched within the regions according
to their anatomical definitions. For example, the left and right porions (Pl, Pr
in Fig. 1) are the most lateral points of the roofs of the ear canals [16, 17]. After
refining FP landmarks in Step 3(a), FP is fitted to the refined FP landmarks.
Next, MSP landmarks are refined in Step 3(b) in a similar manner, and MSP is
fitted to the refined MSP landmarks, keeping it orthogonal to FP.

As Step 3 is iterated, the locations and orientations of FP and MSP are
refined by fitting to the landmarks, and the landmarks’ locations are refined
according to the refined FP and MSP. After the algorithm converges, accurate
craniometric landmarks are detected on the target model.

In addition to the landmarks on FP and MSP, other landmarks are also
detected (Fig. 1). These include points of extremum along the anatomical ori-
entations defined by FP and MSP. These landmarks are detected in a similar
manner as the FP and MSP landmarks, first by mapping known landmark re-
gions on the reference to the target, and then searching within the regions for
the landmarks according to their anatomical definitions. Test results show that
the average landmark detection error is 3.54 mm, which is very small compared
to the size of human skulls.

3 Dense Correspondence Algorithm

Our dense correspondence algorithm consists of the following stages:

1. Apply craniometric landmark detection algorithm on the target model.
2. Apply TPS to register the reference to the target with craniometric land-

marks as hard constraints.
3. Sample control points on reference surface and map them to target surface.
4. Apply TPS with craniometric landmarks as hard constraints and control

points as soft constraints.
5. Resample target surface by mapping reference mesh vertices to the target.

Stage 1 automatically detects craniometric landmarks on the target model. Af-
ter applying the landmark detection algorithm, the reference model is already
rigidly registered to the target model. Stage 2 applies TPS to perform coarse



registration with the accurately detected landmarks as hard constraints, which
ensure anatomically consistent correspondence. Stage 3 randomly selects
m reference mesh vertices with the large registration errors as the control points.
For each control point, a nearest point on the target surface within a fixed dis-
tance and with a sufficiently similar surface normal is selected as the correspond-
ing point. If a corresponding point that satisfies these criteria cannot be found,
then the control point is discarded. This approach renders the algorithm robust
to missing parts in the target skulls. Stage 4 performs another TPS registra-
tion with craniometric landmarks as hard constraints and control points as soft
constraints. These constraints ensure close matching of reference and target
surfaces while maintaining anatomically consistent correspondence. After TPS
registration, Stage 5 maps the reference mesh vertices to the target surface in
the same manner as mapping of control points in Stage 3.

4 Accuracy of Registration and Correspondence

Registration error ER measures the difference between the registered reference
surface and the target surface. It can be computed as the mean distance between
the reference mesh vertices vr

i and the nearest surface points vt
i on the target:

ER =

[

1

n

n
∑

i=1

‖vr
i − vt

i‖
2

]1/2

(1)

where n is the number of vertices. This is essentially the error measured in [2,
8, 19], although the actual formulations that they used differ slightly.

Correspondence error, on the other hand, should measure the error in com-
puting point correspondence. One possible formulation of correspondence error
is to measure the mean distance between the desired and actual corresponding
target points of reference mesh vertices. The desired corresponding point D(vr

i )
is the ground-truth marked by a human expert, whereas the actual correspond-
ing point C(vr

i ) is the one computed by dense correspondence algorithm. With
this formulation, the correspondence error EC can be computed as

EC =

[

1

n

n
∑

i=1

‖D(vr
i )− C(vr

i )‖
2

]1/2

(2)

In practice, it is impossible to manually mark the desired corresponding
points of reference mesh vertices accurately on the target mesh surface. An
alternative formulation is to measure the mean distance between the desired
and actual corresponding target landmarks of reference landmarks Mr

i :

EC =

[

1

l

l
∑

i=1

‖D(Mr
i )− C(Mr

i )‖
2

]1/2

(3)

where l is the number of evaluation landmarks. The desired target landmarks
are manually marked whereas the actual target landmarks are computed by



the dense correspondence algorithm. Given enough landmarks adequately dis-
tributed over the entire reference surface, Eq. 3 is a good approximation of Eq. 2.

5 Experiments and Discussions

11 skull models reconstructed from CT images were used in the tests. One of
them served as the reference model and the others were target models. For perfor-
mance comparison, the following methods were tested for dense correspondence:

1. ICP: ICP rigid registration with mesh vertices as corresponding points.
2. FICP: FICP rigid registration with mesh vertices as corresponding points.
3. CP-S: TPS registration with automatically detected control points as soft

constraints. This approach was adopted by [7].
4. LM-H: TPS registration with automatically detected craniometric landmarks

as hard constraints.
5. LM-S/CP-S: TPS registration with automatically detected craniometric land-

marks and control points as soft constraints. This approach is similar to the
method of [18], except [18] adopted a more elaborate multi-stage, coarse-to-
fine, and forward-backward registration scheme.

6. LM-H/CP-S: TPS registration with automatically detected craniometric
landmarks as hard constraints and control points as soft constraints. This is
our proposed algorithm.

7. MLM-H: TPS registration with manually marked craniometric landmarks as
hard constraints. This approach was adopted by [5, 9, 14].

These test cases were equivalent to our algorithm (Case 6) with different stages
and constraints omitted. All the TPS registrations were preceded by FICP. The
stiffness parameter for TPS soft constraints was set to 0.8 where the algorithms
generally performed well. 15 landmarks and 150 control points were used for
registration for Cases 3–6, and 30 landmarks for Case 7. More landmarks could
be used for Case 7 because they included landmarks that could be accurately
marked manually but not detected automatically. 28 other landmarks were used
for evaluation. Both registration error and correspondence error were measured.

Test results (Figure 2(a)) show that FICP is more robust than ICP in rigid
registration. The registration error of CP-S is smaller than those of LM-S/CP-S
and LM-H/CP-S, but its correspondence error is larger. This shows that low
registration error does not necessarily imply low correspondence error.

CP-S and LM-S/CP-S use only soft constraints, which are inadequate for en-
suring anatomically consistent correspondence. So, their correspondence errors
are larger than those of LM-H/CP-S, which also uses registration landmarks
as hard constraints. On the other hand, LM-H uses only landmarks, which are
insufficient for ensuring close matching of reference and target surfaces, though
consistent correspondence is somewhat achieved. So, its correspondence error
for registration landmarks ECR is very small, but its correspondence error for
evaluation landmarks ECE is large. LM-S/CP-S uses landmarks as soft con-
straints, which weakens the anatomical consistency of correspondence, though
close matching of reference and target surfaces is achieved. Using landmarks as



Algorithm ER ECR ECE

ICP 2.22 7.09 7.42

FICP 1.97 5.55 6.35

CP-S 1.64 4.15 5.81

LM-H 2.69 3.51 5.94

LM-S/CP-S 1.76 3.68 5.73

LM-H/CP-S 1.76 3.58 5.56

MLM-H 2.42 0.00 4.66
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Fig. 2. Quantitative evaluation. (a) ER: registration error. ECR, ECE : correspondence
errors for registration landmarks and evaluation landmarks, respectively. Units are in
mm. (b) Plots of ECE vs. c, number of control points.

hard constraints, our algorithm LM-H/CP-S ensures strong anatomically consis-
tent correspondence. Together with control points as soft constraints, it achieves
very low registration error and the lowest correspondence error for evaluation
landmarks ECE among the automatic methods (Cases 1–6).

MLM-H uses manually marked landmarks as hard constraints. So, it is not
surprising that it has the smallest correspondence errors. Interestingly, its regis-
tration error is quite large compared to the other methods. This is because some
parts of the skulls lack distinctive surface features for locating both registration
and evaluation landmarks (Fig. 1), where most of the registration errors occur.

To investigate the stability of our algorithm LM-H/CP-S, we tested it with
varying numbers of control points and two different sampling schemes that are
used by existing methods: low curvature [18] and large registration error [5].
Figure 2(b) shows that control points with large registration errors are more
effective than those with low curvatures in reducing correspondence error. Com-
pared to the accuracy of LM-H, which uses landmarks only, a small number of
control points can already improve correspondence accuracy significantly. After
sampling enough control points that cover various parts of the skulls, adding
more control points do not reduce correspondence error significantly. This is due
to the diminished quality of the additional control points.

6 Conclusions

This paper presents a multi-stage, coarse-to-fine automatic dense correspon-
dence algorithm for mesh models of skulls that combines two key features. First,
anatomical landmarks are automatically and accurately detected to serve as
hard constraints for non-rigid registration. They ensure anatomically consis-
tent correspondence. Second, control points are sampled on the skull surfaces
to serve as soft constraints for non-rigid registration. They provide additional
local shape constraints to ensure close matching of reference and target sur-
faces. Test results show that, by combining both approaches, our algorithm can



achieve more accurate automatic dense correspondence than other automatic
algorithms. Our test results also show that low registration error does not al-
ways imply low correspondence error. So, both error measures should be used in
conjunction to evaluate the accuracy of dense correspondence algorithms.
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1. B. Allen, B. Curless, and Z. Popović. The space of human body shapes: recon-
struction and parameterization from range scans. In Proc. SIGGRAPH, 2003.

2. M. Berar, M. Desvignes, G. Bailly, and Y. Payan. 3D meshes registration: Appli-
cation to statistical skull model. In Proc. Image Analysis and Recognition, 2004.

3. Y. Cheng, W. K. Leow, and T. C. Lim. Automatic identification of frankfurt plane
and mid-sagittal plane of skull. In Proc. WACV, 2012.

4. H. Chui and A. Rangarajan. A new algorithm for non-rigid point matching. In
Proc. CVPR, 2000.

5. Q. Deng, M. Zhou, W. Shui, Z. Wu, Y. Ji, and R. Bai. A novel skull registration
based on global and local deformations for craniofacial reconstruction. Forensic

Science International, 208:95–102, 2011.
6. M. Fleute and S. Lavallée. Building a complete surface model from sparse data

using statistical shape models: Application to computer assisted knee surgery. In
Proc. MICCAI, 1998.

7. Y. Hu, F. Duan, M. Zhou, Y. Sun, and B. Yin. Craniofacial reconstruction based on
a hierarchical dense deformable model. EURASIP Journal on Advances in Signal

Processing, 217:1–14, 2012.
8. T. J. Hutton, B. F. Buxton, and P. Hammond. Automated registration of 3D faces

using dense surface models. In Proc. BMVC, 2003.
9. R. J. A. Lapeer and R. W. Prager. 3D shape recovery of a newborn skull using

thin-plate splines. Computerized Medical Imaging & Graphics, 24(3):193–204, 2000.
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