
3D-2D Spatiotemporal Registration for Sports Motion Analysis

Ruixuan Wang, Wee Kheng Leow, Hon Wai Leong
Dept. of Computer Science, National University of Singapore, Computing 1, Singapore 117590

{wangruix, leowwk, leonghw}@comp.nus.edu.sg

Abstract

Computer systems are increasingly being used for sports
training. Existing sports training systems either require ex-
pensive 3D motion capture systems or do not provide intel-
ligent analysis of user’s sports motion. This paper presents
a framework for affordable and intelligent sports training
systems for general users that require only single camera to
record the user’s motion. Sports motion analysis is formu-
lated as a 3D-2D spatiotemporal motion registration prob-
lem. A novel algorithm is developed to perform spatiotem-
poral registration of the expert’s 3D reference motion and
a performer’s 2D input video, thereby computing the devi-
ation of the performer’s motion from the expert’s motion.
The algorithm can effectively handle ambiguous situations
in a single video such as depth ambiguity of body parts and
partial occlusion. Test results show that, despite using only
single video, the algorithm can compute 3D posture errors
that reflect the performer’s actual motion error.

1. Introduction

Computer systems are increasingly being used for sports
training. Two kinds of computer-aided sports training sys-
tems are commercially available: 3D motion-based systems
and 2D video-based systems. A 3D motion-based system
[20, 29] uses multiple cameras to track the motion of reflec-
tive markers attached to the performer’s body. The markers’
3D positions are recovered and used to compute the per-
former’s 3D motion, which can be analyzed by the coach or
compared with a 3D reference motion of an expert. Such a
system can provide accurate motion analysis. However, it
is very expensive and difficult to use for the general users.

A 2D video-based system [14, 21, 24, 28] captures the
performer’s motion using an off-the-shelf video camera and
loads the video into a computer system. The system dis-
plays the performer’s video and a pre-recorded expert’s
video side by side, and provides tools for the user to manu-
ally compare the performer’s motion with the expert’s mo-
tion. The system is affordable to general users. However, it
cannot perform detailed motion analysis automatically.

To overcome the shortcomings of existing systems, this
paper proposes a framework for affordable and intelligent
sports training systems for general users that require only
single stationary camera to record the user’s motion. Sports
motion analysis is formulated as a 3D-2D spatiotemporal
motion registration problem (Section 3). A novel algorithm
is developed to perform spatiotemporal matching of the 3D
reference motion of an expert and the 2D input video of
a performer, thereby computing the deviation of the per-
former’s motion from the expert’s motion (Sections 4–7).
The algorithm can effectively handle ambiguous situations
in single video such as depth ambiguity of body parts and
partial occlusion. It can be applied to analyze different types
of sports motion. Extensive test results show that the algo-
rithm can compute 3D posture errors that reflect the per-
former’s actual motion error using only single video.

In principle, videos of human motion can be recorded
by multiple cameras, which may remove depth ambiguity.
Nevertheless, we propose to work on the case of single-
video motion analysis, which is technically more chal-
lenging. Once the algorithm is developed, extending it to
multiple-video analysis would be a relatively simple task.
To our best knowledge, this is the first attempt at automatic
computer analysis of 3D sports motion in a single video.

2. Related Work

Our 3D-2D spatiotemporal registration problem for
sports motion analysis is closely related to several known
research topics, namely human body tracking, human pos-
ture estimation, and video sequence alignment. However,
there are fundamental differences between them. Human
body tracking [3, 19, 23], in general, performs spatial
matching between consecutive images in the input sequence
without using 3D reference motion. Human posture estima-
tion infers the 2D or 3D body posture from single or multi-
ple images without solving temporal correspondence. Hu-
man body tracking methods often apply human posture es-
timation techniques [13, 22, 27]. Video sequence alignment
[4, 16] solves for the temporal correspondence between two
sequences without posture matching and 3D motion infor-
mation. Our proposed problem involves both temporal cor-
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respondence and posture matching, which is much more
complex than the related problems. In the following, ex-
isting work in the most related area, human posture estima-
tion, is discussed in more detail.

Two general approaches exist for solving human posture
estimation problem: model-free and model-based. Model-
free approach does not use explicit human body model. One
method is to train a nonlinear mapping function to map from
image features to body postures [1, 6, 13, 27]. The other
method is to store a set of exemplar images with known
3D postures, and estimate the posture in the input image
by searching for the exemplar that is most similar to the
input image [2, 8, 18]. These methods are useful only for a
small set of body postures due to the complexity of human
postures. They can recover only the body postures that are
similar to those in the training images and exemplars.

Model-based approach estimates body posture by syn-
thesizing possible postures from a model and matching
them to the input images. Within this approach, continu-
ous methods use continuous optimization algorithms to ef-
ficiently find locally optimal posture estimates [22]. They
cannot guarantee that the solutions are globally optimal.

Probabilistic methods, which include particle filtering
(CONDENSATION), Markov Chain Monte Carlo, and Be-
lief Propagation, use sampling techniques to estimate body
postures [5, 12, 15, 26]. With enough samples, these meth-
ods can potentially obtain the globally optimal solution.
The main difficulty of these methods is to search a very
high-dimensional space for the globally optimal solution.
To tackle this problem, Belief Propagation (BP) methods
decompose the high-dimensional search problem into a set
of low-dimensional problems by estimating the pose of each
body part individually [15, 26]. BP method is adapted and
extended in our algorithm framework.

3. Problem Formulation

To clearly describe the problem, it is necessary to first
describe the inputs of the problem, which consist of 3D ref-
erence motion of the expert and 2D input video of the per-
former (Section 3.1), and the complex relationships (Sec-
tion 3.2) between them.

The 3D reference motion of the expert includes:

1. Time-independent component: human body model
The human body model H consists of a hierarchical
skeleton model of bones and joints, and a triangular
mesh model for the shapes of the body parts.

2. Time-dependent component: 3D motion data
The 3D motion data comprises a temporal sequence of

global positions pt of human body in the world coor-
dinate system, and joint angles θt of the body parts.
These data define the reference posture (Fig. 2(c)) at
time t denoted as Bt, i.e., pt,θt ∈ Bt. The sequence
M of Bt, t = 0, . . . , L, together with the human body
model H , defines the 3D reference motion, which is
assumed to be retargetted to the performer’s body in
the input video using, e.g., the algorithm in [7].

The motion m′ of a performer is captured in the input
video, which consists of a sequence of image frames I ′t′
(Fig. 2(a)) over time t′ = 0, . . . , L′. Typically, L′ < L
because video camera has a lower sampling rate than 3D
motion capture system. Each input image I ′t′ contains the
image of a performer generated by the projection of an un-
known performer’s posture B′

t′ onto the image plane. The
human body region S′

t′ in image I ′t′ is separated from the
background using automatic segmentation and skin color
detection algorithms [11, 17] (Fig. 2(b)). Note that in a sin-
gle camera view, depth ambiguity of body parts and self-
occlusion can occur.

There are many complex spatiotemporal relationships
between the 3D reference motion and the 2D input video.
Three major relationships are highlighted below.

1. Temporal Difference: The performer’s motion can dif-
fer from the expert’s motion in terms of execution
speed. So, a temporal correspondence C needs to be
established from 2D video time t′ to 3D motion time
t, i.e., C(t′) is a particular t that corresponds to t′. C
should satisfy the temporal order constraint: for any
two postures in the performer’s motion, the two cor-
responding postures in the reference motion have the
same temporal order. Without loss of generality, it is
assumed that C(0) = 0 and C(L′) = L.

2. Spatial Difference: The performer’s (unknown) pos-
ture B′

t′ can differ from the expert’s posture BC(t′) at
the corresponding time frame by a global rigid trans-
formation T and a joint articulation A, i.e., B′

t′ =
At′(Tt′(BC(t′))). In the algorithm, B′

t′ is inferred by
registering the projection P of At′(Tt′(BC(t′))) to the
input body region S′

t′ in image I ′t′ . Then, the posture
error εt′ is naturally captured in At′ and Tt′ .

3. Smooth Motion: The posture error εt′ can be large
when the performer’s motion differs significantly from
the reference motion. Nevertheless, the rate of change
of posture errors should remain small because the mo-
tion of interest is smooth. That is, Δεt′/Δt′ is small.



Now, we can formulate the problem of spatiotemporal
registration for sports motion analysis as follows:

Given the reference motion M = {Bt} and the
input motion m′ = {S′

t′}, determine the tempo-
ral correspondence C, projection P , rigid trans-
formation Tt′ , and join articulation At′ that mini-
mize the errors ES and ED:

ES =
1

L′ + 1

∑
t′

dS(P (At′(Tt′(BC(t′)))), S′
t′), (1)

ED =
1

L′ + 1

∑
t′

εt′ . (2)

ES is the registration error, where dS is an appropriate dif-
ference measure. The total posture error ED is minimized
to capture the idea of computing the minimum correction
required by the performer to match the expert’s motion.

The minimization of ES and ED is subjected to the fol-
lowing constraints:

A. Joint angle limit. The valid angle between two con-
nected body parts is physically limited to certain ranges.

B. Temporal order constraint. For any t′1 and t′2 such that
t′1 < t′2, C(t′1) < C(t′2).

C. Small rate of change of posture errors. For each t′,
Δεt′/Δt′ is small.

4. Spatiotemporal Registration Framework

It is infeasible to directly solve the proposed problem,
which is a very complex high-dimensional optimization
problem with long time sequence. So, it is decomposed into
four subproblems and solved in the following stages:

1. Estimation of camera projection P .
This stage can be performed using standard calibration
algorithm. So, it is omitted in this paper.

2. Estimation of approximate temporal correspondence
C and rigid transformation T .
Determine initial estimates of C and Tt′ that minimize
the error EC subject to Constraint B:

EC =
1

L′ + 1

L′∑
t′=0

dS(P (Tt′(BC(t′))), S′
t′) , (3)

Joint articulation At′ is omitted in this stage.

3. Estimation of posture candidates.
Due to depth ambiguity, multiple postures can match

an input body region in the image. So, this stage deter-
mines, for each t′, multiple At′l and Tt′l that minimize
the error Et′ subject to Constraint A:

Et′ = dS(P (At′l(Tt′l(BC(t′)))), S′
t′) . (4)

The approximate C estimated in the previous stage
is used to identify approximate corresponding refer-
ence posture BC(t′), which is transformed by At′l
and Tt′l to match the input body region S′

t′ . This
approach avoids the accumulation of estimation error
over time, which is present in many human body track-
ing methods. The resulting Bt′ = {B′

t′l}, where B′
t′l =

At′l(Tt′l(BC(t′))), is the set of posture candidates that
match S′

t′ well.

4. Candidate selection and refinement of estimates.
Select the best posture candidate B′

t′ from Bt′ and de-
termine the C that together minimize ED subject to
Constraints B and C. After finding the best B′

t′ , pos-
ture error can be computed as the difference between
B′

t′ and the corresponding BC(t′).

The algorithms for Stages 2, 3, and 4 are discussed in the
following sections.

5. Estimation of Temporal Correspondence

This stage estimates approximate temporal correspon-
dence C and transformation T using dynamic programming
(DP). Actually, DP is guaranteed to produce globally opti-
mal solution. However, the optimal solution at this stage
is not globally optimal for the whole problem because ar-
ticulation is omitted. So, the temporal correspondence esti-
mated at this stage is only an approximation.

Let d(t′, C(t′)) denote dS(P (Tt′(BC(t′))), S′
t′). The

task is to determine C by minimizing EC :

EC =
1

L′ + 1

L′∑
t′=0

d(t′, C(t′)) (5)

subject to temporal order constraint. Given a particular C,
Tt′ at each time t′ is determined using sampling technique.
The DP problem is formulated as follows.

Let D denote a (L′+1)×(L+1) correspondence matrix.
Each matrix element at (t′, t) represents the possible frame
correspondence between t′ and t, and the correspondence
cost is d(t′, t). A path in D is a sequence of frame corre-
spondences for t′ = 0, . . . , L′ such that each t′ has a unique
corresponding t = C(t′), with C(0) = 0 and C(L′) = L.
The cost of a path is the sum of the correspondence costs
over all t′, and the average path cost is EC . The problem is
to find the least cost path on which EC is minimized.

The least cost path can be efficiently found by making
use of the temporal order constraint. Suppose the frame pair
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Figure 1. Approximate and refined temporal correspondence C.

(t′, t) is on the least cost path. Then, the possible previous
frame pair should be one of (t′ − 1, t − 1 − i) for i =
0, . . . , w. The temporal window size w is defined as kL/L′

for a small k ≥ 1. k is small because the change of posture
error between the pair of corresponding frames over time is
small (Section 3.2). The least cost path from the first frame
pair (0, 0) to the current pair (t′, t) can be determined by
recursively computing the least cost path from (0, 0) to one
of (t′ − 1, t − 1 − i), i = 0, . . . , w.

Let D(t′, t) denote the least cost from frame pair (0, 0)
up to (t′, t) on the least cost path, and D(0, 0) = d(0, 0).
Then D(L′, L) can be recursively computed as follows:

D(t′, t) = d(t′, t) +
w

min
i=0

D(t′ − 1, t − 1 − i) (6)

Once D(L′, L) is computed, the least cost path is obtained
by tracing back the path from D(L′, L) to D(0, 0). The
least cost path gives the correspondence C (Fig. 1).

6. Estimation of Posture Candidates

Posture candidates are estimated using an extension of
Belief Propagation (BP) [9, 10, 15, 25, 26]. The algo-
rithm uses the approximate temporal correspondence C es-
timated in the previous stage to identify approximate cor-
responding reference posture BC(t′) at time t′ (Fig. 2(c)).
Then, BP uses BC(t′) as an initial estimate to search for
the posture candidates that match the input body region S′

t′

(Fig. 2(b)), thereby determining the candidate articulations
At′l and rigid transformations Tt′l. First, let us briefly de-
scribe BP.

Let p(B′|S′) denote the probability that B′ is a good
posture candidate given input body region S′. Then, pos-
ture candidate estimation is to find B′ with large p(B′|S′).
Denote the pose of body part i as bi, i.e., B′ = {bi}. In-
stead of computing p(B′|S′) directly, BP iteratively com-

putes p(bi|S′) for each body part i using these equations:

p(bi|S′) ∝ φ(bi, S
′)

∏
j∈Γ(i)

mji(bi) (7)

mji(bi) ∝
∫

φ(bj , S
′) ψ(bj , bi)

∏
k∈Γ(j)\i

mkj(bj) dbj (8)

where Γ(i) is the set of body parts connected to body part
i, and mji(bi) is the contribution of body part j to the pose
bi of body part i. To compute mji(bi) and p(bi|S′), the
functions φ(bi, S

′) and ψ(bi, bj) need to be defined.
The similarity function φ(bi, S

′) measures the degree of
match between S′ and body part i at pose bi. Each body part
at pose bi computed in the current iteration is projected and
rendered, together with all other body parts whose poses
are obtained in the previous iteration, to produce the pro-
jected body region S. Then, the similarity is computed
as φ(bi, S

′) = exp (−dS(S, S′)). dS(S, S′) is defined in
terms of the amount of overlap between S and S′, and the
matching of their region edges, which allows the algorithm
to handle partial self-occlusion of body parts. In compar-
ison, the original BP [26] measures similarity using only
region overlap between the projection of a single body part
and the entire input body region. Therefore, it cannot han-
dle partial self-occlusion of body parts.

The joint constraint function ψ(bi, bj) enforces joint
constraint and joint angle constraint between two connected
body parts i and j. The joint constraint states that two
neighboring body parts should be connected at the joint.
Let xi and xj denote the 3D positions of the points on body
parts i and j that connect to form a joint. When body parts
i and j adopt poses bi and bj , the degree of satisfaction
of joint constraint is measured by exp(−‖xi − xj‖2/σ2),
where σ is a positive parameter.

The joint angle constraint ensures that the angle be-
tween two connected body parts i and j falls within phys-
ical limit. The degree of satisfaction of joint angle con-
straint is measured by J(bi, bj), which is 1 when the joint
angle is within limit, and a smaller constant a otherwise.
Combining the two constraints, we obtain ψ(bi, bj) =
J(bi, bj) exp(−‖xi − xj‖2/σ2).

The parameters σ and a decrease over iteration. At the
first few iterations, the pose estimate of each body part may
be far from the actual pose. So the constraints are loosely
enforced initially to ensure that the correct poses can be in-
cluded. Gradually, the pose estimate of each body part is
expected to become more similar to the actual pose, and
therefore the constraints should become more strict.

In practice, evaluation of the integral in Equ. 8 is of-
ten intractable with continuous state variable bi. So, non-
parametric sampling technique similar to Belief Propaga-
tion Monte Carlo [9] is adopted to compute mji(bi).

The BP algorithm described above estimates only the
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Figure 2. Estimation of posture candidates. (a) Input image. (b) Input body regions. (c) Approximate corresponding reference posture. (d,
e) The projections of pose samples of each body part after the 1st and 30th iterations. (f) Posture candidate overlapped onto input image.
(g, h) Frontal and side views of all posture candidates. Different pose samples and posture candidates are colored with different colors.

pose samples of each body part (Fig. 2(d, e)). These pose
samples are used to generate posture candidates as follows.
The first posture candidate is computed such that each body
part has the same depth orientation as that in the corre-
sponding reference posture, and its projection matches the
mean of its pose samples (Fig. 2(f)). Then, based on the
first posture candidate, flip the depth orientation of n body
parts about their parent joints, starting with n = 1, while
keeping the body parts connected at the joints. This step is
repeated for n = 1, 2, . . . , until enough posture candidates
are generated. These posture candidates have exactly the
same frontal projection (Figure 2(g)) but different side pro-
jections (Figure 2(h)). Therefore, they capture all possible
depth ambiguities in the image of a single camera view.

7. Refinement of Estimates

This stage selects the best posture candidate at each t′

that minimize the error ED (Eq. 2), and simultaneously re-
fines the temporal correspondence C. Let �(t′) denote the
index of the best posture candidate at t′. Then, the problem
is to determine the � and C that minimize ED subject to
Constraints B and C. Constraint C, i.e., small rate of change
of posture errors, can be incorporated into ED to obtain EF :

EF =
1
L′

L′∑
t′=0

[dc(t′, C(t′), �(t′))

+λ ds(t′, C(t′), C(t′ − 1), �(t′), �(t′ − 1))],

(9)

where λ is a weighting factor. The difference dc is ob-
tained from ED, i.e., dc(t′, t, l′) = εt′ = dB(Bt, B

′
t′l′).

dB is the posture error between the posture candidate B′
t′l′

and the reference posture Bt, which is defined as the mean
orientation difference of all the body parts in the postures.
The difference ds(t′, t, s, l′, k′) measures the change of pos-
ture errors between two pairs of corresponding postures
(B′

t′l′ , Bt) and (B′
t′−1,k′ , Bs):

ds(t′, t, s, l′, k′) = [dB(Bt, B
′
t′l′) − dB(Bs, B

′
t′−1,k′)]2 .

(10)

DP technique similar to that in Section 5 is developed to
determine the optimal �(t′) and C(t′). In this case, the cor-
respondence matrix D is a (L′ + 1)×(L + 1)×NB matrix,
where NB is the maximum number of posture candidates at
each t′. Each matrix element at (t′, t, l′) represents the pos-
sible correspondence between posture candidate B′

t′l′ and
reference posture Bt. The correspondence cost consists of
two terms: dc(t′, t, l′) and ds(t′, t, s, l′, k′). A path in D is
a sequence of correspondences for t′ = 0, . . . , L′ such that
each t′ has a unique corresponding t = C(t′) and l′ = �(t′).
The cost of a path is the sum of the correspondence costs
over all t′, and the average path cost is EF . The problem is
to find the least cost path on which EF is minimized.

Let D(t′, t, l′) denote the least cost from the triplet
(0, 0, �(0)) up to (t′, t, l′) on the least cost path, and
D(0, 0, �(0)) = dc(0, 0, �(0)). Then, by a similar reasoning
as illustrated in Section 5, D(L′, L, �(L′)) can be computed
recursively using the formulae

D(t′, t, �(t′)) = min
l′

D(t′, t, l′) (11)

�(t′) = arg min
l′

D(t′, t, l′) (12)

D(t′, t, l′) = dc(t′, t, l′) + min
i,k′

{D(t′ − 1, t − 1 − i, k′)

+ ds(t′, t, t − 1 − i, l′, k′)}. (13)

Once D(L′, L, �(L′)) is computed, the least cost path is
obtained by tracing back the path from D(L′, L, �(L′)) to
D(0, 0, �(0)). Test result in Fig. 1 shows that the globally
optimal C is not a linear function.

8. Experiments and Discussions

Due to the unavailability of ground truth data of the per-
former’s motion, it is impossible to directly measure the ac-
curacy of the whole spatiotemporal registration algorithm.
Even if a 3D motion capture system is available, the ac-
quisition of the performer’s 3D motion still requires great
skills and experience in order to minimize human error dur-
ing the capture process. Instead, we split the test into two



phases. First, synthetic data were used to assess the accu-
racy of the posture candidate estimation algorithm. The test
results gave an estimate of the algorithmic error in estimat-
ing the performer’s actual 3D postures from 2D input im-
ages. Next, the whole spatiotemporal registration algorithm
was tested on real data to measure the performer’s posture
error. As long as the measured error is significantly greater
than the algorithmic error, we are confident that the mea-
sured error reliably reflects the actual posture error of the
performer. Two sets of motion sequences were used for the
tests: (1) 3D Taichi reference motion with 2250 reference
postures and input video with 339 input images, and (2) 3D
golf swing motion with 250 reference postures and input
video with 51 input images.

In this test, synthetic test data were generated as fol-
lows. 110 reference postures were selected at regular in-
tervals from the 3D Taichi sequence. Each selected 3D pos-
ture was mapped to an articulated 3D human model, which
was projected to obtain a synthetic input image. The 3D
reference posture served as the ground-truth of the input
image. Next, the joint angles of the ground-truth posture
were changed by random values in the range [−20◦,+20◦]
to generate a new posture to serve as the initial posture for
the posture candidate estimation algorithm. This approach
was adopted to emulate the real application situation that the
actual performer’s posture may differ from the initial pos-
ture estimate. Note that some of the synthetic input images
generated contained self-occlusion and depth ambiguity.

The posture candidate estimation algorithm was exe-
cuted to generate posture candidates that best match the syn-
thetic input images. Among the posture candidates, there is
one best candidate that is most similar to the ground truth.
For the algorithm to be accurate, the posture error between
the best candidate and the ground truth should be small.

Figure 3 shows that the algorithmic error ranges from 2◦

to 15◦, with a mean of 7◦ and a standard deviation of 2.6◦.
The larger errors occur in the input images with total oc-
clusion of some body parts. For the other input images, the
errors are mainly due to depth ambiguity of body parts. In
our test, a body part of length 30cm parallel to the image
plane measures about 36 pixels in the image, and the length
of the body part in the image changes by only one pixel
when the body part is rotated by 14◦ in depth. Therefore,
a mean error of 7◦ is reasonable and acceptable for an al-
gorithm that uses a single camera view. The accuracy can
be further improved using images with larger resolution or
sub-pixel algorithm, which will take more time.

In this test, the spatiotemporal registration algorithm was
executed on the Taichi sequence and the golf sequence.
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Figure 3. Algorithmic error in estimating performer’s posture.
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Figure 4. Computed posture error for (a) Taichi motion and (b)
golf swing. Dashed lines indicate the expected algorithmic error.

Then, the posture error between the selected best pos-
ture candidate and the corresponding reference posture was
computed for each input image in the motion sequences.

Figure 4 illustrates the computed errors for the two se-
quences. As discussed in the previous section, the algorithm
has a mean error of 7◦ (solid line in Fig. 4) in estimating
postures in synthetic data. For real images, this algorithmic
error is expected to be larger, say the mean error plus the
standard deviation (dashed line in Fig. 4). The computed
error includes both algorithmic error and performer’s actual
posture error. Since the algorithmic error is small compared
to the computed error, there is high confidence that the com-
puted error indeed reflects the performer’s error.

Figure 4(a) shows that the computed posture errors are
relatively small in most of the first 100 frames compared to
the later frames. This is reasonable because the performer
started from a standard standing posture which was easy to
perform correctly. As the performer moved on to the more
difficult postures, more error were made.

Figure 5 shows sample results of the Taichi sequence
with small posture errors. The selected posture candidates
are similar to the corresponding reference postures. The
depth orientations of the body parts in the selected posture
candidates are the same as those in the performer’s postures
in the input images. These results qualitatively verifies that
the algorithm can select the best posture candidates.

Figure 6 shows sample results of the Taichi sequence
with larger posture errors. Comparing the best posture can-
didates selected by the algorithm (blue) and the correspond-
ing reference postures (green), there are large errors in the



Figure 5. Sample postures in Taichi sequence with small errors.
First row: input images with the selected posture candidates over-
laid. Second and third rows: selected posture candidates (blue
skeleton) overlapped with the corresponding reference postures
(green skeleton) in the frontal and oblique views.

Figure 6. Sample postures in Taichi sequence with larger errors.

poses of the performer’s arms. It shows that the algorithm
can indeed identify errors in the performer’s postures.

Figure 7 illustrates sample results of the golf swing se-
quence. Similar to the Taichi case, the performer made less
error at the beginning of the swing and larger error later on

Figure 7. Sample postures in golf swing sequence.

in the swing, which is verified in Figure 7. The depth orien-
tations of body parts in the selected posture candidates are
the same as those in the performer’s posture in the input im-
ages. These results verify that the algorithm be applied to
the analysis of different types of sports motion.

Figure 8 shows sample test results of the Taichi sequence
under ambiguous conditions. Depth ambiguity exists in all
the images and self-occlusion of the right arm exists in the
last three images. Nevertheless, the algorithm can still in-
fer the pose of the occluded body part when the performer’s
posture does not differ greatly from the reference posture.
That is, the algorithm is robust against depth ambiguity and
self-occlusion. Of course, when the pose of the totally oc-
cluded body part differs significantly from that in the refer-
ence posture, no information will exist in a single camera
view for the algorithm to infer the actual pose.

9. Conclusions

This paper proposes a novel and fundamental problem
for sports motion analysis: 3D-2D spatiotemporal motion
registration. Since it is infeasible to directly solve such
a complex problem, this paper presents a framework that
decomposes the problem into four subproblems, which are
solved in stages. By using reference postures as initial pos-
tures to estimate possible posture candidates in the input
images, the algorithm avoids the accumulation of estima-
tion error over time. Moreover, the algorithm seeks to com-
pute the smallest amount of correction required by the per-



Figure 8. Selected best postures under ambiguous conditions.
(Row 3) The first two images show the side views of selected pos-
ture candidates, and the last three show the frontal oblique views.
Each bone is marked with a unique color for easy identification.

former to match the reference motion. Comprehensive tests
were performed to evaluate the performance of the algo-
rithms. Test results show that the computed errors are sig-
nificantly larger than the expected algorithmic errors when
performer’s errors occur. This indicates that there is high
confidence that the computed errors indeed reflect the per-
former’s errors. In addition, the algorithm can handle depth
ambiguity and partial self-occlusion of body parts. In the
case of total self-occlusion, the algorithm can infer the pose
of the occluded body part if the performer’s posture does not
differ greatly from the reference posture. The algorithm can
also be applied to analyze different types of sports motion.
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