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Abstract— The work in this paper describes a distributed
layered architecture for resource-constrained multi-robot coop-
eration, which is utilized in autonomic mobile sensor netwik
coverage. In the upper layer, a dynamic task allocation schae
self-organizes the robot coalitions to track efficiently amss re-
gions. It uses concepts of ant behavior to self-regulate thegional
distributions of robots in proportion to that of the moving
targets to be tracked in a non-stationary environment. As a
result, the adverse effects of task interference between bots are
minimized and network coverage is improved. In the lower tak
execution layer, the robots use self-organizing neural natorks
to coordinate their target tracking within a region. Both layers
employ self-organization techniques, which exhibit autoamic
properties such as self-configuring, self-optimizing, sehealing,
and self-protecting. Quantitative comparisons with othertracking
strategies such as static sensor placements, potential @ie] and
auction-based negotiation show that our layered approach an
provide better coverage, greater robustness to sensor failes,
and greater flexibility to respond to environmental changes

Index Terms—task allocation, motion control, multi-robot
architecture, swarm intelligence, self-organizing neurbnetworks

|I. INTRODUCTION

Our network coverage problem is motivated by the fol-
lowing constraints that discourage static sensor placemen
or uninformed mobility: a) unknown target distributions or
motion patterns, b) limited sensing range, and c) large area
to be observed. All these conditions may cause the sensors to
be unable to cover the entire region of interest. Hence, fixed
sensor locations or uninformed mobility will not be adeguat
in general. Rather, the sensors have to move dynamically in
response to the motion and distribution of targets and other
sensors to maximize coverage.

Inspired by robotics, the above problem may be regarded
as that of low-level motion control to coordinate the ses'sor
target tracking movements in continuous workspace. Astern
tively, it can be cast as a high-level task allocation probhey
segmenting the workspace into discrete regions (Fig. 1) su
that each region is assigned a groupcoalition of sensors
to track the targets within. This paper presents a disteidbut
architecture that integrates low-level motion controlhaiigh-
level task allocation for autonomic mobile sensor network
coverage in complex, dynamic environments (Section Ill¢. W
will now refer to mobile sensors as robots since they are the
fame in this paper’s context.

ENSOR networks have recently received significant atte
ion in the areas of networking [1], embedded systems,

pervasive computing, and multi-agent systems [2] due to its Il. RELATED WORK ON COVERAGE

wide array of real-world applications (e.g., disaster efeli
environment monitoring). In these applications, the disted

sensing task is achieved by the collaboration of a lar
number of static sensors, each of which has limited sensi

computational, and communication capabilities.

One of the fundamental issues that arises in a sen
network is coverage. Traditionally, network coverage ixima
mized by determining the optimal placement of static sensor
in a centralized manner [3], which can be related to the cl

of art gallery problems [4]. However, recent investigasian

sensor network mobility reveal that mobile sensors can s
organize to provide better coverage and lower environnhen

impact than static sensors ([5], [6]). Existing applicaidvave

only utilized uninformed mobility (i.e., random motion or

patrol) ([2], [7]). In contrast, our work focuses on inforthe
intelligent mobility to further improve coverage.
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Existing sensor network coverage applications can be clas-
sified under the following characteristics: a) network ntigbi
e . . i
static vs. mobile), b) network density (dense vs. sparsg),

tgl’get distributions (known vs. unknown), and d) targetiorot

%Jatterns (e.g., static, random, evasive). Static sengaonies

gf are often densely deployed for complete coverage of the
area to be observed. Such networks typically require manual
pasitioning of the sensors and cannot be easily deployed in

ass

contaminated or hostile regions. Mobile sensors, on theroth

erl}and, can be used for this purpose. Current implementations

f mobile sensor networks have focused on evenly dispersing
the sensors from a source point throughout the observealregi
[8] without considering the target distributions. Receffibres
have attempted to self-organize the mobile sensors to that
of the target distributions, which can potentially decestiee
number of deployed sensors (Section VI-B.1). However, the
target distributions are either static [5] or known bef@neth
[9]. Our work in this paper differs from all these by deplogin
a sparse network of mobile sensors to track unknown, time-
varying target distributions.

Note that coverage has a different meaning in robotics ([10]
[11]). It refers to a single robot or team of robots that idkeab
to visit all the points in its environment. This will eithezquire
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Fig. 1. (a) A 4 mx 3 m environment that is divided into 6 regions. The circleh& bottom right represents the robot's sensing radius of®@rawn
to scale). The environment is 42.44 times as large as thet'sobensing area. (b) Distributed layered architecture nfmiti-robot cooperation (MRTA =
Multi-Robot Task Allocation, EKM = Extended Kohonen Map).

a known global model of the environment for path planningontrol of motor/joint actuators. Our proposed BCM use§ sel
[10] or markers to be left on visited regions [11] to preverdrganizing neural networks to map continuous state space to
repeated coverage. In contrast, we use the term “coveragetontinuous motor control space. We have shown in ([16],
refer to target tracking, which does not necessarily reghie [18]) via quantitative evaluation that such neural netvgockn

entire environment to be visited. produce fine, smooth, and efficient motion control. In castira
BCMs that employdiscrete response encodin(@e., finite,
I1l. OVERVIEW OF MOBILE SENSORARCHITECTURE enumerated set of responses) ([17], [19]) produce higatlev

g}otion commands (e.g., forward, left, right) that are ulyual
g;)o coarse for fine, smooth robot control. Consequently, the
robot may fail to negotiate unforeseen complex obstacles.

Our mobile sensor architecture consists of two layers
coordination (Fig. 1b): (1) lower task execution layer, an
(2) higher task allocation layer. It differs from existingyt
ered architectures for multi-robot coordination ([12]3[L Complexity of Robot Motion Task&xisting BCMs tend to
by adopting a reactive method, rather than deliberativa-plaunder-utilize the sensory inputs that can potentially diel
ning, for task allocation. Both layers employ concepts afseful information for coordinating behaviors and chogsin
self-organization that exhibit the following charactéids of the most appropriate action. As a result, the robot is less
autonomic systems ([14]): capable of performing complex motion tasks such as ne-

1) Self-ConfiguringBoth the task allocation and executiorgotiating unforeseen concave and closely spaced obstacles

schemes enable the sensor network to adapt to dyna@fid tracking multiple moving targets. Three classes of BCMs

cally changing environments; face this problem: behavior arbitration, action votingdan
2) Self-OptimizingBoth schemes aim to maximize coveraction superposition. Arbitration strategies ([19]) allonly
age and minimize robot interference; one winning behavior among a group of competing ones to

3) Self-Healing: The task allocation scheme is robust t@roduce the action. This precludes the execution of several
robot failures while the task execution scheme is able R9Ssibly conflicting behaviors in parallel. In action vafin
self-repair unexpected damages to the robot formatiof€hemes ([17]), each behavior can vote for various pre-ekéfin

4) Self-Protecting:The task execution scheme enables tHéiscrete actions to different degrees and the action wiéh th
robot to negotiate unforeseen complex obstacles. highest vote is performed. Both behavior arbitration arttbac

These autonomic properties will be demonstrated in Se\@ting_meth_ods suffer_from the d_rawbacks ofdiscrete_ reseon
tion VI. enc_o_dmg dlsc_ussed in the previous paragraph. Actlor_1 super
In the lower task execution layer, the robots use a reactigﬁs't'on techmques_(e.g., potential fields) ([16], [209)@'”6 .

motion control strategy based on self-organizing neur# né the potential actions, eaph gener.ated by a behaviangusi
works [15] to coordinate their target trackingthin a region vector sum t_o produce a smgle action. They may cause the
without the need of communication (Section 1V). This stggte ro_b_ot to fa|! in complex motion tasl_<s [21] even though they
is also responsible for their navigation between regiorzs Jtilize continuous response encoding. On the oth_er hand, a
beacons or checkpoints identified by a motion planner [16 .bOt endoyved with our praposed BCM can achieve these
To perform these tasks, it has to coordinate multiple careuir tasks (Section VI-A).

behaviors, which include target reaching, obstacle avmida |y the higher task allocation layer, the robots use a dy-
and robot separation to minimize task interference. Ited#f amic ant-based scheme [22] to cooperatively self-organiz
from other Behavior Coordination Mechanisms (BCMs) ([17heir coalitions in a decentralized manner according to the
in the following ways: target distributionsicrossthe regions (Section V). It contrasts
Self-Organization of Continuous State and Motor Contralith the other works of biologically-inspired robot swarms
SpacesA high degree of smoothness and precision in motiqfi20], [23]) that emphasize control- rather than task-leve
control is essential for efficiently executing sophistezhtasks. cooperation. Our work also differs from pheromone-based
This can only be achieved wittontinuous response encodingobot swarms ([24]) as it does not use residue-like mech-
(i.e., infinite set of responses) of very low-level velofityque anism for propagating signals and does not send messages
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target reaching !
module

over multiple hops. Other researchers ([25]) have modellsuﬁjéz:"scaIe
the swarm behavior mathematically without providing attua ' [ target | a
implementation of the control architecture. targets |—=localizatio
Our ant-based scheme addresses the following issues, which : :
target | g, °

distinguish it from the other task allocation mechanisms:
localizatior}

Task Allocation for Multi-Robot Task€xisting Multi-Robot | L Ekm
Task Allocation (MRTA) algorithms (i.e., auction- and ittit " robot separation | ~ neural integration '
based) ([26], [27]) generally assume that a multi-robok tas | module :

can be partitioned into several single-robot tasks. Bt iy robot | 1|, robot. I

. . ki ‘ |
not be always possible, or the multi-robot task can be more e EKM I moter o
: . control T actuators

efficiently performed by coalitions of robots. Furthermdiee prrin j iy
partitioned single-robot tasks are sometimes assumed to be localizatior-"—— [

independent, i.e., no interference would occur. HoweVe, t Lo |

EKM
robots are bound to interfere with each other's ongoinggti | obstacle avoidance
either physically (e.g., space competition) or non-plalsic | }

. . L. local , obstacle |
(e.g, shared radio bandwidth, conflicting goals). In theeare obstacles| | localization :
case, when too many robots are involved, little or no work | :
gets done as they totally restrict each other's movement. ! [ obstadie b |
Hence, task interference has an adverse effect on the bveral = |localizatiorr =
system performance. Knowing that physical interferenae ca R ‘

be |mplled fr(.)m. robot densny, our t.aSk alloca.'tlon. SChenEg. 2. A behavioral coordination mechanism that is impleted by an
dynamically distributes robots in real-time by estimatinQot  ensemble of Extended Kohonen Maps (EKMs).

densities in different regions to minimize interference.

Coalition Formation for Minimalist RobotsExisting multi- Sivé resources, thus catering to resource-constrainestsob
agent coalition formation schemes ([28]) require complek€ robots endowed with our ant-based scheme require only
planning, explicit negotiation, and precise estimatiorcadli- 0cal sensing information and short-range communicaiioe.
tional cost. Hence, they may not be able to operate in resd-ti "0bot coaliions can also be self-organized asynchrogousl
in a large-scale sensor network. Our task allocation meth¥éhout negotiation.

via self-organizing swarm coalitions is reactive, dynamic

and can operate with uncertain coalitional cost and reseurc IV. SELF-COORDINATED TASK EXECUTION

constrained robots. A. Overview

Cooperation of Resource-Constrained Robd®obots with Our proposed BCM, calledooperative Extended Kohonen
limited communication and sensing capabilities can only ekaps (EKMs), is implemented by connecting an ensemble
tract local, uncertain information of the environment. Asts, of EKMs ([16], [18]), each of which is a neural network
distributed methodologies are required to process andrate that extends the Kohonen Self-Organizing Map [31]. lts-self
the noisy, heterogeneous information to improve its qualit organization of the input space is similar to Voronoi telssel
that it can be effectively utilized to estimate the coatitib tion such that each tessellated region is encoded by the inpu
cost and boost the task performance. Furthermore, if theights of an EKM neuron. In addition to encoding a set
robots have limited computational power, their coopegativof input weights that self-organize the sensory input space
strategies cannot involve complex planning or negotiatitoa the EKM neurons also produce outputs that vary with the
isting task allocation mechanisms ([26], [27], [29]) hawher incoming sensed inputs.

assumed perfect communications, high computational powerOur cooperative EKMs framework consists of four mod-
centralized coordination or global knowledge of the tasHl arules: target reaching, obstacle avoidance, robot separati
robots. For example, recent applications of sensor netwakd neural integration (Fig. 2). Tharget localizationEKMs
coverage ([6]) and multi-robot systems [30] employ coatiti in the target reachingmodule (Section IV-B) are activated
leaders, one in each region, to negotiate with each othés. Thy the presence of targets within the robot’s target sensing
negotiation is conducted iteratively using an auctionebasrange. Each EKM receives a sensed target location and sutput
mechanism and attempts to balance the proportion of robotxbrresponding excitatory signals to the motor control EKM i
that of the targets across all regions. To do so, each amalitthe neural integration module at and around the locations of
leader must be able to obtain the exact number of robdke sensed targets.

and targets in its region as well as the task performance ofThe obstacle localizatiorEKMs in the obstacle avoidance
these robots. Furthermore, it has to synchronize its nagmi module (Section IV-C) are activated by the presence of ob-
with the coalition leaders in other regions via long-ranggtacles within the robot's obstacle sensing range. Each EKM
communication. Note that this negotiation can be conductegteives a sensed obstacle location and outputs correisgond
entirely by a central coordinator running a centralizediioa inhibitory signals to the motor control EKM in the neural
formation scheme but it requires even more resources. iltegration module at and around the locations of the sensed
contrast, our proposed method does not require such expebstacles. Theobot localizationEKMs in therobot separation
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module work in a similar fashion as the obstacle localizatio
EKMs except that they process the sensed robot locations.

The motor controlEKM in the neural integrationmodule
(Section 1V-D) serves as the sensorimotor interface, which
integrates the activity signals from the EKMs for coopenati
and competition to produce an appropriate motor signaléo th
actuators.

The cooperative EKMs framework allows the modules to
operate asynchronously at different rates, which is thetkey
preserving reactive capabilities. This contrasts withoactot-
ing and superposition BCMs, which require synchronization 2)
For example, the target reaching and robot separation rasdul
operate at about 256 ms between servo ticks while the obstacl
avoidance module can typically operate faster at intergéls
128 ms. The neural integration module is activated as and
when neural activities are received. One noteworthy aspfect
our framework is that no communication between robots is
needed for the robots to cooperate in the tracking of maltipl
moving targets. In this paper, we demonstrate that robots,
which are able to discriminate between targets, obstaclds a
robot kins, are adequate for achieving the cooperative task

B. Target Reaching

The target reaching module adopts an egocentric represen-
tation of the sensory input vectay, = (a, d)” wherea andd
are the direction and distance of a target relative to thett®b
current location and heading. It uses the target locatinati

In other words, direction has priority over distance in the
competition between EKM neurons. This method allows
the robot to quickly orientate itself to face the target
while moving towards it. An EKM contains a limited set
of neurons, each of which has a sensory weight vector
w, that encodes a point in the sensory input spdce
The region ini/ that encloses all the sensory weight
vectors of these neurons is called tloeal workspace
U’. Even if the target falls outsid#’, the nearest neuron
can still be activated (Fig. 3a).

Compute output activity,,; of neuron; in thep-th target
localization EKM.

(4)

Qp; = G, (W57 Wz)
The functionG,, is an elongated Gaussian:

(as =) (ds —d»?)

2 - 2
202, 20,

Go(Ws, W;) = exp (— .
()
Parameters,4 is much smaller thamwr,,, making the
Gaussian distance-sensitive and angle-insensitive.€Thes
parameter values elongate the Gaussian along the direc-
tion perpendicular to the target directioen (Fig. 3b).

This elongated Gaussian is therget field which plays

an important role in avoiding local minima during ob-
stacle avoidance.

EKM to self-organize the sensory input spa¢eEach neuron The output activities of the neurons in thearget localization

i in the EKM has a sensory weight vecter, = («a;,d;)7

EKMs are aggregated in the motor control EKM to produce a

that encodes a region ¥ centered atw;. Each target that motion that moves the robot towards the targets. This will be
appears within the robot's sensory range activates a differ explained in Section IV-D. In the next section, we will prese
target localization EKM. That isp target localization EKMs the obstacle and robot localization EKMs, which are actigat
will be activated forn targets. The same target can activate a similar manner as the target localization EKMs.

a different EKM at a different time. Based on each incoming
sensory inpuia, of the target location, the target localization

EKM outputs excitatory signals to the motor control EKMC. Obstacle Avoidance and Robot Separation

in the neural integration module (Section IV-D). The target
localization EKMs are activated as follows:

The obstacle avoidance module uses obstacle localization

EKMs. The robot has: directed distance sensors around its

Target Localization

body for detecting obstacles. Hence, each activated sensor

For each sensory input, of a targetp = 1,...,n (i.e.,n encodes a fixed direction; and a variable distancé; of

targets), the obstacle relative to the robot’s heading and locati@thE

1) Determine the winning neurom in the p-th target sensor’s inputi; = (c;,d;)? induces an obstacle localization

localization EKM. Each winning neurosn is the one EKM. Note that the distance sensors operate differentlgnfro
whose sensory weight vecter, = (s, d,)? is nearest the target sensors. A target sensor (e.g., vision camera) ca
to the inputu, = (a,d)T: sense multiple targets whereas each distance sensofgsen),

can only reflect the nearest obstacle in its sensing dimectio

Hence, unlike the target localization EKMs, the number of

obstacle localization EKMs that are activated does not aepe

on the number of obstacles but rather, on the number of

distance sensors. The obstacle localization EKMs have the

D(u,, w;) = Bala — a;)* + Ba(d — d;)? (2) same number of neurons and input weight values as the

where(, and, are constant parameters. The minimurf‘?rg(le.t I(t)_calle?é:anhEKms, €., e_ach tneurolrllP the ObSt?ﬁle
in Eq. 1 is taken over the set(«) of neurons encoding ocalization as the same input weight vectoy as the

very similar angles as: neuroni in _the target localization EKM. The _EKMs output

inhibitory signals to the motor control EKM in the neural
integration module (Section 1V-D). The obstacle locaiizat
EKMs are activated as follows:

1)

The differenceD(u,, w;) is a weighted difference be-
tweenu, andw;:

D(upv WS) = 1€InAl(I;c) D(upv WZ)

la = a;] < o — ayl,

for each pairi € A(a),j ¢ A(a) . ®)
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(a) (b) (c) (d)
Fig. 3. Conceptual description of cooperative EKMs. (a)dsponse to the targei, the nearest neuron (black dot) in the target localizatigiMEellipse) of
the robot (gray circle) is activated. (b) The activated payproduces a target field (dotted region) in the motor coKM. (c) Three of the robot's sensors
detect obstacles and activate three neurons (crosses) wb#tacle localization EKMs, which produce the obstaclddiédashed ellipses). (d) Subtraction of
the obstacle fields from the target field results in the newii to become the winner in the motor control EKM, which moves ribleot away from the
obstacle.

Obstacle Localization

For each sensory input;, j = 1,...,h (i.e., h distance
sensors),

1) Determine the winning neuros in the j-th obstacle
localization EKM. The obstacle localization EKM is_

. . Fig. 4.
activated in the same manner as Step 1 of Targglirecty
Localization (Section IV-B). _

2) Compute output activityp;; of neuroni in the j-th D. Neural Integration and Motor Control

obstacle localization EKM:

Motor control EKM. The neurons map the sensory inpacel/
to motor control spacé through control parameter spadef.

The neural integration module uses a motor control EKM to
integrate the activities from the neurons in the targetjaitis

bji = Gp(Ws, Wi) (6)  and robot localization EKMs. The motor control EKM has the
same number of neurons and input weight values as the target,
where robot, and obstacle localization EKMs. The neural intégrat
. N (s — a)? (dy — d;)? is performed as follows:
p(We, wi) = exp (= 202 202,(ds,d;) Neural Integration

9475 it d; > d, 1) Compute activitye; of neuroni in the motor control
obi(ds,d;) = _ EKM.

0.02475 otherwise. n h m

(7) ei =Y api— Y bji— ) T4 (8)

The function GG, is a Gaussian stretched along the ; : ; ’ q; !

obstacle directiom, so that motor control EKM neurons

beyond the obstacle locations are also inhibited to indi-
cate inaccessibility (Fig. 3c). If no obstacle is detected,
Gy, = 0. In the presence of an obstacle, the neurons in

where a,; is the excitatory input from neurom of
the p-th target localization EKM (Section IV-B);; is
the inhibitory input from neurorni of the j-th obstacle

the obstacle localization EKMs at and near the obstacle
locations will be activated to producebstacle fields

(Eq. 6). The neurons nearest to the obstacle locations
have the strongest activities. )

The separation between a robot and its other kins is achieved
with robot localization EKMs. These EKMs work in the same
way as obstacle localization EKMs, i.e., each neuram the

localization EKM, andry; is the inhibitory input from
neuron; of the g-th robot localization EKM (Section IV-
Q).

Determine the winning neurok in the motor control
EKM. Neuronk is the one with the largest activity:

9)

€L = maxe; .
K2

g-th robot localization EKM outputs an inhibitory activity; The motor control EKM also has a set of output weights,
to the motor control EKM in the neural integration modulevhich encode the outputs produced by the neuron. It is tdaine
(Section IV-D). However, the robot localization EKMs pradu to partition the sensory input spaéé into locally linear
wider robot kin fields This has the effect of keeping a robotegions. Unlike existing direct-mapping methods ([32]atth
away from targets that are close to other robot kins. Aspgerform discrete response encoding (Section 1), the output
result, the overlap in the coverage of targets between sabotweightsM; of neuron: of the motor control EKM represent
minimized. Unlike the distance sensors, a robot kin sensoontrol parameters in the parameter spadeinstead of the
(e.g., communication) can sense multiple robots. Hence,a€tual motor control vector (Fig. 4). The control parameter
there arem robots detectedy robot localization EKMs will matrix M; is mapped to the actual motor control vectoby

be activated. The robot localization EKMs have the sanzelinear model (Eq. 10). Compared to direct-mapping EKM,
number of neurons and input weight values as the target andirect-mapping EKM can provide finer and smoother robot
obstacle localization EKMs. motion control. Detailed comparison and discussion haesbe
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reported in ([16], [18]). With indirect-mapping EKM, motor 5) Adjust the input weightsv; of neuronsi in the neigh-
control is performed as follows: borhood of the winning neuroh towardsv:

Motor Control Aw; =nG(k,i)(v —w;) (12)

Compute motor control vectar. where G(k,7) is a Gaussian function of the distance

c = M,z (10) between the positions of neuroksandi in the EKM,
andn is a constant learning rate.
where 6) Update the output weightdl; of neurons: in the
Z G(le; — ex|)w; neighborhood of the winning neurdnto minimize the
iEN (k) errore:
Z = . 11
CY Gl o e = 3Gk, i)lle ~ M| (13)
TN (K) That is, apply gradient descent to obtain
G(le; — ex]) is a Gaussian with its peak located at neukon de
and (k) defines a small set of neurons in the neighborhood AM; = —nger =Gk, i)(c — Myv)vh . (14)
of neuronk. At the goal state at tim&, z;(7) = (a, 0)7 for !
any a. The target, obstacle, and robot localization EKMs self-

In activating the motor control EKM (Fig. 3d), the obstacl@rganize in the same manner as the motor control EKM except
fields are subtracted from the target field (Eq. 8). If theaargthat Step 6 is omitted. This will result in the same set of
lies within the obstacle fields, the activation of the motdPPut weight vectors for all the localization and motor cot
control EKM neurons close to the target location will b&KMSs after training. At each training cycle, the weights o t
suppressed. Consequently, another neuron at a location #&ning neurork and its neighboring neuronisare modified.
is not inhibited by the obstacle fields becomes most highh€ amount of modification is proportional to the distance
activated (Fig. 3d). This neuron produces a control paramef~ (k. i) between the neurons in the EKM. The input weights
that moves the robot away from the obstacle. While the rob®t aré updated towards the actual displacemerand the
moves around the obstacle, the target and obstacle loatizacontrol parametersMl; are updated so that they map the
EKMs are continuously updated with the current locationg aflisplacement to the corresponding motor control After
directions of the target and obstacles. Their interactioits ~Self-organization has converged, the neurons will stebiln
the motor control EKM produce fine, smooth, and accurafe State such that = w; andc = M,v = M;w,. For
motion control of the robot to negotiate the obstacle andeno@"y Winning neurork, given thatz, = wy, the neuron wil
towards the target until it reaches the goal stgtél’) at time Produce a motor control output = Mj.w; which yields a
stepT. In the case of multi-robot target tracking task, thdesired displacement of = wy. If z; # w;, but close to

robots act like obstacles to other robots, thus separatiegt W, the motor output = Myz, produced by neurok will
from each other. still yield the correct displacement if linearity holds tii

the input region that activates neurénThus, given enough
neurons to produce an approximate linearization of thesgns
E. Self-Organization of EKMs input space/, indirect-mapping EKM can produce finer and
In contrast to offline learning methods, online training i§Moother motion control than direct-mapping EKM.
adopted for the EKMs. Initially, the EKMs have not been
trained and the motor control vectors generated are in- V. SELF-COORDINATED TASK ALLOCATION
accurate. Nevertheless, the EKMs self-organize, usingethe Many multi-robot tasks, e.g., foraging [29], transporati

control vectorsc and the corr_esponding robot displacements, 4 exploration, have been inspired by social insects [33],
v produced by, to mapv to c indirectly. As the robot moves i, particular, ants. Our MRTA scheme encapsulates three
around and learns the correct mapping, its sensor|rr_1otclradc.)n_Concepts of ant behavior to self-organize the robot coaliti
becomes more accurate. At this stage, the online trainigg.qrding to the target distributions across regions: (a) e

mainly fine tunes the indirect mapping. The self-organized, nter pattern based on waiting time, (b) self-orgarizatif
training algorithm (in obstacle-free environment) is aléofws: ¢ .ig)| dominance, and (c) dynamic task allocation.

Self-Organized Training A. Encounter Pattern Based on Waiting Time
Repeat Encounter patterns provide a simple, local cue for ants with
1) Get sensory inpui,. sensory and cognitive limitations to assess regional tlessi

2) Execute target reaching procedure and move robot. of ants and objects of interest, which are crucial to regudat

3) Get new sensory input, and compute actual displace-the division of labor [34]. Instead of relying on global comm
mentv as a difference betweem, andu,,. nication to relay target positions and density estimati®®y,[

4) Usev as the training input to determine the winningur scheme uses encounter patterns to predict target ylgrasit
neuronk (same as Step 1 of Target Reaching excefuical sensing. Regional robot density is captured in a aimil
thatu, is replaced by). way using local communication.
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An encounter pattern can be derived from a series of waitimghere S;, and.S;, are respectively the task demand of region
time or interval between successive encounters. This simpl determined by robot and robotj, andn; andn; are the
form of information processing has accounted for the complaumber of targets currently under observation by rabahd
adaptive process of task allocation in ant colonies [36bun robot j respectively. Equation 17 implies that robiotvould
coverage task, the waiting time of a robot is defined in ternmsost likely win the contest if it observes more targets than
of its encounters with the other robots and targets. A robaibot ;. However, if both are tracking the same number of
encounter is defined as a reception of a message from anotaegets, then their individual evaluation of the task dedhean
robot in the same region. A target encounter is defined as laeused to differentiate them. This will distinguish a rothatt
increase in the number of targets tracked between the previbas been observing the targets for a long time from another
and the current time steps. For a robet regionr, the waiting that just encounters the same number of targets.
time for other robotsw;,. (k) and targetsw..(k) is the time  To inject the influence of social dominance on the self-
interval between thék — 1)th andkth encounters. Note thatorganization of robot coalitions, each time a robowins a
each waiting time is subject to stochastic variation. Henceontest (Eq. 17), it increases its tendency of staying in the
multiple samplings of waiting time have to be integrated tourrent region, which is represented by the response thietsh
produce an accurate estimation of the regional density. Th&t) to be used for dynamic task allocation:
average waiting timéVv;,.(k) between thgk — 1)th andkth
robot encounters for a r(()b)d)tin regionr i comz)uted as: 0i(t) = 0:(t —1) + 0 (18)

1 n—1 where § is small constant. Conversely, each time the robot
Wir (k) = ﬁw“‘(k) + Wir(k —1) (15) loses, it decreases its tendency of staying in the region:

n=min(k, nmaes) 0;(t) = 0;(t — 1) — 5 . (19)

where ny,q, is the maximum number of encounters that ig, varies in the range [0,1] to prevent robots from being overly
monitored. This limit allows the robot to forget the earlysubmissive or dominating.
samplings of waiting time, which have become obsolete. The
N , ) .
average target Wa}rgmg Flméi/ir(k) is updated in th_e same Dynamic Task Allocation
manner. Both waiting times are updated according to thé
Changing environment, and are inverse|y proportiona| ® th The distributed task allocation algorithm in ants can effi-
robot and target densities in region The target density Ciently arrange the ants in proportion to the amount of work
directly reflects the task demand of the region. The robtst the changing environment [39]. In a similar manner, our
density reflects the amount of physical interference in tif€heme aims to self-organize the robot coalitions accgrtin
region, which is inversely proportional to the task deman#le target distributions across the regions.
Therefore, the task demans;.(k) of a regionr can be  Our dynamic task allocation scheme is based on the notion
determined by robot as the ratio of the waiting times: of response thresholds [33]. In a threshold model, robots
Wi (k) with low response thresholds respond more readily to lower
= (16) levels of task demand than do robots with high response
Wi, (k) thresholds. Performing the task reduces the demand of the
The task demand;,.(k) will be used in the self-organizationtask. If robots with low thresholds perform the requiredsas
of social dominance as well as in dynamic task allocation. the task demand will never reach the thresholds of the high-
threshold robots. However, if the task demand increasgh:; hi
B. Self-Organization of Social Dominance threshold robots will engage in performing the task.
The division of labor in an ant colony is st v infl MRTA strategies that utilize fixed response thresholds]([29
y is strongly influence . : : )
5]) are incapable of responding effectively to dynamic

by its social dominance order [37], which self-organizes environments [33]. In contrast, the thresholds in our saem
match the task demands of the colony and the changin ) .
continuously updated by the self-organizing process of

. L . . al
environment. Our scheme is inspired by this concept to move . .
social dominance.

robots out of a region that has a lower target-to-robot dgnsi T .
. glon 'arg . dy To be effective in task allocation, a robot must at least
ratio than the other regions. Instead of fixing the dominamee L . ;
. . . .. have some knowledge of the task demands in its neighboring
der [38], the social dominance of the robots in each coaliso : ) : -
regions in order to make rational task decisions. To do dmtro

self-organized according to their individual task perfanmoe. . gltaintains a memory of the task demasigl of each region

Robots in the same coalition engage in dominance contests.at. . . . h
: : 9ag - %m ialized to 0) and the amount of tinig,. that it previously
a regular intervalr if they are within communication range. : . .
spent in regionr. T;. can be used as a certainty measure

The winner increases its tendency to stay in the currenbnegi " ; ) .
y y 0 gof Si-. In addition to computingS;, using Equation 165,

while the loser increases its tendency to leave the current , ;
: - o . can also be updated when rohoteceives a message from a
region and join another coalition in other regions. Wherotob

i encounters roboj in regionr, the probability of roboti neighboring roboy with 5. less thanS;,. ThenS;, andT;,

winning a contest against robgtis defined as: are updated to take the valugs. ande?a respectlvely._ln this
manner, the task demands of the regions are kept in memory.

n: Sy, 17) Robot: can then predict which region has the greatest task

n?S; +n3S3, demand and join that region. At every time intervalofif

Sir (k)

P(roboti winning) =
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Fig. 5. (a—d) Motion of robot (gray) in an environment withatwnforeseen obstacles (black) moving in anticlockwiseutarr paths. The robot successfully

negotiated past the extended walls and the dynamic obstaxleeach the goal (small black dot). (e) Motion of robot kdgray) in an environment with an
unforeseen static obstacle (light gray). The robot suésgsavigated through the checkpoints (small black dédspted at the doorways to reach the goal.

2z 0zs as a5 o 0 oz

S; receives no update, the certainty vallig is decreased body of radius 2.5 cm. Each sensor had a range of 17.5 cm,
by = while the task demand;, is increased by a small enabling the detection of obstacles at 20 cm or nearer frem th
amount, such that its magnitude reflects the robot’s matimat robot’s center, and a resolution of 0.5 cm to simulate noise.
to explore. Two tests were conducted to demonstrate the capabilities of
Our distributed MRTA scheme uses a stochastic probletaoperative EKMs in performing complex obstacle negatiati
solving methodology. It is performed at intervalsrofo allow tasks. The environment for the first test consisted of three
for multiple samplings of waiting time during each intervalrooms connected by two doorways (Fig. 5(a)—(d)). The middle
The probability of a robot to stay in its current region is room contained two obstacles moving in anticlockwise dacu

defined as: paths. The robot began in the left-most room and was tasked
S2 to move to the right-most room. Test results show that the
P(stay) = S2 1 (1-6,)21T.2" (20)  robot was able to negotiate past the extended walls and the

dynamic obstacles to reach the goal.

The environment for the second test consisted of three

rooms connected by two doorways and an unforeseen static

SZ 1 obstacle (Fig. 5(e)). The robot began in the top corner of
2 12 +T 212 (21)  the left-most room and was tasked to move into the narrow
, o o corner of the right-most room via checkpoints identified by a
whered,; is the pre-computed collision-free distance betweefqrion planner [16]. The robot was able to move through the
regionc and regionr, which can be viewed as the cost of taskpeckpoints to the goal by traversing between narrowlyapac
switching. Note that a robot that loses in the dominanceesint ., ex obstacles in the first and the last room, and overapmin
in a coalition does not always leave the region. If it exp®r&s 5, nforeseen concave obstacle in the middle room. Thig resu
a higher task demand in its region than in other regions,lit Wi, ther confirms the effectiveness of cooperative EKMs in
have a high te.ndency of remaiqing in its coalition. handling complex, unpredictable environments.

From Equauo.ns .20 and 2.1’ if the robot QOes nqt r.eSpondSimilar tests have also been performed on robots that use
to any regions, it will not switch task and will remain in the%otential fields. The robots were trapped by the extendel$ wal
current 90"""“”?- The TObF)t may also r_espond to more th_ hd narrowly spaced obstacles in the first and second test
one region. This conflict is resolved with a method that Irsespectively. This is because the obstacle avoidance behav

S'm"?r to Eq“‘?‘“"” 17. The probab.|||ty of a rabbthoosing ior counteracted the target reaching behavior to cancéi eac
a regionr that it has responded to is: other's effort

(SirInT;,. ) 29 These two tests show that for potential fields, though each
Z(SirlnTir)Q ’ (22) behavior proposes an action that is optimal by itself, the
- vector sum of these action commands produces a combined
action that may not satisfy the overall task. Cooperative

If the roboti chooses regiom that is not the current region EKMs. h id th f f h behavi
¢, then it will employ cooperative EKMs to move through S, NOWEVEr, considers the prelerences ot each behavior

the checkpoints plotted by the planner to region The and integrates them to determin an action that can satisty ea

. : . : havior to a certain degree. Such tightly coupled inteyact
generation of checkpoints is performed by the approxim k?g . .
cell decomposition method for motion planning [16]. %etween the behaviors and BCM enables the robot to achieve

more complex tasks.
2) Cooperative Multi-Robot Tracking of Moving Targets:
o ) ) This section evaluates qualitatively the cooperativekirag
A. Qualitative Evaluation of Cooperative EKMs capability of a team of robots, each fitted with cooperative
1) Robot Motion in Complex, Unpredictable Environment&£KMs, to maximize the coverage of multiple mobile targets
This section presents a qualitative evaluation of the absta(i.e., self-optimizing property). Two tests were conddcte
negotiation capabilities (i.e., self-protecting prop¥df a non- using Webots simulator with settings similar to those in
holonomic mobile robot endowed with cooperative EKMs iBection VI-A.1. The first test (Fig. 6) was performed to
complex, unpredictable environments. The experimentg wdrighlight the advantages of cooperative EKMs over poténtia
performed using Webots, a Khepera mobile robot simulatdields utilized by ([5], [8]) for the same task. The robot wgin
which incorporated 10% noise in its sensors and actuatgpstential fields got trapped by the static target while aftting
12 directed long-range sensors were also modelled arogsndtdt track all four targets. Eventually, the three mobile &dsg

On the other hand, the probability of a rohdb leave region
¢ to go to regionr is defined as:

P(leave =

P(choosg =

VI. EXPERIMENTS AND DISCUSSION
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robots in room 1 were removed (possibly due to bomb blast),
the remaining 60 robots in the other rooms were able to self-
configure and extend their coverage into this room. Henee, th
formation is self-healed.

B. Quantitative Evaluation of Ant-Based MRTA and Cooper-
ative EKMs

This section presents quantitative evaluations of the ant-
based MRTA and cooperative EKMs schemes for distributed
mobile sensor network coverage in a complex, unpredictable
environment. The experiments were performed using Webots

T simulator with settings similar to those in Section VI-A.1.
Fig-h 6. (Top row) Robot (gray)”usi?]g ahction Sug_flerpositionl\lc\iﬁot St;m:: Each robot could also sense targets and kin robots at 0.3 m
?cggo?sséaetr%?r?g:yr;?:S:t'(clizr\é?er;t.U?Bg{tgn? tro:ﬁ)e&% Jteﬁggﬁéiﬁfe“ték& »> or nearer from its center and send messages to other robots
could negotiate past the stationary target to track all éngets. that were less than 1 m away via short-range communication.
A 4 m x 3 m environment (Fig. 1a) was used to house the
Khepera robots and targets, which were randomly scattered
initially. The number of robots varied from 5, 10 to 15, which
corresponded to total robot sensing area of 11.8%, 23.6%,
and 35.3% of the environment size. The mobile targets were
forward-moving Braitenberg obstacle avoidance vehicky [
that changed their direction and speed with 5% probability.
out of the robots’ sensory range, the two robots moved in sigpdiirections 1he speed range of the robots and targets are 0-16 cm/s and
to track the targets. In this way, all targets could still Heserved by the (-12 cm/s respectively.
robots. 1) Sensor Network Coveragdhe first performance index
Stermines the overall sensor network coverage of the sobot

moved out of the robot’'s sensing range, causing the robotq

observe only one out of four targets. In contrast, the robot T n(t)
fitted with cooperative EKMs was able to negotiate past the sensor network coveragez 1OO—NT (23)
stationary target to track the three moving targets as wdll. t=1

four targets were thus observed by the robot. The resultsof twhere NV is the total number of targets; is the number
test demonstrated that local minima situations could tyreaff targets being tracked by the robots at timeand the
decrease the coverage of targets by robots using poten@éperiment lastsI” amount of time. N and 7" are fixed
fields. However, robots endowed with cooperative EKMs cdfSpectively as 30 targets and 10000 time steps at intervals

still provide maximum coverage under these situations. ~ of 128 ms.

The next test (Fig. 7) illustrates how two robots endowed Using :E'S |ntdex,ka quanntat;vt(ra] tesé \{vasdcotr}duclited dt.o
with cooperative EKMs cooperate to track four moving tasgetcompare € network coverage of the robots adopting Iive dis-

When the targets were moving out of the robots’ senso ibuted tracking strategies: (1) potential fields, (2) petive

range, the robot below chose to track the two targets mowaing KMs, (3) static placement, (4) auct_|0r_1-based negotiaton

the bottom left while the robot above responded by tracki )_ar_lt-_based MR.TA' Note that tr,"S |nd-ex reflects the self-
the two targets moving to the top right. In this manner, a timizing capability of t_he robots .trac!qng strategy. lika .
targets could be observed by the robots. This test shows t latter three strategies, potential fields and cooperati

the two robots can cooperate to track multiple moving targemvg/ll\fe aer)((a ”r;?ctg\éi gl?)ggl':ioﬁor:/t\;ict)rll gg:g'qﬁjaese;?:;n;; not
without communicating with each other. P ' P

i ) ] ] ) sensors are placed at least 0.6 m apart to ensure no overlap
3) Self-Healing of Multi-Robot FormationThis section jn coverage. With auction-based negotiation and ant-based
evaluates qualltauvely_ the s_elf—conﬁgurl_ng capability @ MRTA, the robots are fitted with cooperative EKMs to co-
team of robots, each fitted with cooperative EKMs, 10 repalfginate their target tracking within a region, avoid obkta,
unexpected damages to its formation. Fig. 8 shows the sagg; navigate between regions.
environment in Fig. 1a covered by a robot team. When theTegt results (Fig. 9a) show that ant-based MRTA provides
better coverage than the other strategies. The differeimces
- coverage between any two strategies have been verified using
Lo t-tests ¢ = 0.1) to be statistically significant. Notice that
T 5 mobile robots endowed with our method can track better

than 10 static sensors. Although auction-based negatiates
complex negotiation, longer communication range, and more
Fio. 8 Selfthealing of muli-ropot f on. When the otb | L information about the robots and targets, it does not perfor

1g. o. elf-healing of multi-robot formation. en the In room _ : : H H
were removed (left), the remaining 60 robots were able tbceelfigure and better than our ant-based Sche,me‘. This will be explained in
extend their coverage into this room (right), thus repairihe damage. the section of degree of specialization.

Ll
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Fig. 9. Comparison of performance using different motiontoal and task allocation strategies: (a) Sensor networerege, (b) total coalitional cost, and
(c) mean degree of specialization. ABMRTA = Ant-Based MRBBN = Auction-Based Negotiation, CEKM = Cooperative EKMd; B Potential Fields,
and~ = total robot sensing area to environment size ratio.

2) TOta| Coalltlonal COSt The Second performance |nde pruportiu>n<iftime in region switching gf;gortiunoftime in target searching «
determines the total coalitional cost of the robots, whish ©! TN _x—"_  —e@-aBMRTA
inspired by the set partitioning problem [28]. Given a set oos S 02 X _s(- ABN

connected regions where coverage tasks are to be perforr
and a setd of M robots, the task allocation algorithm assigr
a robot coalitionC,. C A to the coverage task in regionsuch

that (@)U, C = A, (b)Vr # 5,C, (N Cs = 0, and (c) eaclC,  ““4f
has a positive COi(nT/N) o (mT/M” wh_eremr an_dnr are Fig. 10. Compa?ison of proportions of time in (a) region shihg, and
the number of robots and targets in regionespectively and () target searching (i.e., not observing any targets) @etwexplicit task

N is the total number of targets. The objective is to minimizalocation schemes. ABMRTA = Ant-Based MRTA, ABN = Aucti@ased
the total coalitional cost [28]' Negotiation, andy = total robot sensing area to environment size ratio.

0.04

total coalitional cost Z ’& _ el (24
K

) the degree of specialization in the robots. Based on Shannon
N M

Wiener information variabled, the third performance index

. . I » guantifies the degree to which a robot specializes in a region
This index varies within the range [0,2]. A coalitional cost

of 0 implies that the robot distribution over all regions is degree of specialization 1—H
exactly proportional to the target distribution. In this mar, H = —Zpr logy p- (25)
interference between robots is at its minimum, which will r
improve overall coverage. High costs imply the oppositeteNowhere p,. is the proportion of time a robot stays in region
that this index reflects the self-configuring capability bét » for the task duration off’, and R is the total number of
robots’ tracking strategy. regions. This index varies within the range [0,1]. A degree
Test results (Fig. 9b) show that auction-based negotiatiofil implies the robot specializes in tracking only one regio
and ant-based MRTA have the lowest coalitional costs. Heneghereas a degree of 0 means the robot spends equal proportion
we can conclude from Figures 9a and 9b that, with a lowef time tracking in allR regions.
cost, a higher coverage can be achieved. Although auctionFigure 9c shows the mean degree of specialization of all the
based negotiation achieves slightly lower coalitionalt¢ban robots, which is lower for auction-based negotiation antd an
ant-based MRTA, its coverage is lower. This will be expkzht based MRTA. Hence, we can conclude from Figures 9b and 9c
in the next section. Coalitional cost has been validatedgusithat a larger number of generalist robots leads to a lower
t-tests ¢ = 0.1) to be significantly different for various coalitional cost. Although auction-based negotiationiaabs
strategies except those without explicit task allocatipe.,( lower degree of specialization and coalitional cost thatt an
potential fields and cooperative EKMs). This is expectedesinbased MRTA, its coverage is lower. This is because reducing
they do not perform coalition formation, which account fothe degree of specialization will incur more time in task
their higher costs. switching and consequently decrease the time for perfarmin
Coalitional cost is higher with fewer robots because witthe task [42]. In our test, this means that a robot endoweldl wit
less robots, it is more difficult to achieve the same proparti auction-based negotiation will switch between severabreg
of robots to that of the targets over all regions. thus incurring longer time in travelling between regionsl an
3) Degree of SpecializationTo achieve low coalitional searching for targets (Fig. 10). As a result, it spends less t
cost, the robot coalitions must be highly responsive, i.en target tracking. This accounts for the poorer coverage of
they can self-configure rapidly according to the changirauction-based negotiation than ant-based MRTA.
distributions of targets across regions. In a temporallying For ant-based MRTA, the mean degree of specialization
environment, an ant colony has to increase its responsgenis slightly higher with a smaller number of robots (Fig. 9c)
to cope with frequent changes in task demands by employibgcause each robot receives fewer messages from the other
more generalist ants, which perform a range of tasks [4f- Sirobots. As a result, the robots are less certain about tlke tas
ilarly, we will like to examine the effect of our non-statery demands in other regions. This causes the robots to be more
task environment, induced by moving robots and targets, specialized and less inclined to explore other regions.celen
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proportion of robots TABLE |
0.6 X — - auction-based negotiation PERFORMANCE COMPARISON OF EXPLICIT TASK ALLOCATION SCHEMES
05 7\, —@— ant-based MRTA _
,,7 FQ\\\ - - - potential fields Ant-based Auction-based

04 . /'// ’ ‘\:\\\ —A- - cooperative EKMs MRTA negotiation
034 7 // \\ N Performance indices FT AF ST FT AF ST
02 / N _‘\_‘;:X\ Sensor network coverage (%) 52.74 47.79 62.80 49.75 43.78158

s NNt N Total coalitional cost 0.392 0.415 0.346 0.370 0.396 0.326
0.1 27 NI Y degreeof Mean degree of specialization 0.349 0.562 0.526 0.323 0.5%473

03 T T p————=—==—4 specialization FT = Fast-moving Targets, AF = Actuator Failures, ST = Sloawving Targets.

[002)  [0204)  [040.6)  [0608)  [081]

Fig. 11. Comparison of proportions of robots within diffeteranges of 6) Robustness to Sensor Failure®ur scheme is robust to
degrees of specialization. . . . . L
sensor failures (i.e., self-healing property), which isicial

they spend less time in region switching (Fig. 10a). On tHer operating in dynamic, uncertain environments [1]. For
other hand, the mean degree of specialization for auctighample, in the event that 5 mobile sensors fail completeiy,
based negotiation is slightly lower with fewer robots besgauScheme can still outperform a fully operational static sens
fewer robots are available for switching regions to minieiznetwork (Fig. 9a).
coalitional cost when the target distributions change.réhe Apart from sensor deaths, the sensors may also malfunction
fore, each robot switches region more often (Fig. 10a). Fpartially by experiencing faulty on-board sensing hardwar
explicit task allocation schemes, we can observe in Fig. 1@gtuators. We have investigated the case of actuatoréailar
that a larger number of robots incurs longer target seagchi@ne-third of a network of 15 mobile sensors. This is simitar t
time. This is due to greater interference between robotth WHeploying a heterogeneous network of 10 mobile and 5 static
cooperative EKMs or potential fields, fewer robots resufensors except thatin our test, the sensors are not abléett de
in higher mean degree of specialization because the robaesuator malfunctions and be excluded from the task aliocat
interfere less with each other and stay longer in a particulerocess. Table | shows that when 5 sensors fail to move,
region. the task allocation schemes achieve poorer coverage, rhighe
The time spent in region switching and target searchiff@alitional cost, and higher mean degree of specialization
(Fig. 10) can also reflect the amount of energy expendéfese 5 sensors that are unable to switch regions have degree
in robot motion that is not due to target tracking. As suct®f specialization of 1, which result in an overall increase
they can be used as metrics of energy efficiency. Even thoufhthe mean degree of specialization of the network. The
ant-based MRTA provides better coverage than auctionebad@ss of mobility in these sensors reduces the network’s self
negotiation, we can observe that it is more energy efficient gonfiguring capability, thus increasing the coalitionalstco
it spends less time in region switching and target searchin@nd consequently, decreasing the coverage (Section VI-B.2
Figure 11 shows the proportions of robots within differerfPUr ant-based scheme can still achieve better coverage than
ranges of degrees of specialization for the case of 10 rob@¥ction-based negotiation in the case of actuator faildreis
Using ant-based MRTA and auction-based negotiation fBS been explained in Section VI-B.3.
explicit task allocation, most of the robots have degrees of7) Varying Dynamism of Task Environmenthe self-
specialization< 0.6. The other two methods without explicittonfiguring capabilities of the explicit task allocatiorhemes
task allocation have comparatively larger number of robofve been evaluated under varying degrees of dynamism of
with degrees of specialization 0.6. Hence, the methods withthe task environment. To do so, we vary the speed range at
explicit task allocation are less rigid to changes in regldask Which the targets move. Slower-moving targets will change
demands and incur lower coalitional cost. the regional target distributions less, thus making thd tas
4) Summary of Test ResultsCompared to the c)ther_environment less dynamic. The speed range of the targets

schemes, ant-based MRTA and auction-based negotiatian hifl, the previous tests have been set to 0-12 cm/s. To com-
lower degree of specialization, coalitional cost, and kighPare Wwith the previous results, we test the schemes with a
coverage. But the degree of specialization cannot be toatow'€duced target speed range of 0-4 cm/s (i.e., less dynamic
the cost of generalization (i.e., excessive time spentgiore €nvironment). As shown in Table I, when the targets move
switching and target searching) would then exceed its kieneffnore slowly, the task allocation schemes achieve better cov

This explains the higher coverage of ant-based MRTA ovBFage and lower coalitional cost but higher mean degree of
auction-based negotiation. specialization. Since the target distributions changevetp

the robots do not need to switch regions so often. Hence,

In the next few subsections, we will show more quantitativ@ey tend to specialize in specific regions. The slow-chaggi
test results that address other important issues in a seng@get distributions also give the robots greater amount of
network and its task environment. time to self-configure their coalitions more proportiogathus

5) Coverage of Evasive Target©ur approach has beenachieving lower coalitional cost. When the robot distribos
tested on the coverage of evasive targets that avoid thdngac are more proportional to that of the targets, a better cgeera
robots. Compared with the tests of 15 robots tracking ranan be achieved (Section VI-B.2). Under different degrefes o
domly moving targets (Fig. 9), our ant-based scheme cdn séhvironmental dynamism, our ant-based scheme can provide
maintain a 53% coverage. On the other hand, the coveragéefter coverage than auction-based negotiation even thibug
static sensors dropped significantly from 34% to 10% wherelaas higher coalitional costs and mean degree of specializat
the coverage of the other schemes dropped slightly. (Section VI-B.3).
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VIl. CONCLUSION [15] K. H. Low, W. K. Leow, and M. H. Ang, Jr., “Action selectiofor single-

. . . L and multi-robot tasks using cooperative extended Kohonapsih in
The work in this paper describes a distributed layered proc 13cAl 2003, pp. 1503_1502. ep

architecture for resource-constrained cooperation of il@ob[16] ——, “A hybrid mobile robot architecture with integrateplanning and
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