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Abstract

Content-based image retrieval has advanced from the initial stage of feature-
based approach towards the semantic approach. Existing semantics-based methods
typically classify an image or an image region into exactly one of several classes.
Due to the presence of noise and ambiguity in images, it is practically impossible to
derive classifiers that can accurately classify all the images or regions into a large
variety of classes. Therefore, some image retrieval methods have captured the
uncertainty of region classification in the region labels and used image structures
for disambiguation during image matching. This thesis presents a novel method of
semantic labeling that can assign multiple semantic labels to a region along with
the confidence measures of the assignment. Unlike existing classification methods,
it can learn to perform semantic labeling incrementally. Test results show that the
method is effective and accurate in labeling a wide variety of regions.
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Summary

Image region labeling is an important stage in high level image categorization and

retrieval.

We present a novel framework for assigning probabilistic labels to image regions

by making use of multiple types of features. In particular, we address the following

questions:

• What features describe the content of an image/region well?

• How to measure the similarity between features?

• How to find the best feature subset for labeling?

• How to assign probabilistic semantic labels to a region?

In this thesis, we use color, texture and edge features as the main features for label-

ing. We did extensive tests on adaptive color histograms and weighted correlation, the

dissimilarity measure for adaptive color histograms. We found that adaptive color his-

tograms together with weighted correlation gave the best overall performance in image

retrieval, classification and histogram clustering.
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Summary

To select the best feature subset for the labeling, a feature-based clustering is per-

formed. Different feature types are clustered separately using appropriate dissimilarity

measure. Based on the clustering result, different feature types are combined through a

probabilistic approach and information about the best feature type combination is de-

rived too. The feature subset, instead of every feature type, are used to label a region.

The labeling algorithm is independent of the types of features used and it can adapt to

more general or special labeling tasks easily. The labeling algorithm gives multiple fuzzy

labels together with corresponding confidence values to a region.

Test results have shown that this framework can find the salient features of respective

semantic classes and use the salient features to achieve good labeling performance. Even

for those regions with lower confidence which cannot be labeled very accurately, the

multiple semantic labels and the corresponding confidence values allow other higher-

level algorithm, such as fuzzy conceptual graph matching and attributed relational graph

matching, to disambiguate them using information about image structures. In summary,

this semantic labeling method is expected to contribute significantly in bridging up the

gap between low-level features and high-level semantics for effective image categorization

and retrieval.
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Chapter 1

Introduction

1.1 Background

Recent technological advancements in various fields of endeavor have combined to

make large databases of digital images accessible. These advancements include:

• Availability of image acquisition devices, such as scanners and digital cameras.

• Affordability of large storage units at much lower costs.

• Access to a large numbers of images via the internet, and the rapid growth of the

World-Wide Web where images can be easily added and accessed.

Searching through the large databases and finding a particular picture is painstakingly

time-consuming. This problem brought active research in efficient image retrieval tech-

niques based on image content. Early content-based image retrieval (CBIR) systems

follow the paradigm of representing images by low-level features, such as color, texture

1



1.1. BACKGROUND

and shape. Image retrieval is performed by matching the features of the query image

with those of the database images. This approach of matching global image features

is effective for retrieving simple images and images that contain single distinct objects.

CBIR systems such as QBIC [22], Virage [21], ImageRover [47], Photobook [40] and

VisualSEEK [50] all belong to this category.

For more complicated images with multiple objects and regions local features are

extracted from segmented regions or fixed-sized blocks. Images are then retrieved by

matching their region or block features with those in the query image. Such region-

based CBIR systems include Netra [30], Blobworld [11], and SIMPLIcity [56].

All the above methods use low-level feature-based methods to match images. They

are poor at capturing high-level concepts that are more natural to human users. They

will fail for queries such as “children playing in a park”. To satisfy such a query, the

systems must be able to automatically recognize children and parks in the images. That

is, it must understand the meaning or semantics of the image contents. In recent years,

CBIR research has shifted its focus towards bridging the gap between low-level features

and high-level semantics [48]. The general idea is to assign semantic labels to parts of an

image or the whole image. This thesis will focus on the problem of assigning semantic

labels to parts of an image.

2



1.2. PRELIMINARY RESULTS

1.2 Preliminary Results

During our initial research of image categorization, we realize that it is extremely

difficult to assign a semantic label to an image, especially when the image contains

multiple objects. At the same time, we find that we can assign semantic labels to the

regions of an image. The visual features of regions usually are more coherent compared

to image features and they have a relatively high correlation with region semantics. If

we can solve the semantic labeling problem at the region level, deriving semantic labels

at image level will become a possible task.

An interesting fact is that the assignment of region labels are fuzzy rather than crisp.

Though semantic understanding at the region level is not as complicated as that at the

image level, there is still uncertainty in the assignment of region labels. For example, a

green region can be either grass or foliage. We would like to preserve this ambiguity by

giving multiple labels together with confidence measures to each region. This information

can used by high-level algorithms such as fuzzy conceptual graph methods [34, 37, 41],

which can disambiguate the fuzzy labels using image structure information.

Almost all existing labeling approaches assign single crisp labels to the regions. Most

of them have been shown to work for only 10 or fewer semantic labels (e.g., [10, 16, 54]).

Moreover, the assignment is based on classification of the features in a Euclidean space,

which turns out to be not a reliable space for analyzing semantics.

For our research, we focus on exploring the correlation between features and semantic

classes, selecting a best feature subset for a given semantic class and solving the fuzzy

3



1.3. RESEARCH OBJECTIVES

region labeling problem using a novel method.

1.3 Research Objectives

This thesis work aims at developing a general framework for performing semantic

labeling of image regions based on multiple region features. It consists of three major

objectives:

1. Analyze the salient features for a specific semantic class. Salient features are fea-

tures that are highly correlated with a semantic class. In practice, a semantic

class is often associated with a specific combination of different types of features.

Instead of using all the features extracted for image/region labeling, we can just

make use of the salient features.

2. Realize fuzzy labeling by using a probabilistic approach.

3. Apply the method to label complex images.

1.4 Road Map

Figure 1.1 shows the major components of the fuzzy region labeling system. It con-

sists of four components: feature extraction, feature-based region clustering, probability

estimation and probabilistic labeling. In the feature extraction module, different types

of features are extracted from the regions. What features to extract and how to compare

these features are important for region and image classification. This will be presented

4



1.4. ROAD MAP

Feature

Extraction
Region

Clustering

Feature-Based Probability 

Estimation Labels

Probabilistic 

Figure 1.1: System Overview.

in Chapter 4. After feature extraction, feature-based region clustering is performed.

Different feature types are clustered separately using appropriate dissimilarity measure.

In the probability estimation module, different feature types are combined through a

probabilistic approach. At this stage, information about best feature subset is derived.

The best feature subset, instead of every feature type, are used to label a region. Since

the labeling algorithm is independent of the types of features used, it is presented as

a generic algorithm in Chapter 3. The experimental results for feature subset selection

and labeling performance are described in Chapter 5. Based on the experimental results

and findings, conclusions and directions are discussed in Chapter 6.

Before we move on to the detailed algorithms and implementation of the fuzzy labeling

system, let us review the existing methods that are related to the proposed labeling

method in Chapter 2 first.
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Chapter 2

Related Work

There are two levels of semantic labeling. At the image level, it is called global

semantic labeling. At the image region level, it is called local semantic labeling. In the

following sections we will discuss the related research work according to these two levels

separately.

2.1 Global Semantic Labeling

Three well-known methods have been proposed for global semantic labeling. Szum-

mer and Picard [52] divided an image into blocks. Color and texture features were

extracted from each block. A k-nearest neighbor classifier was used to classify blocks

into indoor or outdoor class based on single image feature. Classification of images into

indoor or outdoor class is done by a majority vote of the individual single-feature block

classifiers. The classification rate was reported around 90% when evaluated on an image

6



2.1. GLOBAL SEMANTIC LABELING

database of 1,300 images by Kodak. Szummer and Picard claimed that the relationship

between two features in block classification is almost certainly non-linear. Hence any lin-

ear combination of different features is not expected to produce satisfactory classification

accuracy. This is consistent with our research findings.

Vailaya et al. [55] performed a quantitative study of various features for the city vs.

landscape classification problems. Those features include: color histogram, color coher-

ence vector, DCT coefficients, edge direction histogram and edge direction coherence

vector. Edge direction-based features was chosen as they have the highest discriminative

power for the city vs. landscape classification problem. A weighted k-nearest neighbor

classifier was used for the classification which resulted in an accuracy of 93.9% when

evaluated on an image database of 2,716 images using the leave-one-out method. This

approach has been extended to further classify 528 landscape images into forests, moun-

tains, and sunset/sunrise images. First, the input images are classified as sunset/sunrise

images vs. forest & mountain images (94.5% accuracy) and then the forest & mountain

images are classified as forest images or mountain images (91.7% accuracy). Their final

goal is to combine multiple 2-class classifiers into a single hierarchical classifier.

Belongie et al. [2] made use of region blobs for classification. A blob represents a

localized region of coherent color and texture. An Expectation-Maximization algorithm

was used to find the coherent color and texture for a region and to combine them using

mixture model. A naive Bayes classifier was used for image classification based on the

presence or absence of region blobs. It classified images into categories such as air shows,

7



2.2. LOCAL SEMANTIC LABELING

brown and black bears, polar bears, elephants, tigers, cheetahs, bald eagles, mountains,

fields, night scenes, deserts and sunsets.

In these three research works, the classification is done at image level based on features

of the entire image or of the regions or blocks. They only work for a small set of semantic

classes. As many images in practical applications are complex images containing multiple

objects, global semantic classification will become extremely difficult. An alternative

approach is to perform global semantic classification based on local semantics of local

features.

2.2 Local Semantic Labeling

Existing local semantic labeling or region labeling methods include [10, 16, 54].

Campbell et al. [10] trained a neural network to classify regions based on features such

as color, texture, shape, size, rotation, and centroid. The regions were classified into 11

categories, such as sky, vegetation, road marking, road, pavement, building, fence/wall,

road sign, signs/poles, shadow and mobile objects. The neural network achieved 83.9%

accuracy over 3,000 test regions segmented from images in the Bristol Database.

Town and Sinclair [54] also applied a neural network to classify regions into seman-

tic classes based on region features that include area, boundary length, color mean and

covariance matrix, texture orientation and density, moment, etc. They obtained a clas-

sification accuracy of about 90% but the test was performed on only 11 classes that

contain well-defined textures such as brick, cloud, fur, grass, road, and sand.

8



2.2. LOCAL SEMANTIC LABELING

Fung and Loe [16] used supervised clustering of color features of image blocks to

group them into a large number of elementary clusters, which were further grouped into

conglomerate clusters. Each conglomerate cluster was associated with a semantic region

class. Fixed-sized image blocks were assigned to the clusters using k-nearest-neighbor

algorithm, and were then assigned the semantic labels of the majority clusters. The

number of region classes and the accuracy of region classification were not reported in

the paper.

The common shortcomings of the existing region labeling methods include the fol-

lowing:

• Only one crisp label is assigned to a region. Due to the presence of the noise and

ambiguity, it is very difficult to derive very accurate classifiers for a large variety

of region classes.

• They classify region features in a Euclidean or linear vector space that combines

various feature types linearly. This vector-space approach is convenient but requires

the assumption that the features types are independent of each other and, thus, can

be regarded as forming orthogonal dimensions of the vector space. This assumption

is generally false and has been shown to lead to poorer classification and clustering

results in general [26]. Further discussion of this issue is presented in Chapter 3.

• Existing methods have been demonstrated to work on only a small number of about

10 region classes. Moreover, images in the region classes usually have well-defined

texture patterns.

9



2.2. LOCAL SEMANTIC LABELING

• The classification methods cannot learn from new examples incrementally. Ad-

dition of new training samples, feature types, and semantic classes entails the

re-training of methods on the entire collection of old and new training samples.

In contrast, our method does not combine different feature types linearly in a Eu-

clidean space. Instead, it adopts a probabilistic approach that captures the correlation

between feature combinations and semantic classes. It adopts an incremental learning

algorithm that can make uses of the dissimilarity measure that is appropriate for each

feature type. Finally, it has been tested on 30 semantic classes that span a wide variety

of region types that are not restricted to images that contain well-defined textures.

10



Chapter 3

Probabilistic Semantic Labeling

3.1 Overview

Semantic labeling can be framed as a problem of classifying an image region (or

image patch, fixed-sized block) R to one of several semantic classes Ci, i = 1, . . . ,M . In

practice, it is not possible to achieve perfect classification due to the presence of noise

and ambiguity in the region features. A better approach is to represent the uncertainty

of classification in the semantic labels and to defer the final decision to a latter stage

at which the image structure can be taken into account using, for instance, the fuzzy

conceptual graph matching method [37]. Let us denote by Qi(R) the confidence of

classifying region R into semantic class Ci. Then, the semantic labeling problem can be

defined as follows:

Semantic Labeling

11



3.1. OVERVIEW

Given a region R and M semantic classes Ci, i = 1, . . . ,M , compute the

confidence Qi(R) that R belongs to Ci for each i.

A region R contains a set of features Ft of type t = 1, . . . ,m, each having a value vt.

Each feature Ft can contain more than one component, as for color histograms, Gabor

texture features, wavelet features, etc. The symbols Ft and vt denote the whole feature

and feature value instead of the individual component.

The standard method of computing Qi(R) = Qi(v1, . . . , vm) is the vector space ap-

proach: Regard each set of feature values as a vector v = [v1, . . . , vm]T in a linear vector

space, and estimate Qi using vector space classification or function approximation. It

is well-known that the various feature types are not independent of each other and the

scales of the feature types are different. So, forming a linear vector space by assigning

each feature type (or, more commonly, each feature component of each feature type) to

an orthogonal dimension of the vector space is not expected to produce reliable results

in general [52].

The usual method of dealing with this problem is to represent a region as a linear

combination of feature values, and define Qi(R) as a function of the linear combination:

Qi(R) = Qi

(∑

t

wtvt

)
= Qi(w

Tv) (3.1)

for some weight vector w = [w1, . . . , wm]T . Another method is to generalize the weighted

sum to the quadratic form [46]:

Qi(R) = Qi

(
(v − µ)TX−1(v − µ)

)
(3.2)

12



3.2. PROBABILISTIC LABELING

where µ is a m×1 weight matrix and X is a m×m weight matrix. The matrices µ and X

can be taken as the mean vector and the covariance matrix of v, but this would require

the assumption of a linear vector space, which is not desirable as discussed above. So,

more appropriate weight matrices should be obtained. The main difficulty is that it is

not known a priori what are the appropriate values of the weights. It is also difficult

to apply a learning method to obtain the weight values (as in [46]) because the desired

values of Qi(R) are also unknown a priori, and they depend very much on the type of

classifier used.

3.2 Probabilistic Labeling

To resolve the problems highlighted above, we present a probabilistic method of

computing Qi(R) by estimating the conditional probability P (Ci | vt). The approach

encompasses the following characteristics:

• It can make use of the dissimilarity measures that are appropriate for the various

types of features [26, 43] instead of the Euclidean distance.

• It does not require the use of weights to combine the various feature types.

• It adopts a learning approach that can adapt incrementally to the inclusion of new

training samples, feature types, and semantic classes.

The probabilistic labeling method consists of two stages: (1) semantic class learning

and (2) region labeling.

13



3.2.1 Semantic Class Learning

Cluster Ωt1 Cluster Ωt2

Figure 3.1: Clustering of training samples for a feature type t. The labels 1, 2, 3, 4 denote the

semantic classes to which the training samples belong.

3.2.1 Semantic Class Learning

The goal of the semantic class learning stage is to determine the conditional prob-

abilities associated with each semantic class. It first clusters a set of training sample

regions Rj, each assigned a pre-defined semantic class Ci, according to each feature type

using the dissimilarity measure that is appropriate for the feature type (see Section 3 for

details). This process produces a set of clusters Ωtk, for each feature type t (Figure 3.1).

After clustering, the conditional probability P (Ci |Ωtk) for semantic class Ci given clus-

ter Ωtk is estimated. Assuming that the distribution within each cluster is uniform, then

P (Ci |Ωtk) can be estimated from the number of regions in the cluster:

P (Ci |Ωtk) =
P (Ci,Ωtk)

P (Ωtk)
=
|Ci ∩ Ωtk|
|Ωtk|

(3.3)

14



3.2.1 Semantic Class Learning

(1,r1)

(1,r2)

(1.r3)

(2,r4)

(3,r6)

(2,r7)

(3,r10)

(4,r8)

(3,r9)

(1,r1)

(1,r2)
(2,r4)

(3,r6)

(4,r8)

(3,r10)

(2,r7)
(4,r11)

Cluster k of Feature Type t Cluster k′ of Feature Type t′

Figure 3.2: Combining clusters of different feature types.

where |Ωtk| denotes the number of regions in cluster Ωtk, and |Ci ∩ Ωtk| the number of

regions in Ωtk that belong to semantic class Ci. Figure 3.1 shows an example of how to cal-

culate P (Ci |Ωtk) for feature type t. For example, P (C1 |Ωt1) = 3/15 = 0.20, where 3 is

the number of data that come from class C1 and 15 is the total number of data being clus-

tered into cluster 1. Similarly, P (C1 |Ωt2) = 2/11 ' 0.18. To combine multiple feature

types, we can determine the cluster combinations Ψ(τ, κ, n) = {Ωτ(1),κ(1), . . . ,Ωτ(n),κ(n)}

that have high probabilities of associating with some semantic classes Ci:

P (Ci |Ψ(τ, κ, n)) = P (Ci |Ωτ(1),κ(1), . . . ,Ωτ(n),κ(n))

=

∣∣∣∣∣∣∣
Ci ∩

⋂

l

Ωτ(l),κ(l)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

⋂

l

Ωτ(l),κ(l)

∣∣∣∣∣∣∣

.

(3.4)

The functions τ(l), l = 1, . . . , n, denote a combination of feature types and κ(l) a combi-

nation of cluster indices. Figure 3.2 shows an example of how to compute P (Ci |Ψ(τ, κ, n)).

In this example, the pairs (1, r1), (2, r2), etc. refer to region r1 with class label 1, region

r2 with class label 2, and so on. So, from Figure 3.2, P (C2, |Ωtk,Ωt′k′) = 2/7 ' 0.29,
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: known clusters derived from training. 

x : sample falls into cluster 1 of feature type t and 
  cluster 3 of feature type t’.

x

x

cluster 1

cluster 3

Feature Type t’Feature Type t

y

y

cluster 2

y : sample falls into cluster 2 of feature type t only 

Figure 3.3: An example to illustrate the labeling process.

this value is larger than both P (C2 |Ωtk) = 2/9 ' 0.22 and P (C2 |Ωt′k′) = 2/8 = 0.25.

In practice, a semantic class is often associated with a specific combination of feature

types. So, it is necessary to compute only the conditional probabilities P (Ci |Ψ(τ, κ, n))

that are significantly larger than zero; those close to zero can be regarded as zero. The

cluster combination Ψ(τ, κ, n), the associated semantic classes Ci, and the corresponding

conditional probability values P (Ci |Ψ(τ, κ, n)) are stored for region labeling.
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3.2.2 Region Labeling

After the learning stage, a region R can be labeled by determining the associated

semantic classes. Given the region R which contains a set of feature values vt, the clusters

that are nearest to the feature values vt, for each feature type t, are determined. Next,

the nearest clusters found are matched with the stored cluster combinations, obtained

during the learning stage, that are associated with some semantic classes (Figure 3.3

shows an example of this labeling process, data sample y is labeled based on feature t

only.).

The confidence measure Qi(R) can now be computed from the conditional probabil-

ities of the matching cluster combinations Ψ(τ, κ, n):

Qi(R) = max
τ,κ,n

P (Ci |Ψ(τ, κ, n)) . (3.5)

Note that Qi(R) as defined in Eq. 3.5 is no longer a conditional probability:

• The Ci’s in Eq. 3.5 may be conditioned on different sets of feature types.

• While
∑

i P (Ci |Ψ(τ, κ, n)) = 1 for each cluster combination Ψ(τ, κ, n), the sum

∑
iQi(R) 6= 1 in general.

Nevertheless, Qi(R) is well-founded on probability theory and is, thus, a good measure

of the confidence that region R belongs to class Ci.
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3.2.3 Discussion

The semantic labeling method presented above computes Qi(R) from the proba-

bilities conditioned on the clusters nearest to the feature values vt of R instead of the

probabilities conditioned on the feature values vt. In principle, it is possible to estimate

P (Ci | vt) using more sophisticated methods such as Gaussian mixture, e.g.,

P (Ci | vt) =
∑

k

wk exp

(
−‖vt − µtk‖

2

2σ2
tk

)
(3.6)

where wk is a weighting factor that can be optimized during learning, µtk and σtk are

derived from the location and radius of cluster Ωtk, and ‖vt − µtk‖ is an appropriate

dissimilarity measure for feature type t. However, estimation of probability density that

is conditioned on a combination of feature types is more complex. Let v = [v1, . . . , vm]T

denote a vector that combines the feature values vt, t = 1, . . . ,m. Then, a natural

extension of Eq 3.6 to the multi-dimensional case is

P (Ci |v) =
∑

k

wk exp

(
−1

2
(v − µ)TX−1(v − µ)

)
(3.7)

where µ = [µ1,κ(1), . . . , µm,κ(m)]
T is the vector of the centroids of the clusters in which

the feature values vt lie, and X is an appropriate weight matrix. That is, this method

defines the conditional probability in terms of a quadratic form of v, which is undesirable

(as discussed in Section 3.1). Therefore, in our current formulation, the probability

distribution is assumed to be uniform within each cluster and 0 outside.

It is easy to see that the semantic class learning method discussed above is incremen-

tal. In some cases, feature types and semantic classes can be added without having to
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3.2.3 Discussion

re-run the learning algorithm on the entire set of training samples. Let us consider the

following cases. Suppose that clusters Ωtk have been derived for feature type t = 1, . . . ,m

and cluster index k.

• Add a new feature type m+ 1.

In this case, we have to cluster the training samples only with respect to the new

feature type m + 1 to obtain clusters Ωm+1,k. Given these new clusters, a new

set of conditional probabilities P (Ci |Ψ(τ, κ, n) can be computed to associate the

semantic classes Ci with the cluster combinations Ψ(τ, κ, n).

• Add a new semantic class C ′ to existing training samples.

Adding a new semantic class to existing training samples does not change their

cluster memberships because the samples are clustered based on their feature values

in the feature space. Therefore, the new semantic class can be added to the samples

without the need to cluster them again, and a new set of conditional probabilities

P (C ′ |Ψ(τ, κ, n)) can be computed.

• Add a new semantic class with new training samples.

Even for this case, it is still possible to avoid clustering existing training samples

all over again. For example, the centroid of an existing cluster can represent

the existing training samples that fall within the cluster. If the existing samples

have been well clustered, then further clustering does not change their cluster

membership significantly. So, the learning algorithm needs to cluster only the new

training samples together with the existing cluster centroids, with more weights
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given to the cluster centroids because each centroid represents a set of existing

training samples instead of a single sample.

In comparison, commonly used classifiers such as neural network and support vector

machines are not incremental. Addition of new feature types, semantic classes, or train-

ing samples always entails the re-training of the classifiers on the entire set of training

samples.

3.3 Algorithms

The semantic labeling method described in previous section consists of several main

algorithms: region clustering, probability estimation and region labeling. The first two

algorithms are used for semantic class learning.

3.3.1 Region Clustering

Training sample regions Rj are clustered according to individual feature type t

to obtain clusters Ωtk. An adaptive k-means clustering algorithm is used so that the

appropriate number of clusters can be determined automatically. The algorithm can be

summarized as follows:

Adaptive Clustering

Repeat

For each feature value vt of each region,
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3.3.1 Region Clustering

Find the nearest cluster Ωtk to vt.

If no cluster is found or distance d(Ωtk, vt) ≥ st,

create a new cluster with feature vt;

Else, if d(Ωtk, vt) ≤ rt,

add feature value vt to cluster Ωtk.

For each cluster Ωti,

If cluster Ωti has at least Nm feature values,

update centroid of cluster Ωti;

Else, remove cluster Ωti.

The centroid of cluster Ωti is a generalized mean of the feature values in the cluster

(see Chapter 4 for more discussion). The function d(Ωtk, vt) is a dissimilarity measure

appropriate for the feature type t [26, 43] (see Chapter 4 for more details). Nm is the

minimum number of feature values in a cluster so that a cluster will not be too small.

The adaptive clustering algorithm groups a feature value vt into its nearest cluster if

it is near enough (d(Ωtk, vt) ≤ rt). On the other hand, if the feature value is far enough

(d(Ωtk, vt) ≥ st) from its nearest cluster, then a new cluster is created. Otherwise, it

is left unclustered and will be considered again in the next iteration. This clustering

algorithm, thus, ensures that each cluster has a maximum radius of rt and that the

clusters are separated by the distance of approximately st called the nominal cluster

separation.
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3.3.1 Region Clustering

The maximum radius rt, for feature type t, is computed by measuring the average

distance between the samples in a class:

rt =
1

M

∑

i

1

N(i)

∑

Rj ,Rk∈Ci
d(vtj, vtk) (3.8)

where M is the number of classes, N(i) is the number of sample pairs in class Ci, and

vtj and vtk are the type-t feature values of regions Rj and Rk in class Ci. The same

algorithm is applied to different feature types separately. The value of st is defined as a

multiple γ of rt, i.e., st = γrt. Reasonable values of γ range from 0 (for complete over-

lapping of the clusters) to 2 (for non-overlapping of clusters). Therefore, the algorithm

can automatically determine the number of clusters required to effectively represent the

clusterings of feature values. It also ensures that each cluster has a significant number

of (at least Nm) feature values; otherwise, the cluster is removed.

The clustering algorithm terminates after running for several iterations (usually 10,

for efficiency sake). At this stage, some training samples may still be unclustered. To

handle this case, the following algorithm is used:

Adjustment of rt

For each feature value vt of each region,

Find the nearest cluster Ωtk to vt.

If d(Ωtk, vt) ≥ rt,

update rt to rtk = d(Ωtk, vt).

This adjustment permits all training samples to be clustered by enlarging the cluster

radius rt to rtk, which can be different for different clusters. If the number of unclustered
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3.3.2 Probability Estimation

training samples is small, updating rt to rtk is not necessary.

3.3.2 Probability Estimation

After clustering the regions according to individual feature types, the conditional

probability P (Ci |Ωtk) of each cluster Ωtk is estimated. In addition, the conditional

probabilities P (Ci |Ψ(τ, κ, n)) of various cluster combinations Ψ(τ, κ, n) are also esti-

mated.

In order to fully assess the accuracy of the semantic labeling approach, the conditional

probability for all possible combinations of 1 to 4 features are computed in the current

implementation so that the combinations with the highest probabilities can be identified.

In actual applications, a cluster selection procedure can be performed to select candidate

cluster combinations that are likely to yield significant probabilities. This method would

remove the need to compute the probabilities for all possible combinations.

Probability Estimation

For each semantic class Ci,

For n = 1, . . . , 4,

For each cluster combination Ψ(τ, κ, n),

Compute P (Ci |Ψ(τ, κ, n)).

If P (Ci |Ψ(τ, κ, n)) is larger than 0,

store Ci, Ψ(τ, κ, n), and P (Ci |Ψ(τ, κ, n)).

The cluster combinations Ψ(τ, κ, n), their associated semantic classes Ci, and the corre-
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3.3.2 Probability Estimation

sponding conditional probabilities P (Ci |Ψ(τ, κ, n)) that are larger than zero are stored

for region labeling.

For each combination Ψ(τ, κ, n), an efficient set intersection algorithm is used to

calculate P (Ci |Ψ(τ, κ, n)) according to Eq. 3.4.

Set Intersection

Given Sets Ω1 and Ω2, sort the elements in each set in increasing order of element index.

Set L1 to be the index of the smallest element in Ω1,

Set L2 to be the index of the smallest element in Ω2.

While both sets Ω1 and Ω2 are not exhausted,

if Ω1[L1] < Ω2[L2],

L1 + +,

else if Ω1[L1] > Ω2[L2],

L2 + +,

else

add the common element, i.e., Ω[L1] = Ω[L2], to the resulting Set Ωr,

increment L1 and L2

The complexity of this set intersection algorithm is O(n logn), n is the size of the smaller

set between the two.
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3.3.3 Region Labeling

The region labeling algorithm determines the combinations of feature values of a

region that are associated with some semantic classes with high probabilities. These

semantic classes and the probabilities are assigned to the region as its semantic labels.

In general, a region can be assigned multiple semantic classes.

Region Labeling

Given a region R

Find the nearest cluster of type t in which each feature value vt of R falls within the

the radius rtk of the corresponding nearest cluster k.

Find the combinations Ψj of these clusters that match the stored cluster

combinations.

Retrieve the classes Ci and probabilities P (Ci |Ψj)

associated with the matching cluster combinations Ψj.

For each retrieved class Ci,

Find the Ψk with the largest probability:

P (Ci |Ψk) = max
j
P (Ci |Ψj)

Assign Ci and P (Ci |Ψk) to R,

i.e., Qi(R) = P (Ci |Ψk).

For testing regions, it is possible that a feature value vt may not fall within any known

clusters of type t. This is because the testing region might be an outlier which never

occurs in the training region. In this case, no cluster of type t is found.
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3.3.3 Region Labeling

For the purpose of assessing the effectiveness of the semantic labeling method, region

classification is also performed to assign the semantic label with the highest confidence

to a region.

Region Classification

Given a region R

Perform region labeling.

Find the Ck with the largest confidence:

Q(Ck |R) = max
i
Q(Ci |R)

If Q(Ck |R) > threshold Γ,

assign Ck to R;

else assign “unknown class” to R.

When the probability is low, it is better to assign the “unknown class” label to a region

than to assign it a wrong label.
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Chapter 4

Features and Dissimilarity Measures

In the current implementation, four different types of features are extracted for each

image block. They are adaptive color histograms, Gabor features, multi-resolution si-

multaneous autoregressive (MRSAR) features and edge histograms. These features are

known as good features for image classification and retrieval [26, 29, 32, 39] in general.

4.1 Color Histograms

Color information vary substantially over an image or an image part. Such in-

formation can be more fully described by a distribution of features instead of using a

single feature. Histograms are often used to estimate the distributions. There are two

methods of generating histograms: fixed binning and adaptive binning. Typically, a

fixed-binning method induces histogram bins by partitioning the color space into rect-

angular bins [13, 14, 35, 38, 47, 50, 55]. Once the bins are derived, they are fixed and
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4.1.1 Fixed-Binning Histogram

the same binning scheme is applied to all images. On the other hand, adaptive bin-

ning adapts to the actual distributions of colors in image [4, 15, 17, 19, 24, 43, 45].

As a result, different binnings are induced for different images. It is a common under-

standing that adaptively-binned histograms can represent the distributions of colors in

images more efficiently than do histograms with fixed binning [4, 15, 17, 43, 45]. How-

ever, existing systems ([13, 14, 22, 35, 50, 47, 55]) almost exclusively adopt fixed-binning

histograms because among existing well-known dissimilarity measures, only the Earth

Mover’s Distance (EMD) can compare histograms with different binnings [43, 45]. EMD

is computationally more expensive than other dissimilarity measures because it requires

an optimization process.

4.1.1 Fixed-Binning Histogram

There are two types of fixed binning schemes: regular partitioning and clustering.

The first method simply partitions the axes of a target color space into regular intervals,

thus producing rectangular bins. Typically, one of the three color axes is regarded as

conveying more important information and is partitioned into more intervals than are

the other two axes. For example, VisualSeek [50] partitions the HSV space into 18×3×3

color bins and 4 grey bins, producing 166 bins. PicHunter [14] also partitions the HSV

space in a similar manner. The CIELAB and CIELUV spaces have been also used [35, 47]

because they are more perceptually uniform [3]. In partitioning these spaces, bins that

correspond to illegal RGB colors are usually discarded.
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The second method partitions a color space into a large number of cells, which are

then clustered by a clustering algorithm such as the k-means. For example, QBIC [22]

partitioned the RGB space into 16×16×16 cells, mapped the cells to a modified Munsell

HVC space, and then clustered the cells into k clusters. Vailaya et al. [55] applied a

similar method but mapped the RGB cells into the HSV space, where 64 bins were

produced. Quicklook [13] mapped sRGB [1] cells into CIELAB and clustered them into

64 bins.

4.1.2 Adaptive Color Histogram

In [27, 26], we formulated a dissimilarity measure for color histogram based on

weighted correlation (WC) of bin similarity. Here we just give a summary of the formu-

lation.

An adaptive histogram H = (n, C,H) is defined as a 3-tuple consisting of a set C of

n bins ci, i = 1, . . . , n, and a set H of corresponding bin counts hi ≥ 0. The weighted

correlation between histograms G = (m, {bi}, {gi}) and H = (n, {ci}, {hi}), denoted as

G ·H, is defined as

G ·H =
m∑

i=1

n∑

j=1

w(bi, cj) gi, hj . (4.1)

The similarity w(bi, cj) between bins bi and cj is defined in terms of the volume of

intersection Vs between the bins:

w(c, c′) = w(α) =
Vs
V

=





1− 3

4
α +

1

16
α3 if 0 ≤ α ≤ 2

0 otherwise.

(4.2)
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where α = d/R is the ratio of the cluster separation d and the bin radius R.

A histogram H can be normalized into H by dividing each bin count by the histogram

norm ‖H‖ =
√
H ·H. The similarity s(G,H) betweenG andH is defined as the weighted

correlation between their normalized forms: s(G,H) = G · H, and the dissimilarity

d(G,H) between them is defined as d(G,H) = 1− s(G,H).

The mean histogram is defined in terms of histogram merging operation. Let his-

togram G = X ∪ Y and H = X ′ ∪ Z such that X and X ′ have the same set of bins

and X, Y , and Z have disjoint sets of bins. The the merged histogram G ] H =

(X∪Y )] (X ′∪Z) = (X+X ′)∪Y ∪Z. That is, two histograms are merged by collecting

all the bins and add the bin counts of identical bins. Note that it is always possible to

express two histograms G and H in the form given previously for histogram merging to

be well-defined. It is shown in [27] that the merging of histograms Hi is equivalent to

the mean of histogram M :

M =
⊎

i

H i (4.3)

The usual definition of mean divides the sum by the number of items that are added

together. For adaptive histograms, this division is not necessary because histogram

similarity and dissimilarity are defined in terms of normalized histograms (E.q 4.3) ([27]).

4.1.3 Adaptive Binning

Adaptive binning can be achieved by the k-means clustering algorithm or its variants.

To group the pixels into clusters, the same algorithm used for region clustering (See
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Chapter 3) is used with different ways of calculating the distance from a pixel p to

cluster centroid ck of cluster k and cluster centroid. In this context, the cluster centroid

is the average color of all the pixels within the same cluster.

The distance dkp between the centroid ck of cluster k and pixel p with color cp is

defined as the CIE94 color-difference equation:

dkp =

[(
∆L∗

kLSL

)2

+

(
∆C∗ab
kCSC

)2

+

(
∆H∗ab
kHSH

)2
]1/2

(4.4)

where ∆L∗, ∆C∗ab, and ∆H∗ab are the differences in lightness, chrome, and hue between

ck and cp, SL = 1, SC = 1 + 0.045 C̄∗ab, SH = 1 + 0.015 C̄∗ab, and kL = kC = kH = 1 for

reference conditions. The variable C̄∗ab is the geometric mean between the chrome values

of ck and cp, i.e., C̄∗ab =
√
C∗ab,kC

∗
ab,p. The CIE94 color-difference equation is used instead

of the simpler Euclidean distance in CIELAB space because recent psychological studies

show that CIE94 is more perceptually uniform that Euclidean distance [20, 36, 51].

This adaptive clustering algorithm is similar to that of Gong et al. [17]. Both algo-

rithms ensure that the clusters are not too large in volume and not too close to each

others. However, our adaptive algorithm is simpler than that in [17], does not require

seed initialization, and can automatically determine the appropriate number of clusters.

In practice, for efficiency sake, the algorithm is repeated for only 10 iterations. When

the algorithm terminates, some colors may still be unclustered. During color quantization

or histogram generation, these unclustered colors are quantized to the colors of their

nearest clusters. Empirical tests show that having a small amount of unclustered colors

do not produce significant error in the color quantization results. For instance, 5%
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unclustered colors contribute only a 1% increase in the mean error of color quantization

compared to the case in which all the colors are clustered. In fact, leaving some colors

unclustered makes the algorithm more robust against noise colors that differ significantly

from other main colors in the image. These noise colors typically occur at abrupt color

discontinuities in the images.

4.1.4 Quantitative Evaluation of Adaptive Color Histogram

In the initial feature evaluation, we did a quantitative evaluation of the adaptive

color histograms and weighted correlation. The quantitative evaluation consists of three

tests. The first test evaluated the accuracy of adaptive clustering in retaining color

information. The second and third tests evaluated the combined performance of adaptive

color histograms and weighted correlation in image retrieval and classification.

Color Retention

In this test, the performance of the adaptive color histograms was compared with the

color histograms generated by regular partitioning and color space clustering. The colors

of the images were assumed to be represented in the sRGB space [1], and the target color

space was CIELAB.

Test Setup

The adaptive color histograms were tested with cluster radius R ranging from 7.5

to 22.5 and nominal cluster separator factor γ ranging from 1.1 to 1.5. With this
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4.1.4 Quantitative Evaluation of Adaptive Color Histogram

set of parameter values, about 95% or more of the colors in every image could be

clustered during the clustering process.

For regular partitioning, the L∗-axis of the CIELAB space was partitioned into l

equal intervals (l = 8, 10, 12, 14, 16), and the a∗- and b∗- axes were partitioned

into m equal intervals (m = 5, 8, 10 and m ≤ l). The centroids of the bins were

mapped back to the sRGB space and bins with illegal sRGB values were discarded.

For color space clustering, the CIELAB space was partitioned into 32×32×32 equal

partitions and the bin centroids were clustered using the same adaptive clustering

algorithm, with 7.5 ≤ R ≤ 20 and 1.1 ≤ γ ≤ 1.5.

As the test images, 100 visually colorful images were randomly selected from

the Corel 50,000 photo collection. The images had sizes of either 256×384 or

384×256.Color histograms were generated for each image using the three binning

methods. For color space clustering and adaptive clustering, all the colors in the

images, including those that were unclustered during the clustering process, were

quantized to the colors of their nearest clusters.

The performance of the three binning methods were measured by three indicators,

namely, the number of bins or clusters produced, the number of empty bins, and

the mean color error measured as the mean difference between the actual colors and

the quantized colors (in CIE94 units). These performance indicators were averaged

over all the images.

Color Error
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Figure 4.1: Comparison of mean color errors of regular, clustered, and adaptive histograms.

Experimental results show that the larger the bin volume (or cluster radius R)

and the larger the bin separation γ, the smaller is the number of bins and the

larger is the mean color error. Figure 4.1 shows that regular partitioning produced

slightly larger mean color error compared to color space clustering, while adaptive

clustering produced the smallest error. Given a fixed number of bins, regular and

clustered histograms have errors that are about twice those of adaptive histograms.

Empty Bins

Figure 4.2 shows the average percentage of empty bins in the regular and clustered

histograms. With a large number of bins, both types of histograms have 50% or

more empty bins. With a small number of bins, clustered histograms have as few as
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Figure 4.2: Average percentage of empty bins in regular and clustered histograms.

20% empty bins. The adaptive histograms have no empty bins. These test results

show that adaptive histograms can retain color information more accurately with

fewer bins than regular and clustered histograms.

Visual Quality

Visual inspection of the color-quantized images (Fig. 4.3) reveals that images with

a color error of 5 or less look almost indistinguishable from the original images

except at regions where banding occurs such as clear blue sky. This is the result

of quantizing the gradually varying colors into discrete bins. This observation

matches recent psychological study [51] very well, which shows that that human’s

color acceptability threshold is 4.5. That is, two colors with a color difference

of less than 4.5 are regarded as practically identical. Note that the acceptability
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(a) (b)

(c) (d)

Figure 4.3: Color quantization results. The original images contain (a) 71599 colors and (b)

46218 colors. The color-quantized images contain only (c) 39 colors and (d) 31 colors.
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threshold is slightly larger than the perceptibility threshold of 2.2 [51], which is the

threshold below which two colors are perceptually indistinguishable .

Discussion

Existing systems typically use 64-bin clustered histograms or more than 150 bins

for regular histograms. Their respective mean color errors are about 8 and 6, with

45% and 50% empty bins. In comparison, 64-bin adaptive histograms can achieve a

color error of about 3.5, lower than human acceptability threshold, with no empty

bins.

In the subsequent tests, the parameter values of clustered and adaptive binning

methods were fixed at R = 10 and γ = 1.5 because this combination yielded

good color retention with small number of bins. With these parameter values,

the adaptive binning method produced an average of 37.8 bins with a mean color

error of 4.53, and the color space clustering method produced 80 bins, a mean

color error of 7.19, and 42% empty bins. In principle, the mean color error of

color space clustering can be reduced to, say, below 5 so that it is comparable to

that of adaptive binning. However, this will require the clustered histograms to

have much more than 250 clusters—a value that is both impractical and beyond

our experimental range. It was not necessary to test regular partitioning further

because its performance was similar to that of color space clustering.
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Image Retrieval

This test assessed the combined performance of binning schemes and dissimilarity mea-

sures in image retrieval.

In the image retrieval test of Puzicha et al. [43], random samples of pixels were

extracted from the test images. Samples that were drawn from the same image should

have similar distributions and were regarded as belonging to the same class. This kind

of test samples are useful for testing the performance of various similarity measures in

computing global similarity between two images.

Test Setup

A different kind of test samples were prepared for our tests. Each of the 100 images

used in the color retention test (Section 4.1.4) were regarded as forming one query

class. These images were scaled down and each embedded into 20 different host

images, giving a total of 2000 composite images at each scaling factor. The scaled

images were used as query images, and the composite images that contained the

same embedded images were regarded as relevant. A different kind of test samples

were prepared for our tests. Each of the 100 images used in the color retention

test (Section 4.1.4) were regarded as forming one query class. These images were

scaled down and each embedded into 20 different host images, giving a total of 2000

composite images at each scaling factor. The scaled images were used as query

images, and the composite images that contained the same embedded images were

regarded as relevant. This test paradigm should be useful for testing the combined
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performance of binning schemes and dissimilarity measures in retrieving images

that c ontain a particular target region or color distribution of interest. We feel

that this test more closely resembles the retrieval of complex images containing one

or more regions of interests compared to that in [43]. In the test, scaling factors

for image width/height of 1/4, 1/2, and 3/4 were used. These values gave rise to

embedded images with area scaling factors of 1/16, 1/4, and 9/16 compared to the

original images.

In the experimental tests, the weighted correlation dissimilarity (WC) given in Sec-

tion 4.1.2 as compared with three existing dissimilarity measures, namely L2 (Eu-

clidean), Jessen Difference Divergence (JD) 1, and Earth Mover’s Distance (EMD).

• L2 (Euclidean) distance:

d(G,H) =

(∑

i

(gi − hi)2

)1/2

(4.5)

• Jessen difference divergence (JD):

d(G,H) =
∑

i

(
gi log

gi
mi

+ hi log
hi
mi

)
(4.6)

where mi = (gi + hi)/2.

1The formula that Puzicha et al. [43] called “Jeffreys divergence” is more commonly known as “Jessen

difference divergence” in Information Theory literature [7, 8, 53]. Jeffreys divergence, as given in the

literature [7, 8, 23, 25, 53], takes the form
∑
i(gi − hi) log(gi/hi) =

∑
i[gi log(gi/hi) + hi log(hi/gi)].
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• Earth Mover’s distance (EMD) [44]:

d(G,H) =

∑

i,j

fij d(bi, cj)

∑

i,j

fij
(4.7)

where d(bi, cj) denotes the dissimilarity between bins bi and cj, and fij is

the optimal flow between G and H such that the total cost
∑

i,j fij d(bi, cj)

is minimized, subject to the constraints:

fij ≥ 0 ,
∑

i

fij ≤ hj ,
∑

j

fij ≤ gi ,
∑

i

∑

j

fij = min(
∑

i

gi,
∑

j

hj) . (4.8)

The dissimilarity d(bi, cj) between two bins is typically defined as a monotonic

increasing function of the ground distance between the bins.

Among these dissimilarity measures, L2 served as the base case of the performance

evaluation. JD and EMD are reported in [43] to yield good performance, respec-

tively, for large and small sample sizes. Other dissimilarity measures evaluated in

[43] are expected to yield similar results and are therefore omitted. WC is tested

with both clustered and adaptive histograms whereas L2 and JD could be tested

only with clustered histograms. The program for EMD was downloaded from Rub-

ner’s web site (http://robotics.stanford.edu/~rubner), and was tested only

with adaptive histograms due to its longer execution time. The CIE94 distance was

used as EMD’s ground distance because it is more perceptual uniform than Eu-

clidean distance in the CIELAB space, and was taken as the dissimilarity between

two bins.
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Results and Discussion

Figure 4.4 plots the precision-recall curves of the image retrieval results for scaling

factors 1/2 and 3/4 of both image height and image width. The curves for scaling

factor of 1/4 are not shown because all combinations of binnings and dissimilarity

measures performed poorly. They all had very low precision of less than 0.2 at

recall rate of 0.1, and their precision dropped to about 0.01 at recall rate of 0.3

and above.

All five combinations performed significantly better for the larger scaling factor of

3/4 than for 1/2. For both scaling factors, clustered histograms together with JD

(c + JD) performed best, with the adaptive histograms and WC (a + WC) combi-

nation following closely behind. The a + WC combination performed significantly

better than c + WC, which had roughly the same performance as c + L2. These

results show that, given the same dissimilarity measure, adaptive histograms per-

form better than clustered histograms because they can describe color information

more accurately and yet use fewer bins (Section 4.1.4).

Somewhat surprisingly, EMD (with adaptive histograms) performed poorer than

L2. Compared to the results in [43], which show that EMD performed better for

small sample sizes, it is noted that our smallest scaling factor of 1/4 corresponds

to an image size of 6144 pixels, which is far larger than the sample sizes used in

[43]. Moreover, the adaptive histograms have an average of 37.8 bins, and they

correspond to medium sized histograms in [43]. These parameter values may have
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Figure 4.4: Precision-recall curves of various combinations of binning methods (c: clustered,

dashed line; a: adaptive, solid line) and dissimilarity measures (JD: Jeffrey divergence, WC:

weighted correlation, L2: L2 or Euclidean distance, EMD: Earth Mover’s Distance). (a) Scaling

= 1/2, (b) scaling = 3/4.
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obscured the strengths of EMD in extreme cases of small sample sizes and small

number of bins. On the other hand, our choice of the number of bins, which was

supported by the color retention test (Section 4.1.4), and the sample sizes should

better resemble the retrieval of complex images with multiple regions in practice.

Image Classification

This test assessed the combined performance of binning schemes and dissimilarity mea-

sures in image classification.

Test Setup

The composite images generated in the retrieval tests (Section 4.1.4) were used for

image classification test. The composite images that contained the same embedded

image were considered as belonging to the same class. This would correspond

to the practical application in which images containing the same region or color

distribution are considered as identical.

The k-nearest-neighbor classifier with leave-one-out procedure was applied on each

of the 2000 composite images. Odd values of k ranging from 1, 3, 5, 7, and 9

were chosen to remove the possibility of ties. Classification error, averaged over all

2000 images, were computed for each combination of binning scheme, dissimilarity

measure, and k value

Results and Discussion

Figure 4.5 shows the classification performance for width/height scaling factors
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of 1/2 and 3/4. The curves for scaling factor of 1/4 are not shown because all

combinations of binnings and dissimilarity measures performed poorly. All five

combinations performed significantly better for the larger scaling factor of 3/4

than for 1/2. Moreover, their classification accuracies increased with increasing

number of nearest neighbors k. Similar to the image retrieval results, c + JD

performed best for both scaling factors, with a + WC following closely behind.

The a + WC combination performed better than c + WC, and c + L2 again had

the lowest accuracy. These results again show that, given the same dissimilarity

measure, adaptive histograms perform better than clustered histograms. Unlike in

the retrieval tests, the performance of a + EMD was very good in the classification

tests. The classification accuracy of a + EMD closely matched that of a +WC,

especially for the larger scaling factor of 3/4.

Spatial Precision

To further investigate the cause of EMD’s inconsistent performance, another per-

formance index called spatial precision was computed. Spatial precision measures,

for a given image I, the proportion of images among its k nearest neighbors that

belong to the same class as I. Figure 4.6 plots the spatial precision averaged over

all 2000 images for each k. The spatial precisions of the dissimilarity measures

are smaller for a smaller image scaling factor and decrease with increasing value

of k. The result shows that as the value of k (i.e., the neighborhood size) in-

creases, more negative samples that belong to other classes are included in the
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Figure 4.5: Classification accuracy of various combinations of binning methods (c: clustered,

dashed line; a: adaptive, solid line) and dissimilarity measures (JD: Jeffrey divergence, WC:

weighted correlation, L2: L2 or Euclidean distance, EMD: Earth Mover’s Distance). (a) Scaling

= 1/2, (b) scaling = 3/4.
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Figure 4.6: Spatial precision of various combinations of binning methods (c: clustered, dashed

line; a: adaptive, solid line) and dissimilarity measures (JD: Jeffrey divergence, WC: weighted

correlation, L2: L2 or Euclidean distance, EMD: Earth Mover’s Distance). (a) Scaling = 1/2,

(b) scaling = 3/4.
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neighborhood. However, given the large number of classes (100) in the test, it is

possible that only a small number of negative samples from each class is included.

As a result, the majority class can still be the correct class even when there are

many negative samples. This is especially true for EMD since its spatial precision

decreases faster than those of other dissimilarity measures.

Histogram Clustering

Given well defined dissimilarity measure and mean histogram, the traditional k-means

clustering algorithm is reformulated by using weighted correlation as the distance mea-

sure and mean histogram as the cluster centroid. This experiment was conducted to

measure the performance of histogram clustering.

Test Setup

400 composite images from 20 classes (20 from each class) were randomly chosen

from the images generated from the retrieval test. The composite images that con-

tained the same embedded image should be closer to each other than to the other

images. Three tests were performed using the following combinations of color his-

tograms and dissimilarity measures: (1) fixed clustered histograms and Euclidean

distance (c + L2), (2) fixed clustered histograms with JD for cluster assignment

and Euclidean for computing cluster centroid (c + JD/L2), and (3) adaptive his-

togram and weighted correlation dissimilarity (a + WC). For the first two cases, an

ordinary k-means clustering was used. For the third case, the k-means clustering

for adaptive histograms was used. For each case, separate clustering tests were
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Figure 4.7: Convergence test. (The difference between current and previous mean is calculated

using weighted correlation.)

conducted with number of clusters ranging from 5 to 40.

Convergence Property of the Clustering Algorithm

The rigorous proofs of the convergence properties of the traditional k-means algo-

rithms are presented in [5]. To show that the algorithm does converges, we did a

convergence test. From figure 4.7, we can see that the algorithm converges in fifth

or sixth iteration and then becomes stabilized.

Cluster Spread and Cluster Homogeneity

Clustering performance is measured in terms of the cluster spread and cluster ho-

mogeneity.The cluster spread Ω is the effective radius of a cluster normalized by
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Figure 4.8: Comparison of (a) cluster spread and (b) cluster homogeneity between the three test

cases.
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its distance to the nearest neighboring cluster:

Ω =
1

k

k∑

i=1

ωi (4.9)

ωi =

1

|Ci|
∑

Hj∈Ci
d(Mi, Hj)

min
j 6=i

d(Mi,Mj)
(4.10)

where Mi is the mean histogram of cluster Ci, d(·) is the CIE94 distance, and k

is the number of clusters. It measures the compactness of the clusters and the

amount of overlaps between the clusters. The smaller the cluster spread, the more

compact are the clusters and the less are the overlaps between them.

The cluster homogeneity Θ measures the proportion of histograms in a cluster that

belong to the majority class of the cluster:

Θ =
1

k

k∑

i=1

P (L(Ci) |Ci) (4.11)

where L(Ci) denotes the majority class of cluster Ci and P (L(Ci) |Ci) is the con-

ditional probability of L(Ci) given Ci. If the cluster homogeneity is less than 1/n,

then the cluster must contain histograms that belong to at least n + 1 classes.

Therefore, the smaller the n, the more homogeneous is the cluster.

In figure 4.8, for all three cases, clustering performance improved significantly when

the number of clusters k increased from 5 to 20. At k > 20, the cluster spreads

of c + L2 and c + JD/L2 improved slightly with increasing k but their cluster
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homogeneity decreased. Notice that performing cluster assignment with JD did

not improve clustering performance significantly because the computation of mean

histogram was based on L2 instead of the more reliable JD.

In contrast, the cluster spread and homogeneity of a + WC stabilized at k > 20,

and were better than those of c + L2 and C + JD/L2 for all k. In other words,

a + WC produced more compact and more homogeneous clusters that were more

widely spaced out than did c + L2 and c + JD/L2. Moreover, its performance is

more stable than those of the other two cases. This result indicates that a + WC is

more effective and reliable for practical applications in which the optimal number

of clusters k is often unknown.

4.2 Gabor Feature

The Gabor texture features and weighted-mean-variance (WMV) as defined by Ma

and Manjunath [31] have been shown to produce good texture discrimination, particu-

larly for structured and oriented textures. Following sections give a brief description of

Gabor texture features and WMV.

4.2.1 Gabor Functions and Wavelets

A two dimensional Gabor function g(x, y) and its Fourier transform G(u, v) can be

written as:

g(x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]
, (4.12)
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G(u, v) = exp

{
−1

2

[
(u−W )2

σ2
u

+
v2

σ2
v

]}
, (4.13)

where σu = (2πσx)
−1 and σv = (piσy)

−1. Gabor functions form a complete but nonorthog-

onal basis set. Expanding a signal using this basis provides a localized frequency descrip-

tion.

A class of self-similar functions, referred to as Gabor wavelets in the following discus-

sion, is now considered. Let g(x, y) be the mother Gabor wavelet, then this self-similar

filter dictionary can be obtained by appropriate dilation and rotations of g(x, y) through

the generating function:

gmn(x, y) = a−mg(x′, y′), (4.14)

where a > 1, m,n = integer and

x′ = a−m(x cos θ + y sin θ), and y′ = a−m(−x sin θ + y cos θ),

θ = nπ/K and K is the total number of orientations. The scale factor a−m in 4.14 is

meant to ensure that the energy is independent of m.

4.2.2 Gabor Filter Dictionary Design

The nonorthogonality of the Gabor wavelets implies that there is redundant informa-

tion in the filtered images, and the following strategy is used to reduce this redundancy.

Let Ul and Uh denote the lower and upper center frequencies of interest. Let K be the

number of orientations and S be the number of scales in the multi-resolution decomposi-

tion. Then the design strategy is to ensure that the half-peak magnitude support of the
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filter response in the frequency spectrum touch each other. This results in the following

formulas for computing the filter parameters σu and σv (and thus σx and σy).

a = (Uh/Ul)
1

S−1 , σu =
(a− 1)Uh

(a+ 1)
√

2 ln 2
,

σv = tan
( π

2k

)[
Uh − 2 ln

(
σ2
u

Uh

)][
2 ln 2− (2 ln 2)2σ2

u

U2
h

]− 1
2

, (4.15)

where W = Uh and m = 0, 1, . . . , S − 1. In order to eliminate sensitivity of the filter

response to absolute intensity values, the real (even) components of the 2D Gabor filters

are biased by adding a constant to make them zero mean (This can be done by setting

G(0, 0) in Eq. 4.13 to zero).

4.2.3 Feature Representation

Given an image I(x, y), its Gabor wavelet transform is then defined to be

Wmn(x, y) =

∫
I(x1, y1)g∗mn(x− x1, y − y1) dx1 dx2 (4.16)

where ∗ indicates the complex conjugate. It is assumed that the local texture regions

are spatially homogeneous, and the mean µmn and the standard deviation σmn of the

magnitude of the transform coefficients are used to represent the region for classification

and retrieval purposes:

µmn =

∫ ∫
|Wmn(xy)| dx dy, and σmn =

√∫ ∫
(|Wmn(x, y)| − µmn)2 dx dy. (4.17)

A feature vector is now constructed using µmn and σmn as feature components. In the

experiments, four scales S = 5 and six orientations K = 6, resulting in a feature vector

f = [µ00 σ00 µ01 σ01 . . . µ30 σ30]T .
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Distance Measure

Consider two image patterns i and j, and let f (i) and f (j) represent the corresponding

feature vectors. Then the distance between the two patterns in the feature space is

defined to be

d(i, j) =
∑

m

∑

n

(∣∣∣∣∣
µ

(i)
mn − µ(j)

mn

α(µmn)

∣∣∣∣∣+

∣∣∣∣∣
σ

(i)
mn − σ(j)

mn

α(σmn)

∣∣∣∣∣

)
, (4.18)

where α(µmn) and α(σmn) are the standard deviations of the respective features over

the entire database, and are used to normalize the individual feature components. The

distance measure is called weighted-mean-variance (WMV).

4.3 MRSAR Feature

Gabor features are good for structured textures. As for random textures which appear

in natural images more often, we use the MRSAR model given in [33]. It is shown in [29]

that MRSAR features are good for capturing the characteristics of random textures.

The MRSAR model is a second-order noncausal model described by five parameters

at each resolution level. A symmetric MRSAR to applied to the L∗ component of the

L∗u∗v∗ image data. The pixel value L∗(x) at a certain location x is assumed to linearly

depend on the neighboring pixel values L∗(y) and a zero-mean additive independent

Gaussian noise term ε(x)

L∗(x) = µ+
∑

y∈ν
θ(y)L∗(y) + ε(x) . (4.19)

In equation 4.19, µ is the bias dependent on the mean value of L∗, ν is the set of
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neighbors of pixel at location x, and θ(y) with y ∈ ν are the model parameters. The

set of neighbors are defined for a window size of 5 × 5, 7 × 7 and 9 × 9. In [29, 42], it

is shown that the MRSAR features computed with these window sizes provide the best

overall retrieval performance over the entire Brodatz database.

The model is symmetric, i.e., θ(y) = θ(−y). Hence for a given neighborhood, four

parameters representing 4 are estimated through least squares. Thus, the model param-

eters and the estimation error define a 5-dimensional feature vector. The procedure is

repeated for the three chosen window sizes and the vectors are concatenated to form a

15-dimensional multi-resolution feature vector.

To extract the MRSAR feature given an image, a 21×21 overlapping window is moved

over the image at steps of two pixels in both the horizontal and vertical directions. In

each window, a multi-resolution feature vector is obtained. The mean vector t and the

covariance matrix S over all windows inside a given image region are the MRSAR features

associated with that image region.

The texture dissimilarity is then measured by the distance between two multivariate

distributions with known mean vectors and covariance matrices. Given two image pat-

terns i and j, Mahalanobis distance between the MRSAR feature vectors ti and tj are

used to express this dissimilarity:

d(i, j) =
√

(ti − tj)TS−1
j (ti − tj), (4.20)

where Sj represents the covariance matrix of tj.
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Figure 4.9: Sobel operators and the corresponding gradient directions.

4.4 Edge Direction and Magnitude Histogram

Normalized edge direction and magnitude histograms as given in [6, 49] are extracted

from the images. First, the image region is transformed to the HSI (hue, saturation,

intensity) space [18] so as to handle of the color information in a perceptually meaningful

way. Each channel of the HSI representation is convolved with the eight Sobel operators

shown in figure 4.9 [6] in order to determine the edges and their directions in the image

region. For each pixel, the largest magnitude of the responses of the Sobel operators is

used as the magnitude of the gradient and the quantized direction of the corresponding

operator is the direction of the gradient.

The gradients at all pixels are thresholded to binary values by an appropriate thresh-

old value for each channel. Finally the edge histogram is computed by summing up the

edge pixels in each direction with corresponding quantized magnitude. The magnitude
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is quantized to 8 levels, thus forming an 8× 8 edge histogram. For edge histograms, the

Euclidean distance defined in Eq. 4.5 is used as the dissimilarity measure [6, 49].
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Chapter 5

Evaluation of the Probabilistic

Labeling Algorithms

Extensive tests were performed to evaluate the following aspects of the semantic

labeling method:

• Is the confidence value estimated by the method a reliable measure of classification

accuracy?

• Can the method improve the confidence value by combining the most salient feature

types?

• How accurate is the labeling method compared to the traditional approach?
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Figure 5.1: Sample images of the semantic classes used in the tests.
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5.1 Test Setup

A wide variety of 30 semantic classes (Fig. 5.1) were randomly identified by browsing

the images in the Corel 50,000 photo collection. For each class, 250 image blocks of size

64×64 pixels were cropped from the images. Out of the 250 blocks, 200 were randomly

selected for semantic class learning and the remaining 50 for region classification test.

In total, 6,000 blocks were used for training and 1500 blocks for testing.

5.2 Feature-Based Region Clustering

Different nominal cluster separation values affect the clustering results. In the clus-

tering stage for learning, two different nominal cluster separation values were used in

region clustering, st = 1.5 rt and st = 2.0 rt. Adjustment of rt to r′t is required when

the number of unclustered data samples during learning is more than 10% of the total

training data.

Table 5.1 shows the number of clusters generated and r′t, the adjusted rt (refer to

Chapter 3 for detail). There are more color clusters than other clusters because there

are more color variations than texture and edge variations in the images. Adjustment

of rt to r′t is needed for color clusters only as more than 600 training data samples (10%

of the training data) were unclustered before the adjustment. When s = 1.5 rt, more

clusters were created and longer computing time was needed. For both nominal cluster

separations, color clustering took the much longer time to run than cluster of other

feature types because of the need to perform mean histograms compression.
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Clustering performance was also measured by the maximum confidenceQM (Ψ(τ, κ, n))

of a cluster or cluster combination Ψ(τ, κ, n), where

QM (Ψ(τ, κ, n)) = Max
i

P (Ci|Ψ(τ, κ, n)), for n = 1, 2.

Figure 5.2 show a plot of the average QM for clusters of single feature type and clusters of

combinations of two feature types. In general, when s = 1.5 rt, more clusters have higher

maximum confidence values, especially for combinations of two feature types. Though it

takes much longer to do the clustering as there are more clusters, s = 1.5 rt should still

be used as time is not a critical issue in the learning stage.
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Figure 5.2: Maximum cluster confidence. The maximum confidence is averaged over single

clusters (S) and dual-cluster combinations (D) for nominal cluster separation s = 1.5 rt and

st = 2.0 rt.
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Table 5.1: Information of Feature-Based Region Clustering with st = 1.5 rt and 2.0 rt.

Color Gabor MRSAR Edge

num. of clusters 137 31 37 28

num. of unclustered data 1171 85 166 261

avg. increase of rt (%) 24.85 N.A. N.A. N.A.

comp. time for clustering (second) 20144.28 164.50 182.70 910.40

(a) st = 1.5 rt

Color Gabor MRSAR Edge

num. of clusters 68 18 15 23

num. of unclustered data 1678 293 465 482

avg. increase of rt (%) 33.33 N.A. N.A. N.A.

comp. time for clustering (second) 16320.15 139.60 153.67 770.60

(b) st = 2.0 rt
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5.3 Salient Features

Salient features are features that are highly correlated with a semantic class. Dur-

ing semantic class learning, cluster combinations with high probability of associating

with various semantic classes are identified. The feature values of the cluster centroids

constitute the salient features of the classes.

Table 5.2 tabulates the confidence measures of a semantic class Ci averaged over all

samples that belong to Ci, i.e.,

Qi(Ψ(τ, n)) =
1

|Ci|
∑

κ

|Ci ∩Ψ(τ, κ, n)| P (Ci |Ψ(τ, κ, n)) . (5.1)

The average confidence gives an overall assessment of how strongly a feature type cor-

relates with a semantic class. With a single feature, almost all semantic classes have

very low confidence values. This confirms the expected results that single features are

not enough to identify the semantic classes of image regions. An interesting surprise is

that MRSAR, Gabor and edge histograms are highly correlated with clear sky. This

is due to the fact that clear sky regions have almost no texture and no edge whereas

all other image regions have some textures and edges. Therefore, the learning method

can associate not only the presence but also the absence of features to semantic classes.

Whatever the case may be, the learning method always chooses the one with the highest

confidence.

Table 5.2 also shows that using a combination of only two feature types can already

improve the mean confidence values of all the semantic classes significantly. The mean

confidence value of all classes are above 0.5, and the overall average is 0.7. Increasing
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Table 5.2: Salient features. Columns 2–5 give the average confidence measures of the semantic
classes using single features (Color (C), MRSAR (M), Gabor (G) and Edge (E)) . Numbers
in bold are the highest average confidence among the four feature types. Column 6 lists the
salient feature pairs (S.F.) and column 7 lists the corresponding improved average confidence
(Conf.) using salient feature pairs.

S/No. Class C M G E S.F. Conf.

1 grass 0.229 0.096 0.058 0.081 color, Gabor 0.746
2 foliage 0.321 0.085 0.123 0.132 color, MRSAR 0.801
3 flower 0.191 0.097 0.098 0.156 color, edge 0.796
4 cloud 0.285 0.339 0.365 0.381 color, Gabor 0.741
5 clear sky 0.452 0.737 0.758 0.847 color, Gabor 0.860
6 rock 0.082 0.082 0.048 0.050 color, MRSAR 0.755
7 mountain 0.098 0.039 0.038 0.120 color, edge 0.697
8 sand 0.109 0.144 0.041 0.054 color, MRSAR 0.724
9 calm water 0.139 0.042 0.039 0.087 color, MRSAR 0.708
10 choppy sea 0.159 0.043 0.042 0.062 color, MRSAR 0.733
11 fur 0.082 0.132 0.034 0.048 color, MRSAR 0.740
12 face 0.229 0.099 0.115 0.101 color, edge 0.755
13 pebbles 0.094 0.108 0.141 0.055 MRSAR, edge 0.697
14 snow 0.202 0.053 0.045 0.078 color, MRSAR 0.442
15 roof tiles 0.094 0.078 0.252 0.079 color, Gabor 0.786
16 paved road 0.116 0.050 0.045 0.095 color, edge 0.715
17 unpaved road 0.095 0.059 0.046 0.066 color, edge 0.698
18 brick wall 0.088 0.059 0.239 0.181 color, Gabor 0.635
19 tree trunks 0.090 0.052 0.051 0.157 color, edge 0.736
20 wooden surface 0.155 0.102 0.046 0.103 color, MRSAR 0.768
21 window 0.077 0.052 0.048 0.197 color, edge 0.742
22 fence 0.089 0.054 0.046 0.166 color, edge 0.750
23 fire 0.141 0.090 0.076 0.068 color, MRSAR 0.768
24 firework 0.131 0.047 0.048 0.120 color, MRSAR 0.785
25 grass field 0.236 0.035 0.028 0.069 color, MRSAR 0.704
26 building 0.079 0.055 0.047 0.154 color, edge 0.765
27 house 0.072 0.051 0.042 0.116 color, edge 0.755
28 dirt ground 0.150 0.054 0.051 0.081 color, MRSAR 0.658
29 scale 0.141 0.104 0.152 0.057 color, Gabor 0.756
30 pillars 0.143 0.072 0.087 0.121 color, edge 0.697
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the number of feature types to 3 or 4 does not produce higher confidence values. For our

data set of 30 semantic classes, combinations of two feature types are enough.

It is interesting to see that a salient pair of features may not be individually salient.

For example, for the grass images, the Gabor feature is less salient than MRSAR. Nev-

ertheless, the combination of color and Gabor is the most salient pair for grass. Another

interesting example is the class of pebbles. For this class, MRSAR and edge features

constitute the salient pair, but individually both features are less salient than Gabor.

Color is not found to be a salient feature because the pebble images in the training set

contain large variation of colors.

The above results are consistent with those of Szummer and Picard’s for indoor vs.

outdoor classification of images [52]. They observed that a pair of features is more

accurate for image classification than a single feature. Moreover, combining two weak

features consistently produced more accurate classification than a single good feature.

5.4 Labeling Performance

In Sections 5.2 and 5.3, we have analyzed the results of learning stage and discussed

the findings in the learning stage. In this section, we will evaluating the labeling perfor-

mance of testing samples.

65



5.4.1 Confidence and Classification Accuracy

5.4.1 Confidence and Classification Accuracy

To test whether the confidence measure estimated by the method correlate with

classification accuracy, a region classification test was performed on 1, 500 testing image

regions, 50 per semantic class. The region classification method described in Chapter

3 was executed at various threshold values. Figure 5.3 plots the classification accuracy

vs. the maximum confidence of a region Ri, i.e., QM(Rj) = Max
i
Qi(Rj). To compute

the classification accuracy, a recursive algorithm was applied to group the samples into

groups containing samples with similar QM(Rj).Test results in Figure 5.3 shows that

above confidence value of 0.75, the accuracy is above 0.9. Figure 5.4 plots the data

distribution at various confidence levels, about 77% of data have confidence values above

0.75. 0.75 was chosen as the threshold for classification.

0.30 0.40 0.50 0.60 0.70 0.80
0.00

0.20

0.40

0.60

0.80

1.00

accuracy

confidence

Figure 5.3: Region classification accuracy at various confidence levels.
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Figure 5.4: Data distribution at various confidence levels.

Regions labeled with semantic classes having low confidence values are ambiguous.

In applications where image structures are used for image matching, such as [34, 37, 41],

image structures provide additional information that can be used for disambiguation.

So, regions labeled with “unknown class” should be regarded as ambiguous and should

not be classified prematurely by the semantic labeling algorithm. If these regions are

rejected and not classified due to low confidence in classification, then the classification

accuracy of the remaining regions improves significantly from 0.70 to 0.91 (Fig. 5.5).

The amount of rejection for the threshold value of 0.75 is 23%. The confusion matrix in

Figure 5.7(a) further confirms the improved classification accuracy. From the above test

results, we can conclude that the confidence values estimated by the semantic labeling

algorithm are very reliable: a confidence value greater or equal to 0.75 translates to a
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Figure 5.5: Region classification accuracy at confidence of 0.75 (solid lines: with rejection,

dotted lines: without rejection, horizontal lines: mean accuracy

mean classification accuracy of 91% or higher. For regions with low confidence, multiple

labels are assigned to them together with the corresponding confidence values. These

information are much more valuable than single class labels for higher-level modules such

as image retrieval and image classification. Those modules can regard regions with high

confidence to be correctly classified into the respective semantic classes indicated by their

labels. On the other hand, the multiple labels and confidence measures of regions with

low confidence can allow the modules to disambiguate between various possibilities using

image structures, e.g., by applying fuzzy conceptual graph matching [34, 37] or attributed

relational graph matching [41]. This kind of disambiguation would be impossible without

the multiple labels and confidence measures.
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5.4.2 Performance Comparison with Support Vector Machine

To compare the performance of our labeling method with traditional approach, sup-

port vector machine (SVM) was used for the region classification problem.

SVM Training

The SVM was downloaded from the web site of SvmFu3.0 (http://five-percent-nation.

mit.edu/SvmFu/index.html). Gaussian kernel was chosen and SVM was trained with

different Gaussian standard deviation σ’s. The input feature vector to SVM is the con-

catenated feature vector of fixed-binning histogram (Chapter 4), Gabor features, MRSAR

features and edge histogram. The input feature vector has 274 dimensions, 165 for color

histogram, 30 for Gabor feature (without standard deviation), 15 for MRSAR feature

and 64 for edge histogram. The reason for not using adaptive color histograms is that

SVM requires input data with a fixed number of dimensions [9, 12].

For a successful SVM training, normalization of the input data is necessary as they

are of different scales. It is difficult to perform the normalization across different feature

types. In the test, principal component analysis (PCA) was used to determine the

normalization factor. The data were normalized so that the largest eigenvalues for each

feature type are the same. This normalization avoided accidental biasing of SVM training

towards feature types with large feature values.

It is a usual practice to apply PCA to reduce the dimensionality of the input feature

vectors. However, we found that SVM failed to find satisfactory decision planes for
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Table 5.3: SVM training with input data of reduced dimensionality. The criterion of reducing

dimensionality is to choose the eigenvectors that account for a certain percentage of the total

eigenvalues.

% of Eigenvalue kept Num. of Classes Separated

90% 12

95% 18

98% 20

100% 30

the dimensionality-reduced training data (Table 5.3). The failure can be attributed to

incorrect elimination of important dimensions by PCA, which makes the data inseparable

in the space of reduced dimensionality.

SVM Testing

In the training for SVM, different standard deviation σ values were used for the Gaussian

kernel. To select the best σ for the labeling task, we started with 1/4λmax where λmax is

the biggest eigenvalue. The same 1500 regions described in Section 5.1 were used for the

testing. Figure 5.4.2 shows that different sigma values can greatly affect the classification

accuracy. At σ = 17.5 for performance comparison as it gave the highest classification

accuracy of 61.6%.
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Figure 5.6: Classification accuracy vs. different sigma (σ) values.

Performance Comparison

For probabilistic labeling method without rejection of low confidence samples, a clas-

sification accuracy of 70% was achieved (Table 5.4). With rejection, the accuracy in-

creased to 90%. The usual SVM implementation does not perform rejection, and is has

the lowest classification accuracy of 61.6%. In principle, it is possible to include rejection

for SVM, but this would require the SVM to measure some form of confidence.

Figure 5.7 shows the comparison of classification accuracy in the form of confusion

matrix. In the confusion matrix for SVM (Fig. 5.7(a)), there are a few points that are

not on the diagonal line, which means some data are classified into the wrong class. In

the confusion matrix for the probabilistic labeling method (with rejection), almost all the

71



5.4.2 Performance Comparison with Support Vector Machine

Table 5.4: Classification Accuracy Comparison (SVM vs. probabilistic labeling).

Probabilistic Labeling

SVM Labeling
with rejection without rejection

61.6% 70% 91%

points are along the diagonal line, which means that almost all the data can be classified

correctly.

For probabilistic labeling method, different salient feature types are used for different

semantic classes. This result has also been confirmed in [55]. However, for SVM label-

ing method, all four feature types are used and are assumed to be equally important.

Assigning weights to different feature types is not a practical solution because different

weights will be required to classify the samples into different classes.
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Figure 5.7: Confusion matrix of region classification. (a) Probabilistic labeling system with

rejection, (b) SVM without rejection.
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Chapter 6

Conclusion and Future Work

This chapter discusses the contributions of the existing work and presents suggestions

for possible further development and application of the current work.

6.1 Conclusion

This thesis presented a probabilistic approach for semantic labeling of image regions

which opens real possibilities for higher level image categorization and retrieval.

In Chapter 1, we presented the realization process of this approach in a system

overview (Figure 1.1). We now go through this process step by step again and summarize

our contribution in each step:

Feature Extraction

In Chapter 4 we described various features used in the systems. We focused on

adaptive color histograms especially. For color, we used CIELAB space, which was
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designed so that distances between single colors conform to perceptual similarity.

We presented a dissimilarity measure called weighted correlation for comparing

two adaptive color histograms. We provided an extensive comparison of various

dissimilarity measure that are used for comparing color histograms. It is shown that

adaptive color histograms and weighted correlation achieves the best performance

in general.

Feature-Based Region Clustering

An adaptive k-means clustering algorithm is used for feature-based region cluster-

ing. For clustering of adaptive color histograms, the algorithm used a well-founded

definition of mean histogram [27] for the calculation of cluster centroid.

Probability Estimation

A probability estimation algorithm is implemented to combine multiple features to-

gether instead of combining them linearly. Through this approach, salient features,

features that have high correlation with a semantic class, are selected automati-

cally. In our experiment, we found that not all feature types, but only a subset of

all feature types are salient features. Only salient features are used for probabilistic

labeling.

Probabilistic Labels

In the probabilistic labeling, an image region is associated with a set of labels

with corresponding confidence values. It is found in our classification tests that

the confidence values have a high correlation with the classification accuracy. In
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particular, it is found that regions with confidence value of greater or equal to

0.65 can be classified into the correct semantic classes with an average accuracy

of 90%. For regions with lower confidence values, the multiple semantic labels

and the corresponding confidence values allow a higher-level algorithm, such as

fuzzy conceptual graph matching and attributed relational graph matching, to

disambiguate them using information about image structures. In summary, the

semantic labeling method is expected to contributes significantly to bridge up the

gap between low-level features and high-level semantics for image categorization

and retrieval.

6.2 Future Work

The weighted correlation can be applied to other modalities besides color as long as

a ground distance can be defined in the appropriate feature space. Examples include

texture (Some work has been done in [28]), shape, compositions of objects, eigenimage

similarity, etc. A large ensemble of features from different modalities can improve the

overall performance of image categorization and retrieval.

The fuzzy labeling system is a framework for general labeling problem. It can be

applied for specialized problem like face detection, 3-D object labeling, by using special

features other than color, texture and edge.

For two regions with low confidence values but similar distribution, an interesting

question to ask is “what can we say about them? ” Can we say they are similar because
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they have similar confidence value distribution? Or we cannot conclude anything since

the confidence values are low? This is an interesting problem for future research.
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