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ABSTRACT

Research on digital analysis of painting images has received very
little attention. The exact nature of scientific methods seems to be
antithesis of art. Nevertheless, several papers have proposed meth-
ods to bridge this gap and have obtained interesting results. In fact,
some art theorists have pointed out the usefulness of specific quan-
tifiable features in the paintings. This paper presents a method for
identifying painters using color profiles of skin patches in paint-
ing images. Various color models for representing the color pro-
files were explored. Various implementations of multi-class Sup-
port Vector Machine classifiers were compared. We found that a
weighted combination of several Directed Acyclic Graph SVMs
with Gaussian kernels gives the best classification performance.

1. INTRODUCTION

Art theorists often classify a painting based on a set of attributes
called painting style. These attributes include the physical visual
attributes in the paintings and the context of the painting — the
artist, the creation date and the geographical location. In short,
an artistic style is a combination of iconographic, technical and
compositional features that give a work its character and allows it
to be attributed to a particular school or period [1].

Research on digital analysis of painting images has received
very little attention. The exact nature of scientific methods seems
to be antithesis of art. Nevertheless, several papers have proposed
methods to bridge this gap and have obtained interesting results.
In fact, some art theorists themselves have pointed out the use-
fulness of specific quantifiable features in the paintings. Looking
at the paintings systematically, two general types of features can
be identified, namely syntactic and semantic features. Syntactic
features include color, texture, composition and brush strokes. Se-
mantic features include iconography, theme and subject matter.

Sablatnig [2] has proposed a painting classification method
using brush strokes and face detection for paintings of portraits.
Unfortunately, only qualitative results are mentioned in the pa-
per. Herik and Postma [3] presented a comprehensive experiment
on painting classification using neural network on many features.
With a set of 60 paintings of 6 impressionist and neo-impressionist
painters, they achieved an accuracy of 0.85 in identifying the painters.

From the point of view of painting art, form and color consti-
tute the main plastic means by which a painter paints. Painters use
colors which come principally from mineral and vegetable extracts
and manufactured salts. Each color has its own characteristics and
properties. What colors are present in a painting depend therefore
not only on the colors present in the subject, but also partly on the

ability of the painter to realize the full potential of his material [4,
p. 67]. Moreover, a painter decides on what colors he wants to use
from those available to him. Unconsciously, a painter may have
preferences for certain colors; consciously, he may choose col-
ors according to some conventional rules, which the art historian
Baxandall calls values of colors [5, pp. 81–85].

In addition, Baxandall suggested using relief (rilievo) to cate-
gorize paintings from the fifteenth century Italy [5, p. 121]. Rilievo
is described by Alberti as “the appearance of a form modelled in
the round, attained by the skilful and discreet treatment of the tones
of its surface: ‘...light and shade make real things appear to us in
relief’”.

The above considerations motivate us to examine the possi-
bility of identifying the painters based on color relief. Instead of
looking at global features of paintings, such as those of Herik and
Postma [3], our method examines local features, specifically the
color relief of skin patches in painting images. In our method,
color relief of skin patches is modelled as color profiles, which are
the distributions of colors in the lateral profiles of the skin patches.

2. CLASSIFICATION OF SKIN PACTHES

2.1. Feature Extraction

Our method of extracting color profile features consists of 4 main
steps (Fig. 1):

1. Skin Patches Extraction
The relief of skin patches manifests as a transition from
shadow to highlights. For consistency, we gather skin patches
with incoming light falling on them at approximately 45–
60 degrees incident angles. These skin patches are found in
the limbs (arms and legs) of human figures in paintings. All
patches are aligned by rotating them such that the light-to-
dark transition is parallel to the vertical axis of the images
Fig. 1(a). The non-skin portions are discarded. After align-
ment and cleaning, each column of the extracted image cor-
responds to a profile across the limb.

2. Profile Curves Extraction
Each column of the aligned image is separated into three
color channels. All columns of the same color channel are
gathered to form the profile curves, one curve for each col-
umn (Fig. 1(b)). All values in each channel are normalized
to the range of [0, 1].

3. Length-Normalization of Profile Curves
Each profile curve that comes in a different length is nor-
malized to 100 points long (Fig. 1(c)) using cubic spline
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Fig. 1. Color profiles extraction. (a) Aligned image of a skin patch. (b) Extracted profile curves of a color channel, one curve for each
column. (c) Normalized profile curves. (d) Averaged profile curve.

interpolation [6]. This is an expansion of the original data
points, hence information loss is avoided.

4. Profile Curves Averaging
Finally, the normalized profile curves are averaged to form
a single averaged profile curve for each color channel (Fig.
1(d)). This profile curve, which contains 100 data points,
will be used as the feature vector for SVM classification.

2.2. Multi-Class Support Vector Machine Classifiers

Support Vector Machine (SVM) for binary, i.e., 2-class, pattern
classification problems has been well studied. It performs well
compared to other learning methods [7]. Chapelle tested SVM
for histogram-based image classification and obtained good results
[8].

Classification using SVM is achieved by constructing an op-
timal separating hyperplane between two classes of samples. It
maximizes the margin of separation ‖2/w‖ and minimizes the
upper bound of classification error. In applying SVM to pattern
recognition problems, a non-linear mapping is chosen a priori to
map input vectors into high-dimensional feature space where the
optimal hyperplane is constructed. SVM is stated as quadratic op-
timization problem:

L(w, ξ) =
1

2
w

T
w + C

N∑

i=1

ξi (1)

with following constraints: yi(w
T φ(xi)+b) ≥ 1−ξi and ξi ≥ 0.

The optimal hyperplane is given by w. C is the regularization
parameter and φ is the mapping function whose dot product forms
the kernel function.

In real world pattern recognition problems, the number of classes
is usually more than two. Several approaches have been developed
to tackle multi-class pattern classification problems using SVM.
Hsu and Lin [9] presented a comprehensive comparison of many
multi-class SVM methods. They can be divided into two main
approaches:

• The first approach considers all classes directly at once and
solving one optimization problem [10, 11].

• The second approach combines several binary classifiers to
form a multi-class classifier. There are several methods in
this approach: (i) one-vs-rest SVM, (ii) one-vs-one SVM
[12, 13], (iii) SVM with Error Correcting Output Code [14]
and (iv) Directed Acyclic Graph SVM [15].

One-vs-rest SVM is the simplest k-class SVM method. It uses
k binary SVMs and each SVM is trained with class-i samples as
the positive samples and the remainder as the negative samples.
The final assigned class is given by the binary SVM with the high-
est output.

One-vs-one SVM [12, 13] constructs a set of binary SVMs for
all possible pairs of classes. Each SVM will be trained with sam-
ples from the two corresponding classes. To determine the final
assigned class, Knerr [12] suggested combining the SVMs results
using an AND gate. Friedman [13] suggested a Max Wins algo-
rithm. Each classifier contributes one vote to its preferred class,
and the final class is the one with the highest vote. Kreßel [16]
presented excellent results on the Max Wins strategy.

Error Correcting Output Code (ECOC) [14] was proposed as a
general method to expand a multi-class classifier into many binary
classifiers. Each class is assigned a “codeword” that consists of
binary digits. The length of the codeword corresponds to the num-
ber of binary classifiers. The codewords from all classes form a
matrix that is used to assign the training samples to the classifiers.
The final assigned class is the one with the closest codeword to the
codeword formed by concatenating the binary classifiers’ outputs.

Platt et al. [15] suggested a method called Directed Acyclic
Graph Support Vector Machine (DAGSVM) which has a bound on
generalization error, a property that other multi-class methods do
not have. DAGSVM uses the same training algorithm as the one-
versus-one method. However, in the classification part, DAGSVM
uses a rooted binary directed acyclic graph which has k(k − 1)/2
internal nodes and k leaves. To classifiy a sample, the binary deci-
sion function in each node is evaluated, starting with the root node
and traversing down to a leaf node, which gives the final class.

Weston and Watkins [10] proposed a method that consider all
classes at once. They concluded that this method does not out-
perform one-vs-rest and one-vs-one although there is a slight im-
provement. Crammer and Singer [11] also used a similar approach
and achieved a lower error rate than the one-vs-rest method.

Hsu and Lin [9] presented a test result showing that DAGSVM
and one-vs-one SVM are more practical than other methods. Platt
[15] presented a result that suggests that DAGSVM performs slightly
better or at least the same compared to one-vs-rest and one-vs-one.

3. EXPERIMENTS AND RESULTS

3.1. Painting Data Set

The painting images are taken from Artchive
(http://www.artchive.com) and Web Gallery of Art



Table 1. Single-channel classification results. Bold face represents the best performance for a channel among the 3 SVM methods.
Channel R G B H S V H S I H S L L∗ a∗ b∗

DAG 0.57 0.67 0.62 0.74 0.61 0.57 0.74 0.62 0.67 0.74 0.61 0.68 0.63 0.75 0.62
1-vs-1 0.56 0.64 0.56 0.70 0.61 0.56 0.71 0.59 0.58 0.70 0.55 0.60 0.56 0.73 0.63
ECOC 0.42 0.49 0.54 0.64 0.38 0.43 0.68 0.58 0.60 0.64 0.53 0.61 0.41 0.75 0.46

(http://gallery.euroweb.hu) web sites. These images
are well-prepared and the quality is quite consistent and reasonable
compared to other art web sites. By using these images, we can
minimize the distortion of colors in the digitization process.

Since the features come from skin patches, we focus on nude
and semi-nude paintings mostly from the Classicism and Renais-
sance eras. Paintings of 4 painters were chosen: Peter Paul Rubens
(Flemish-Dutch Baroque), Michaelangelo Buaonarroti (Italian Re-
naissance), Jean-August-Dominique Ingres (French Neoclassicism),
Sandro Botticelli (Italian Early Renaissance). These painters were
chosen because many of their paintings contain the features of in-
terest. From each painter, 25 patches were collected from about 10
different paintings, giving a total of 100 samples.

3.2. Experimental Setup

The following color models were considered: RGB, Smith’s HSV
(hue, saturation, value) [17], Ostwald’s HSI (hue, saturation, inten-
sity) [18], Gonzales and Woods’ HLS (hue, lightness, saturation)
[19] and CIELAB [20].

Considering the results from Hsu and Lin [9] and Platt [15],
the following multi-class SVM methods were compared: one-vs-
one with Max Wins, DAGSVM and ECOC SVM. For ECOC SVM
we designed the codewords using the exhaustive method (for num-
ber of classes 3 ≤ k ≤ 7) presented by Dietterich and Bakiri
[14]. Three types of kernel functions, namely linear, polynomial
of degree 2 and Gaussian, were tested with various kernel and reg-
ularization parameter values. For Gaussian kernels, the kernel pa-
rameter values σ of 0.2, 0.4, . . . , 5, were tested. For all three ker-
nels, the regularization parameter values C of 100, 101, 102, 103

were tested. To obtain these parameters using analytical methods,
please refer to Chapelle et al. [21]

The leave-one-out method was used in all classification tests
since the number of samples is quite small (only 100). The k-
nearest-neighbor classifier had also been tested. In almost all cases,
its performance was poorer than that of SVM. So, its classification
performance is omitted in this paper.

Three types of tests were performed: classification based on
(1) single color channel, (2) combining several single-channel clas-
sifiers, and (3) combining several color channels into a single input
vector.

3.3. Single-Channel Classification Results

Among the three kernels tested, the Gaussian kernel performs the
best in most cases. This result is most obvious for DAGSVM. It
is less obvious for one-vs-one SVM where Gaussian performs the
best in only 2/3 of the tests. In ECOC SVM, Gaussian kernel’s ad-
vantage is less significant. Degree-2 polynomial kernel performs
better or at least the same as linear kernel in many tests.

Experimental results shows that DAGSVM performs the best
compared to other multi-class methods (Table 1). With Gaussian
kernel, DAGSVM performs the best for almost all color channels.

With other kernels, DAGSVM performs the best in about 2/3 of the
test cases. Surprisingly, ECOC SVM does not perform very well
even though it has a larger number of 7 binary classifiers compared
to DAGSVM and one-vs-one SVM, which have 6 classifiers.

The individual classifiers use different kernel and regulariza-
tion parameters to achieve their optimal performance. The most
accurate single-channel classifier is based on a∗ of CIELAB. Among
HLS, HSI and HSV, the performance of the classifiers using H is
the same since their formulations of H are the same. Classification
performance based on H is almost as good as that using a∗. The
best saturation component is the S of HSI and the best brightness
component is the L of HLS.

3.4. Combined Single-Channel Classification Results

Classification performance can be improved by combining several
single-channel classifiers using weighted voting. The combined
classification accuracies are presented in Table 2. Since DAGSVM
had the best performance, the experiment was performed using
DAGSVM with Gaussian kernel. The voting weights were chosen
based on the assumption that one channel would be dominant and
two or more channels together could compensate for the misclas-
sification of the dominant channel. For three-classifier combina-
tions, the possible weights were permutations of 2, 2 and 3. For
four-classifier combinations, the possible weights were permuta-
tions of 1, 3, 3 and 5 or permutations of 2, 2, 2 and 5. Exhaustive
tests were performed to determine the best choice of weights.

The results in Table 2 show that combining RGB single-channel
classifiers produces the poorest performance. Among the three-
classifier combinations that use the hue-saturation-brightness mod-
els, HLS has the best performance. The overall best classifica-
tion performance is achieved by combining the four best single-
channel classifiers, taking into consideration the completeness of
hue-saturation-brightness information. That is, the combination of
single-channel classifiers for HHLS , SHSI , LHLS and a∗ gives
the highest classification accuracy of 0.85.

3.5. Combined-Channel Classification Results

Instead of combining single-channel classifiers, a more commonly
used approach is to concatenate the profiles of multiple channels
into a single, long input vector. We tested this approach on the best
color model HLS and the best combination of four channels using
DAGSVM and Gaussian kernels. Table 3 shows that combined-
channel classifiers have lower classification accuracies than those
of combined single-channel classifiers. This comparison result is
expected since each single-channel classifier of a combined clas-
sifer has its own optimal kernel and regularization parameters,
whereas a combined-channel classifier uses only one set of kernel
and regularization parameters for the combined input vector.



Table 2. Classification performance of combining single-channel classifiers.
Combination RGB HSV HSI HLS CIELAB HHLS , SHSI , LHLS , a∗

Weights [3 2 2] [3 2 2] [2 3 2] [2 2 3] [2 3 2] [3 1 5 3]
Accurarcy 0.68 0.77 0.77 0.82 0.80 0.85

Table 3. Comparison between combined single-channel classifiers and combined-channel classifiers.
Combination HLS HHLS , SHSI , LHLS , a∗

combined-channel combined-classifier combined-channel combined-classifier
No of Classifiers 1 3 1 4
Accurarcy 0.74 0.82 0.81 0.85

4. CONCLUSION

We have presented a method of identifying the painters based on
the color profiles of skin patches in painting images. Various color
models such as RGB, HSV, HSI, HLS, and CIELAB were tested
on their ability to represent color information accurately. In ad-
dition, the classification performance of three multi-class SVM
classifiers, namely one-vs-one SVM, ECOC SCM and DAGSVM
were compared. Test results show that the overall best classifica-
tion accuracy of 0.85 is achieved by using a weighted voting of
four single-channel DAGSVM classifiers. The four color channels
are H and L of HLS, S of HSI and a∗ of CIELAB.

The test results also confirm that hue is an important feature
for expressing color relief in paintings, consistent with the point of
view of painting art. Single-channel classifiers based on hue and
a∗ achieve the best single-channel classification accuracies.

Acknowledgment
This project is supported by This research is supported by NUS
ARF R-252-000-072-112 and NSTB UPG/98/015.

5. REFERENCES

[1] Parramón’s Editorial Team, How to Recognize Styles, Bar-
ron, New York, 1997.

[2] R. Sablatnig, P. Kammerer, and E. Zolda, “Hierarchical clas-
sification of paintings using face and brush stroke models,” in
Proc. of 14th Int. Conf. on Pattern Recognition, 1998, vol. I,
pp. 172–174.

[3] H. J. van den Herik and E. O. Postma, “Discovering the
visual signature of painters,” in Future Directions for In-
telligent Systems and Information Sciences, pp. 129–147.
Springer-Verlag, 2000.

[4] B. Cole, The Renaissance Artist at Work: From Pisano to
Titian, Harper & Rows, New York, 1983.

[5] M. Baxandall, Painting and Experience in Fifteenth-Century
Italy, Oxford University Press, 1991.

[6] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduc-
tion to Splines for Use in Computer Graphics and Geometric
Modeling, Morgan Kaufmann, 1998.

[7] V. Vapnik, The Nature of Statistical Learning Theory,
Springer, 1995.

[8] O. Chapelle, P. Haffner, and V. Vapnik, “Support vector
machines for histogram-based image classification,” IEEE
Trans. on Neural Networks, vol. 10, pp. 1055–1064, 1999.

[9] C. W. Hsu and C. J. Lin, “A comparison of methods for
multi-class support vector machines,” IEEE Trans. on Neural
Networks, vol. 13, pp. 415–425, 2002.

[10] J. Weston and C. Watkins, “Multi-class support vector ma-
chines,” Tech. Rep. CSD-TR-98-04, Dept. of Computer Sci-
ence, University of London, UK, 1998.

[11] K. Crammer and Y. Singer, “On the algorithmic implemen-
tation of multiclass kernel-based vector machines,” Journal
of Machine Learning Research, 2001.

[12] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer
learning revisited: A stepwise procedure for building and
training a neural network,” in Neurocomputing: Algo-
rithms, Architectures and Applications, F. Fogelman-Soulié
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