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Abstract 
 

This paper proposes a fuzzy image labeling method 
that assigns multiple semantic labels together with 
confidence measures to each region in an image.  The 
confidence measures are derived from the distance of 
the region to hyperplanes constructed by support vec-
tor machines.  Test results show that this method 
yields higher classification accuracy and retrieval 
precision than crisp labeling methods that are based 
on crisp classification.  
 

1. Introduction 
 
There are two general approaches to semantic la-

beling of image regions: crisp labeling and fuzzy la-
beling. Crisp labeling methods assign a single seman-
tic label to each region. These methods determine a re-
gion’s label by classifying the region’s color and tex-
ture features using methods such as clustering, nearest 
neighbor classification and neural networks. In [1] and 
[2], one-vs-rest support vector machines (SVM) were 
used to perform crisp labeling but on images as a whole 
rather than on image regions.  Due to the difficulty of 
accurately classifying an image region’s features, these 
methods have been shown to work on at most 11 se-
mantic classes [3, 4, 5, 6].  Fuzzy labeling method [7] 
assigns multiple semantic labels together with confi-
dence measures to an image region.  Although [7] i l-
lustrated the labeling of 30 semantic classes, it has not 
clearly demonstrated the strength of fuzzy labeling 
compared to crisp labeling in image retrieval. 

This paper proposes another fuzzy labeling method 
that measures the confidence based on the orthogonal 
distance of an image region’s feature vector to the hy-
perplane constructed by a support vector machine 
(SVM).  The confidence measures assigned to a region 
represent the signature of the region and are used for 
region matching during image retrieval.  Test results 
show clearly that our fuzzy labeling method yields 
higher classification accuracy and retrieval precision 
than crisp labeling based on crisp classification. 

2. Algorithms 
 

2.1. Semantic Labeling Methods 
 
2.1.1. Crisp Labeling. One way to label image re-
gions using crisp labels is to classify a region i using a 
multi-class classifier, such as neural network and the 
Directed Acyclic Graph (DAG) SVMs [8], into one of 
m semantic classes, say, class c. Then the crisp label 
of region i is simply c. 

Another crisp labeling method involves training m 
one-vs-rest binary SVMs [1, 2, 9] where the jth SVM 
is trained to classify regions into either class j or non-
class j.  After training, a region i is classified using all 
the m one-vs-rest SVMs.  Then region i is assigned the 
crisp label c if, among the SVMs that classify region i 
positively, the cth SVM returns the longest distance 
between region i 's feature vector and its hyperplane.  If 
no SVM classifies region i as positive, then region i is 
labeled as “unknown” .   
 
2.1.2. Fuzzy Labeling. Similar to the second crisp 
labeling method, our proposed fuzzy labeling method 
also trains m one-vs-rest binary SVMs on training 
samples.  After training, a confidence curve is appro-
ximated for each SVM as follows.  Validation samples 
are classified by an SVM and their distances to the hy-
perplane are computed. The samples are sorted in in-
creasing order and an algorithm [7] is applied to re-
cursively partition the range of distances into intervals 
such that the classification accuracy within each inter-
val can be measured and the accuracy changes 
smoothly from one interval to the next. 

Figure 1 shows a sample confidence curve cons-
tructed.  Given a test sample, its distance to the 
SVM’s hyperplane is computed and its expected clas-
sification accuracy is obtained from the confidence 
curve using linear interpolation and regarded as the 
confidence measure.  Since the classification accuracy 
is bounded between 0 and 1, the confidence curves al-
so provide nonlinear normalization of the distances to 
confidence measures  within the [0, 1]  range. Now the 



 
 
 
 
 
 
 
 
 

Figure 1. A sample confidence curve. 
 
test sample can be assigned a fuzzy label or signature 
in the form of a vector 

v = [v1 v2 … vm ] 
where vj is the confidence that the sample belongs to 
class j.  

With the first crisp labeling method, a sample’s 
signature would be v such that exactly one of the vj’s 
is 1 while the rest are 0.  With the second crisp label-
ing method, at most one of the vj’s is 1, and the signa-
ture of an “unknown”  region would be a zero vector. 
 
2.2. Region Matching 
 

During image retrieval, a query image is construct-
ed using regions of known semantic classes.  So, im-
age matching is performed by matching regions in the 
database images with known regions in the query im-
age.  The signatures of the known regions are comput-
ed as follows.  For each semantic class c, k-means 
clustering is performed on the validation samples in 
class c according to their signatures.  The appropriate 
number of clusters k is chosen using silhouette values 
[10] that measure how well the samples are clustered.  
The prototype of each cluster, i.e., the mean signature 
of the samples in the cluster, serves as a prototype sig-
nature of the semantic class.  Thus, each semantic 
class can have more than one prototype label.  Having 
multiple prototype signatures pk improves the retrieval 
performance because there is a large variation of 
signatures even within a single semantic class. 

In empirical tests, it was found that prototype sig-
natures pk of a semantic class c where maxj{pkj}  ≠ pkc 
are misleading.  That is, the signature of class c says 
that the confidence of belonging to class c is lower 
than those of other classes.  These prototype signatures 
are unreliable and should not be used in region 
matching. 

For crisp labeling, each semantic class has only 
one prototype signature. The prototype signature p of 
class c is such that pc = 1 and pj = 0 for all j ≠ c. 

Given the signature v of a  region r and prototype 
signatures pk of a  class c, the  distance  d between  the  

region and the class is simply the minimum Euclidean 
distance between v and pk: 
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2.3. Image Matching 
 

A query image Q contains n known regions Ri each 
having several prototype signatures pik.  A database 
image I contains many regions r l with signatures vl.  
Two kinds of distances between query and database 
image can be defined.  The first matches regions in Q 
with regions in I at the same positions.  Denote r i ∈ I 
as the region at the same position as Ri  ∈ Q.  Then 
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The second kind matches regions in Q with regions in 
I at any position.  Then d(Q, I) should be defined in 
terms of the best matching regions between Q and I: 
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3. Performance Test 
 
3.1. Image Data Sets 
 

A variety of 31 semantic classes shown in Figure 2 
were identified.  For each semantic class, 550 image 
blocks of size 64×64 pixels that contained objects of a 
single semantic class were cropped from images in the 
Corel library of 50,000 photos.  Of these, 375 image 
blocks were chosen at random to form the training set, 
125 for the validation set and 50 for the test set. 

In order to assess how well the labeling method 
can generalize to image blocks that are not well-
cropped, an additional 800 images were selected from 
the Corel photo library to form a general test set.  
Each semantic class was contained in at least 25 im-
ages.  Each image was partitioned at regular intervals 
into 77 overlapping image blocks of size 64×64 pixels.  
Each image block was manually assigned a label to 
denote the ground truth, which was either one of the 
31 semantic classes, “unknown”  if it did not belong to 
any of the 31 semantic classes, or “ambiguous”  if it 
contained objects in more than one semantic class.  In 
total, there were 26179 (42.5%) blocks with known 
classes, 4588 (7.4%) unknown blocks and 30833 
(50.1%) ambiguous blocks. 

Four different types of low-level features, namely, 
fixed color histograms, Gabor features, multiresolution 
simultaneous autoregressive features (MRSAR) and 
edge histograms, were extracted from each image 



block, normalized and combined to form a feature vec-
tor of 274 dimensions. 

 
3.2. Region Classification Test 
 

To assess the accuracy of fuzzy labeling quanti-
tatively, a region classification test was performed.  
The distance d(r, c) (Eq. 1) between sample r and 
class c is computed and sample r is classified to the 
nearest class in terms of d(r, c).  Four labeling me-
thods were compared: crisp labeling methods using 
DAG SVM and one-vs-rest (1vsR) SVMs, and fuzzy 
labeling using all prototype signatures and reliable 
prototype signatures only.  The tests were performed 
on both the well-cropped and general test samples. 

Test results in Table 1 show that all the methods 
except for crisp labeling with one-vs-rest SVMs can 
label all test image blocks.  The latter method can la-
bel only 19.1% of the general test samples. 

For the well-cropped test samples, fuzzy labeling 
with reliable prototype signatures achieves the highest 
classification accuracy followed closely by crisp label-
ing with DAG SVM.  For the general test samples, the 
accuracy of both crisp labeling methods drops drastic-
ally to 10%.  This indicates that the general test sam-
ples are much harder to classify, probably due to more 
noise and ambiguity in the samples.  In spite of this, 
both fuzzy labeling methods outperform both crisp la-
beling methods.  In particular, fuzzy labeling with re-
liable prototype signatures achieves a classification ac-
curacy of 24.7% on blocks with known classes, which 
is more than twice the accuracy of crisp labeling.   

 
3.3. Image Retrieval Test 
 

For image retrieval test, 31 query images were con-
structed by placing a region of a known semantic class 
at an appropriate position in each query image.  Then 
the 800 database images were compared with each 
query image and ranked in order of increasing dis-
tance.  Since it is laborious to manually identify the re-
levant images among all 800 images for each of the 31 
queries, retrieval precision was measured only among 
the first N retrieved images and averaged over the 31 
queries.  This retrieval test was performed separately 
for same-position (Eq. 2) and any-position (Eq. 3) re-
trieval using each of the crisp labeling and fuzzy la-
beling methods. 

Figure 3 shows that retrievals using fuzzy labeling 
perform better than those using crisp labeling, espe-
cially for same-position retrieval.  Moreover, fuzzy la-
beling with reliable prototype signatures achieves the 
best retrieval performance which is consistent with the 

results for region classification test.  Note that retrie-
val precision with reliable prototype signatures ranges 
from 26% to 37% for same-position retrieval and 35% 
to 49% for any-position retrieval.  This shows that the 
method can stil l retrieve many relevant images even 
though its region classification accuracy is only 24.7%. 
 

4. Conclusion 
 

This paper proposes a fuzzy image labeling method 
that assigns multiple semantic labels together with 
confidence measures to an image region.  This is done 
by training m one-vs-rest classifiers and measuring the 
classification confidence with confidence curves de-
rived using validation samples.  Prototype fuzzy signa-
tures for each semantic class are obtained by applying 
k-means clustering on the validation samples.  Image 
retrieval is then performed by matching the signa-
tures of the region in the image with the prototype sig-
natures of the known regions in a query image. 

Experimental tests show that fuzzy labeling per-
forms better than crisp labeling in semantic region 
classification and in semantic image retrieval especial-
ly for same-position image retrieval.  
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Figure 2.  Sample images of 31 semantic classes used. 
 
 

Table 1. Test results on (a) well-cropped test samples and (b) general test samples.   

 (a) well-cropped test samples (b) general test samples 
 Crisp labeling Fuzzy labeling Crisp labeling Fuzzy labeling 
 DAG 1vsR All Reliable DAG 1vsR All Reliable 

% labeled 100.0% 70.6% 100.0% 100.0% 100.0% 19.1% 100.0% 100.0% 
accuracy 58.3% 51.2% 52.5% 60.8% 10.4% 10.5% 19.8% 24.7% 
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Figure 3.  Average precision over all classes for (a) any-position and (b) same-position retrieval. 


