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Abstract

Protein interactions play important roles in various aspects of the molecular mech-

anisms of biological processes. Protein docking techniques are used in pharmaceutical

applications such as drug design to predict protein interactions especially for flexible

proteins. Conformational shape changes occur in flexible proteins during interactions.

Studies of protein flexibility show that conformational changes have a crucial influ-

ence on protein docking. Most existing algorithms handle only side-chain flexibility,

which accounts for a small amount of conformational changes. Treatment of backbone

flexibility, which accounts for major conformational changes, remains a challenge. In

this proposal, we propose to model the conformational changes in protein interactions.

Proper modeling of conformational changes will allow flexible docking algorithm to

produce more accurate predictions of protein interactions.
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1 Introduction

1.1 Motivation

Research on proteomics has increased in recent years. Much effort is devoted to large-scale

analysis of 3D structures and dynamics of proteins. The goal is to achieve scientific and

commercial breakthroughs in drug discovery, especially new drug development.

Drugs are usually small molecules. In human body, they bind to the disease-causing

proteins (Figure 1) and prevent the disease-causing activities to happen. The binding mode

of both molecules shown in Figure 1 is determined experimentally using x-ray diffraction.

Often, data are available for a protein and a drug separately, but not for the two together.

It is very costly to find the binding information by laboratory experiments. In drug design

industry, the structure of a drug is modified constantly in order to search for the most

effective binding with a protein, leading to very high development costs. Therefore, there is

a need to predict possible binding using computational algorithm.

A protein interacts with another protein as well. When two proteins are bound to each

other, they form a protein complex. For most of the proteins known to science, it is not

completely understood which other proteins they interact with.

Genetic diseases are known to be caused by mutated proteins, and there is a desire

to understand what anomalous protein-protein interactions a given mutation may cause.

In the distant future, proteins may be designed to perform biological functions, and the

determination of the potential interactions of such proteins will be essential.

Figure 1: A small molecule drug (green) binds to a disease-causing protein (red).
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1.2 Protein Docking Problem

Protein docking problem is a computational problem that predicts the binding of a protein

with a potential interacting partner. There are two kinds of protein docking problems [16].

The simpler problem is bound docking. It attempts to reconstruct a complex using the bound

structures of the two molecules involved. A bound structure is extracted from a structure

containing more than one molecule, typically a complex of the molecules.

The more difficult problem is predictive docking, also referred to as the unbound docking.

It attempts to construct a complex using the unbound structures of the two molecules.

A protein in its unbound structure usually changes its 3D shape to bind with the other

molecule. Thus, the difficulty of the problem increases. An unbound structure may be a

native structure, a pseudo-native structure, or a modeled structure. A native structure is the

structure of a molecule when it is free in solution. A pseudo-native structure is the structure

of a molecule when it is complexed with a molecule different from the one used in the docking

problem. A modeled structure is the structure developed from a protein sequence based on

the structures of homologous proteins. Homologous proteins have a common evolutionary

origin, and there are similarities in their protein sequences and three-dimensional structures.

Many algorithms have been developed to address the protein docking problem. These

algorithms typically generate a set of candidate solutions. A scoring function is used to

distinguish the nearly correct solutions from the others. A rigorous docking algorithm would

seek all possible bindings between the two molecules. However, this is impractical due to

the large size of the search space. A balance should be reached between the computational

expense and the amount of the search space examined.

1.3 Paper Overview

After introducing some background knowledge about protein docking in Chapter 2, we shall

review existing protein docking algorithms in Section 3.1. Examples of scoring functions

used for evaluating the goodness of the candidate solutions produced by the algorithms

are discussed in Section 3.2. Based on these discussions, the research topic is proposed in

Chapter 4. Furthermore, preliminary work is discussed in Chapter 5, followed by conclusions

in Chapter 6.
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2 Background

2.1 Structure of Protein

Protein is made from a long chain of amino acids, each links to its neighbor through a

covalent bond [46]. Covalent bonds are formed as atoms seek to obtain a complete set of

electrons in their outer electron shells. There are 20 types of amino acids in proteins, and

each amino acid carries different chemical properties. The length of protein is in the range

of 20 to more than 5000 amino acids. On the average, a protein contains around 350 amino

acids. Therefore, protein is also known as a polypeptide.

Amino acid is the building block of proteins. Each amino acid consists of:

1. Amino Group (-NH2 group),

2. Carboxyl Group (-COOH group), and

3. R Group, which determines the type of the amino acid.

All the groups are attached to a single carbon atom called the α-carbon (Figure 2). The N,

Cα, C, O atoms form the backbone of a protein molecule, while the R groups are side-chains

(Figure 3).

Figure 2: Structure of amino acid.
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Figure 3: Backbone (black line) and side-chains (R) of protein structure.

A protein naturally folds into certain three-dimensional shape [46] (Figure 4). Folding is

a spontaneous process mainly guided by van der Waals forces and entropic contributions to

the Gibbs free energy: an increase in entropy is achieved by moving the hydrophobic parts

of the protein inwards, and the hydrophilic ones outwards. Hydrophobic parts are electri-

cally neutral and prefer other neutral solvent. Hydrophilic parts are electrically polarized

and prefer polarized solvent, e.g., water molecules. Folding also depends on environmental

conditions like temperature, solvent, concentration of salts, pH, etc. The duration of the

folding process varies dramatically depending on the proteins. The slowest folding requires

many minutes or hours. On the other hand, small proteins typically fold on a time scale of

milliseconds.

2.2 Conformational Substates

A free protein can exist in a range of conformational substates [11]. Different conformational

substates of a protein have the same coarse overall structure but differ in detail. In a

conformational substate, a side chain may have rotated, some hydrogen bonds may have

shifted, or a single helix may be displaced.

The conformational substates correspond to the local minima of the free energy landscape

of a protein, where the minima are separated by energy barriers [12]. Under the influence

of external factors such as temperature and pressure, one substate can transit to another.

Transitions among substates are protein motions [22], which are essential for proteins to

function.
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Figure 4: Protein folding. The process of protein folding is depicted from state 1 to 6 (from

[32]).

2.3 Protein Binding

Proteins interact with each other and form complexes. There are thousands of complexes

recorded in the Protein Data Bank (PDB). Of the two molecules that form a complex, the

larger molecule is usually called the receptor and smaller one the ligand.

During protein binding, the structures of both participants of the interaction are usually

altered and changed into other conformational substates (Figure 5). The binding interface

regions typically have greater conformational changes. These changes occur for a variety of

reasons such as to form chemical interactions, to avoid clashes, and to improve hydrogen

bonding [19]. There are conformational changes in non-interface regions too, but they are

usually due to flexibility and disorder. Some proteins have flexible and disordered regions

existing as dynamic ensembles in which the atom positions and atomic bond angles vary

significantly over time with no specific equilibrium values.
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Figure 5: Conformational changes in protein binding. Bound ligands are shown in blue, and

unbound ligands in red. The receptors are drawn as a solid surface (from [28]).
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Figure 6: Two unbonded atoms that just touch each other. rA and rB are the van der Waals

radii of atoms A and B.

Figure 7: Molecular surface models: Van der Waals surface model, solvent accessible surface

model and the Connolly surface model.

2.4 Models of Molecular Surfaces

During protein binding, two molecules interact at their surfaces in contact. There are several

ways of representing and modeling molecular surfaces, namely van der Waals surface, solvent

accessible surface, and Connolly surface.

When two atoms come in contact, there exists a minimum distance between them due to

electrical repulsion. This suggests that atoms must occupy a well-defined molecular volume.

The simplest model of an atom is a sphere. The radius of the sphere called van der Waals

radius depends on the complexity of the atom, i.e., the number of electrons it contains.

When the spheres of two atoms just touch, the measured inter-atomic distance equals the

sum of their van der Waals radii (Figure 6). The van der Waals surface of the molecule is

the boundary of the union of spheres of the atoms in the molecule [41].
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The models of solvent accessible surface and the Connolly surface use a probe to define

a protein’s surface. The probe is a solvent molecule, usually a water molecule, that rolls

over the protein’s van der Waals surface. The solvent accessible surface [26] is the trace of

the probe’s centroid (Figure 7). It models the surface of the molecule which can come into

contact with the solvent molecules. The Connolly surface [7] is the boundary of the volume

which the probe cannot penetrate (Figure 7). One of the advantages of the Connolly model

is the smoothness of the surface.
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3 Related Work

3.1 Protein Docking

Protein docking is a computational problem that predicts the binding of two proteins or one

protein with another molecule. It can be defined as follows: Given the atomic coordinates

of two molecules, predict their correct bound association [16], which is given by the relative

orientation and position between the molecules after interaction. Protein docking algorithms

usually produce a set of candidate solutions instead of a single solution.

Depending on the extent of molecular flexibility taken into account, docking algorithms

can be classified to two categories [10]: (1) Rigid-body docking: Both molecules are regarded

as rigid solid bodies. No conformational change is performed. (2) Flexible docking: At least

one of the molecules, possibly the smaller ligand, is considered flexible. The molecules that

are considered flexible may undergo conformational changes.

Protein docking algorithms use search algorithms to find stable configurations between

the ligand and the receptor. There are two different searching approaches: (1) full solution

space search and (2) gradual guided progression through solution space. The first approach

scans the entire solution space in a predefined systematic manner. The second approach

searches part of the solution space in a random or criteria-guided manner, or generates the

solutions incrementally.

3.1.1 Rigid-body Docking

Most rigid-body docking algorithms perform exhaustive search in a six dimensional space:

3D rotation and 3D translation. The molecule is represented by mapping its surfaces onto a

three-dimensional grid. The molecule is represented by a discrete function where the value 1

denotes grid voxels on the molecule’s surface, p denotes grid voxels inside the molecule, and

the value 0 denotes grid points outside the molecule (Figure 8). The p value for the interior

of the molecule is positive for one molecule and negative for the other.

The matching of the surfaces of two interacting molecules is computed by the correlation

of their discrete representations. When two molecules have no contact, the correlation value

is 0 (Figure 9a). When there is contact, the correlation value is positive (Figure 9b). When

there is penetration (Figure 9c), the correlation value is negative. When the geometric match
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Figure 8: Mapping of the surface of a molecule onto grid.

Figure 9: Docking of two molecules. (a) No contact. (b) Limited contact. (c) Penetration.

The penetrated part is represented in black. (d) Good geometric match.

is good (Figure 9d), the correlation has a large positive value.

Translational correlation in the spatial domain corresponds to multiplication in the

Fourier domain. Therefore, 3D fast Fourier transform (FFT) method is frequently used

to compute translational correlation efficiently [5, 21, 42]. On the other hand, 3D rotational

match has to be searched exhaustively and thus slowly. This is an exhaustive shape-based

algorithm, which works well when both molecules are rigid bodies and shape complemen-

tarity is essential. However, the computation cost is high due to the exhaustive rotational

search.
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Figure 10: A “double skin” model used in spherical polar Fourier correlation algorithm.

The overlap between opposing interior and exterior regions are used to compute the shape

complementarity.

Spherical polar Fourier correlation is another approach [30, 35]. The protein surface is

represented by a “double skin” model (Figure 10) that describes thin regions of space exterior

and interior to the molecular surface. Each skin is represented by a Fourier series expansion

of real orthogonal radial and spherical harmonic basis functions.

Shape complementarity is computed by correlating the coefficients of the spherical har-

monic functions of opposing pairs of interior and exterior skins. The six-dimentional search

space can be represented by 5 rotational angles and an intermolecular separation. Thus, for

each separation, the two molecules remaining at fixed positions are rotated about their own

centroids and the ligand is twisted about the intermolecular axis. The coefficients of each

rotational increment can be computed just once and stored. So, shape complementarity can

be computed efficiently using the stored coefficients over each twist angle and intermolecular

separation. Similar to the FFT method, spherical polar Fourier correlation algorithm is an

exhaustive shape-based search method. The computational cost is high for high resolution

search.

Another approach of rigid-body docking is called geometric docking [1, 47]. The surfaces

of the molecules are first divided into patches according to rough surface shape, such as

concave, convex, or flat surface patches. Complementary patches are identified and super-

imposed by shape-matching techniques. Concave patches are matched with convex ones and

flat patches with any type of patches. The goal is to compute a rigid-body transformation

that would align as many complementary patches as possible. One possible technique that

can be applied is geometric hashing. Other geometric docking methods use points or spheres
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Figure 11: Surface layers of two molecules are allowed to be penetrated to achieve small-scale

flexibility.

to represent the geometric elements [23, 24]. Without performing an exhaustive search in

the six-dimensional space, geometric docking focuses on aligning complementary features and

consumes small computational cost. One drawback is that the algorithm depends greatly on

the geometric features used and such features are usually approximated and simplified. So,

the results are not accurate.

3.1.2 Flexible Docking

Rigid-body docking algorithms can account for small-scale flexibility by incorporating a

surface layer on the molecules and allow for surface penetration (Figure 11). In this case,

the penetrations are considered to be equivalent to the conformational changes of the surface.

Monte Carlo algorithm is one of the major algorithms used for flexible docking. Several

methods are developed based on Monte Carlo algorithm [4, 9, 15, 43]. The receptor is

regarded as a rigid body, and ligand is considered as flexible. The ligand is represented by a

set of variables consisting of rotation angles of the whole molecule, translation of the whole

molecule, and torsion angles of each atomic bond. In each Monte Carlo cycle, these variables

are assigned randomly selected values according to a uniform distribution of allowed values.

Then, a cost is computed according to a scoring function (Section 3.2). Those solutions with

costs smaller than the lowest cost found up to the current Monte Carlo cycle are saved as

candidate solutions.
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The main advantage of Monte Carlo algorithm is that its representation of the molecular

flexibility is very detailed and can model explicitly all degrees of freedom of the system

if necessary. Unfortunately, the high level of details in the modeling comes with a high

computational cost.

Genetic algorithm can also be used for flexible protein docking problem [14, 29, 31]. The

global translation, global rotation, and torsion angles of internal atomic bonds are encoded as

genes for the molecules. A candidate docking result consists of a collection of genes, and it is

assigned a fitness value accoring to a scoring function. The number of genes depends on the

number of internal bonds. A new population of candidate results is generated from the old

one by the use of three genetic operations, namely mutation, crossover and migration. The

quality of the solutions usually depends on the starting genes, the number of evolutionary

events, and the scoring function that picks the more favorable individuals to generate new

population.

In genetic algorithm, a large number of degrees of freedom can be modeled to account

for the molecular flexibility. The major drawback of genetic algorithm is that it is too slow

for extensive flexible docking of two large molecules.

Another algorithm for flexible docking is an incremental construction algorithm [25, 34].

The ligand is divided into fragments separated by rotatable bonds. The algorithm works

by first placing a base fragment into the pre-defined active site of the receptor, followed by

a greedy search to incrementally add more fragments and grow the base fragment to the

final optimal conformation. The fragments are added to maximize interactions and optimize

the scoring function. This process is repeated by placing the base fragment in different

orientations at the pre-defined active site.

Using incremental construction algorithm, flexibility is achieved since fragments of ligand

are added separately and the speed is satisfactory. However, the result is highly dependent

on the selection of an appropriate base fragment and prior knowledge of the binding site.

The quality of each construction step and thus the final result is strongly dependent on the

previous step.

Domain movement algorithm is another algorithm that simulates protein flexibility [36,

37]. Either the ligand or the receptor is modeled as a hinge-articulated object. Molecules are

divided into domains connected by hinges, and the molecules can bend by rotating about

the hinge points (Figure 12(a, c)). Movements are allowed either in the ligand or in the
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Figure 12: Hinge-bending movements of domains. (a) Hinge-articulated ligand. (b) Ligand

bends about the hinge to fit the shape of the receptor (shaded). (c) Hinge-articulated

receptor. (d) Receptor closes on the ligand.

receptor. Like pliers closing on a screw, the receptor closes on its ligand and vice versa

(Figure 12(b, d)), hence achieving the molecular fit. More than one hinge can be allowed

in the docking. By allowing several hinge motions to occur at the same time, the method

simulates the cumulative effect of flexibility.

The performance of the domain movement algorithm depends largely on the choice of

hinge points. By considering only domains of molecules, backbone flexibility is modeled but

the flexibility inside the domain is ignored, which limits the level of flexibility achievable.

A motion planning approach to flexible docking also avoids a full solution space search

[39]. By modeling the flexible ligand as an articulated robot, the docking problem is trans-

formed into the robot motion planning problem. Each atomic bond of the ligand molecule

maps to a joint of the robot with one degree of freedom: torsion angle. Bond lengths and

angles in the plane made by two neighboring bonds are considered constant. Bonds involved

in a ring are modeled as a rigid structure. The root atom, which represents the free base

of the robot (with 6 degrees of freedom for 3D rotation and translation), is an arbitrarily
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Figure 13: A ligand with 8 degrees of freedom: 3 position coordinates (x, y, z) and 2 rotation

angles (α, β) for the root atom, and 3 torsion angles (ψ) for the atomic bonds.

chosen terminal atom of the ligand (Figure 13).

Traditional robot motion planning is based on manipulating a robot through a workspace

while avoiding collisions with obstacles. This algorithm applied on protein-ligand docking

is to determine potential paths that a robot (ligand) may naturally take based on energy

distribution of the workspace. Hence, it examines the possible motions of the robot induced

by the energy landscape of its immediate environment. The more energetically favorable

paths between the initial and the goal positions of the ligand are computed. The knowledge

of binding site is needed and used as the goal position of the ligand. This algorithm is

energy-based only and has less concern about the shape of the molecules.

3.1.3 Levels of Flexibility

Studies on protein flexibility show that conformational changes have a crucial influence on

protein docking [3, 8]. The flexibility of a molecule can be modeled at two levels, namely

backbone level and side-chain level. Treatment of side-chain flexibility alone is not sufficient

to achieve satisfactory results for unbound docking. Minor change in the backbone level

causes a larger change in the molecule’s overall shape compared to side-chain conformational

change. However, the majority of the existing docking methods assume that proteins can be

consider rigid at the backbone level, while allowing for limited flexibility at the side-chain

level. Most of them include a step for optimizing side-chain conformations in the refinement

stage.

The conformational space accessible to all side-chains of a protein is very large. A key
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approximation which alleviates this problem is the discretization of the side-chain conforma-

tional space, whereby a side-chain is only allowed to adopt a discrete set of conformations

[20, 38]. This approximation is based on the observation that, in high-resolution experimental

protein structures, side-chains tend to cluster around a discrete set of favored conformations,

known as rotamers. In most cases, these rotamers correspond to local minima of potential

energy on the side-chain. Many rotamer libraries are presently available. A rotamer library

can be added into some algorithms mentioned above, such as Monte Carlo algorithm [43]

and FFT algorithm [18]. It reduces the search space on a large scale and thus allows for fast

searching.

Principal component analysis (PCA) can also be applied to handle side-chain flexibility

[30]. First, a large number of 3D protein conformations are generated randomly with a set

of upper and lower interatomic distance limits. Each conformational structure is considered

as a sample point within the multidimensional conformational space of the protein. Then

the eigenvectors and eigenvalues of the set of samples are computed. The eigenvectors

are orthonormal and span the conformational coordinate space of the protein. Thus any 3D

conformation may, in principle, be constructed from an appropriate linear combination of the

eigenvectors. Up to 105 conformations can be generated but many of them have infeasible

covalent bond lengths and angles. A simple bond length filter can be used to prune the

unrealistic conformations.

Treatment of backbone flexibility remains a major challenge. Some algorithms [9, 27]

include a global refinement step that performs energy minimization before applying the

scoring function. The global refinement enables small adjustment of the backbone. Another

way of handling backbone flexibility is to use PCA technique [30] in the similar manner as

handling side-chain flexibility. Algorithms such as incremental construction algorithm and

domain movement algorithm account to backbone flexibility as discussed in the previous

section.

3.2 Scoring Functions

Protein docking algorithms typically produce a set of candidate solutions. A scoring function

is used to assess the goodness of the candidate solutions. It may contain multiple aspects,

such as shape, intermolecular overlap, intramolecular overlap, hydrogen bonds, electrostatic
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potential, van der Waals potential and other energy models. Scoring functions may be

applied after the searching stage, or used during searching procedure to prune the candidate

solutions. The latter approach is required for methods such as Monte Carlo algorithm and

genetic algorithm.

3.2.1 Shape Measure

• Geometric Complementarity

Geometric complementarity is the measure of how the 3D shapes of two molecules

match each other at the contacting interface. It plays an important role in protein

docking since most protein-protein interactions actually shows a good geometric com-

plementarity [21, 40].

There are several definitions available for geometric complementarity [16]. One defini-

tion is based on surface normals of contact area between two molecules. If the surface

normals are in opposite directions, the corresponding surfaces are complementary. The

other definition is based on the contacting area of two molecules. A large contacting

area suggests better complementarity. Algorithms such as FFT method can directly

compute the amount of contacting area.

• Intermolecular Overlap

Intermolecular overlap is the overlap between two interacting molecules. By allowing

some intermolecular overlap, some amount of conformational flexibility is taken into

account.

The general approach to intermolecular overlaps is to allow for a small amount of

interface penetration and to penalise large interior clashes. The tolerance is usually

implemented by a surface layer of non-penalized penetration area. As shown in Figure

11, a surface layer is used at the surface of the molecules and overlaps of surface layers

are allowed.

• Intramolecular Overlap

When ligand or receptor flexibility is taken into account, the overlaps inside a molecule

may occur. For example, when a ligand is divided into fragments in incremetal al-

gorithm for flexible docking, fragments may clash with each other during docking.
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Figure 14: Hydrogen bonds (dotted lines) among five water molecules.

Though slight overlap may be considered as flexibility, large-scale self-collision is not

present in real protein interactions. Usually, self penetration is penalised.

3.2.2 Hydrogenn Bonds

Polar molecules, such as water molecules, have a weak, partial negative charge at one region

of the molecule (the oxygen atom in a water molecule) and a partial positive charge elsewhere

(the hydrogen atoms in a water molecule). Thus, when water molecules are close together,

their positive and negative regions are attracted to the oppositely-charged regions of nearby

molecules. The force of attraction, shown as a dotted line in Figure 14, is called a hydrogen

bond.

There tends to be uniformity in the static features of the complex interface despite a

variety of shapes. The interface between two molecules of a complex has 1.13±0.47 hydrogen

bonds per 100 Å2 buried accessible surface area [3]. Å stands for Angstrom and 1 Å = 10−10

meter. The buried accessible surface area is the surface buried and not accessible by solvent

when two proteins form a complex. Thus the number of hydrogen bonds on the interface of

two interacting molecules is another important measurement of interaction.
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Figure 15: Electrostatic potential on the surface of a water molecule. (a) The partial charges

of the atoms of a water molecule. (b) The electrostatic potentials on the surface of a water

molecule. Negative potentials are colored as red and positive potentials are colored as blue.

3.2.3 Electrostatic Potential

The common definition of electrostatic potential is the potential energy of a proton at a par-

ticular location near a molecule. Negative potential corresponds to attraction of the proton

by the concentrated electron density, and positive potential corresponds to repulsion of the

proton by the atomic nuclei in regions where the positive nuclear charge is not completely

shielded by low electron density.

Water molecule is a good example for understanding electrostatic potential (Figure 15).

The bond between H and O are formed by two electrons, one from H and the other from

O. However, the two electrons are closer to the oxygen’s atomic nucleus than those of the

hydrogen. As a result, O and H have, respectively, negative and positive partial charges,

and thus there are corresponding negative (red) and positive (blue) electrostatic potentials

on the molecular surface.

Electrostatic interactions play an important role in energy evaluation for scoring can-

didate solutions. When two molecules are interacting with each other, the existence of

complementary charged surfaces is a good indicator of a good docking interface.

The classical treatment of electrostatic interactions in solution is based on the Poisson-
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Boltzmann equation (PBE) [17]:

∇ [ε(r)∇φ(r)]− ε(r)κ2(r) sinh [φ(r)] +
4πρ(r)

kBT
= 0 (1)

where r is a 3D position, φ(r) is the electric potential at r, ε(r) is the dielectric constant

at r, and ρ(r) is the charge density. The term κ2(r) = 8πq2(r)I/ε(r)kBT , where q(r) is

the charge of a proton at r, T is the absolute temperature, kB is the Boltzmann constant,

and I is the ionic strength of the bulk solution. Analytical solutions to the PBE are only

available for a limited number of cases involving idealized geometries such as spheres and

cylinders. Numerical methods for computing electrostatic potentials can be categorized into

two approaches [17]: finite difference method (FDM) and boundary element method (BEM).

3.2.4 Van de Waals Potential

When two non-bonded atoms are at close proximity, van der Waals attraction occurs. When

their distance is less than the sum of their van der Waals radii, van der Waals repulsion

occurs. Theoretically, van der Waals interaction should be minimum when two molecules

are at the equilibrium separation (Figure 16).

The van der Waals potential V (r) between two non-bonded atoms can be expressed as a

function of their seperation r as follows:

V (r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(2)

where r is the distance between two atoms, ε is the well depth at the equilibrium separation

reqm, and σ is the collision constant such that 21/6σ = reqm. At r = reqm, V (r) = −ε.

3.2.5 Other Energy Terms

In addition to the measures described in the precedubg sections, other energy terms have

also been used, such as bond potential, bond angle potential, torsion angle potential, hy-

drophobicity, etc. Please refer to [6] and [33] for more details.

3.3 Summary & Comparison

Protein docking is a difficult computational problem. In the past decade, many methods

have been proposed, and significant progress has been made. However, this problem is far

from being solved.
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Figure 16: Van der Waals potential V (r) between two non-bonded atoms. r is the distance

between two atoms, reqm is the equilibrium separation, well depth is the potential at reqm.

Bound docking is a simple version of the protein docking problems. A rigid-body docking

algorithm is able to find good solutions for bound docking. FFT algorithm, spherical polar

Fourier correlation algorithm and geometric docking algorithm are examples of rigid-body

docking methods (Table 1). FFT and spherical polar Fourier correlation algorithm are

exhaustive methods which will find the best shape match given enough time. They can

also incorporate a surface layer to allow penetration and overlap, and thus account for a

small amount of flexibility. Geometric docking algorithm uses molecular surface features

to find the best shape match. This non-exhaustive algorithm can be fast and efficient, but

it may not be accurate enough due to the approximation of features. All three algorithms

take shape complementarity as their primary objective, which is sufficient in the case of

bound docking. However, rigid-body docking algorithms do not always give good solutions

to unbound docking problem because proteins usually undergo conformational changes when

they are bound to their partners.

Unbound docking problems are more difficult as the search space increases dramatically.

One approach to unbound docking is to add some amount of flexibility into rigid-body

docking algorithms, such as allowing penetration on the molecular surfaces in FFT method.
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The results may be acceptable for a small set of test cases. However, this approach is not

reliable for general flexible docking in practice [21].

Flexible docking algorithms are developed to address unbound docking problems. No

existing flexible docking algorithm attempts an exhaustive search (Table 1) due to the large

search space. In order to reduce the search space, random sampling (Monte Carlo, genetic

algorithm) or criteria guided construction (incremental construction algorithm) are used.

Algorithms that perform molecular articulation are feasible only for small number of hinges

(domain movement algorithm) or small molecules (motion planning algorithm).

Different levels of flexibility are modeled in existing flexible docking algorithms (Table

1). Monte Carlo and gentic algorithm can account for both side-chain and backbone flexi-

bility because they can potentially generate possible conformations at both levels. However,

backbones are usually held rigid or limited to a small number of degrees of freedom in the

existing applications to reduce search space. Incremental construction and motion planning

algorithm can account for both side-chain and backbone flexibility only for small molecules,

but knowledge of possible binding site is required. Domain movement algorithm accounts

for coarse backbone flexibilty with a small number of hinges. Generally speaking, treatment

of backbone flexibility is still a major challenge.

Another important aspect of protein docking problem is scoring function. Usually, flexible

docking algorithms use scoring functions during the search to prune away poor candidate

results or to guide the search, and rigid-body docking algorithms use them after the search

to select good solutions. Shape complementarity is a primary criterion used in rigid-body

docking, but it is only a part of the scoring function for most flexible docking methods

(Table 1). Though many existing scoring functions can rank the correct solutions among the

top hundred or even top ten possible solutions, many solutions with good scores are false

positives. A selective and effective scoring function should give good scores to correct and

nearly correct solutions while give poor scores to others.
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Table 1: Comparison of existing docking methods.

Docking

method

Docking

type

Search

strategy

Knowledge

of binding

site

Flexibility

treatment

Flexibility

level

Use of

scoring

function

Scoring

function

FFT Rigid-

body

Exhaustive Not

required

Surface

layer

Side-

chain

After

search

Shape

comple-

mentarity

Spherical

polar Fourier

correlation

Rigid-

body

Exhaustive Not

required

Surface

layer

Side-

chain

After

search

Shape

comple-

mentarity

Geometric

docking

Rigid-

body

Geometric

hashing

Not

required

N.A. N.A. After

search

Shape

comple-

mentarity

Monte Carlo Flexible Local opti-

mization

Not

required

Generate

possible

conforma-

tions

Side-

chain,

backbone

During

search

Various

Genetic algo-

rithm

Flexible Evolution Not

required

Generate

possible

conforma-

tions

Side-

chain,

backbone

During

search

Various

Incremental

construction

Flexible Greedy

search

Required Ligand

fragments

Side-

chain,

backbone

During

search

Various

Domain

movement

Flexible Geometric

hashing

Not

required

Articulation Coarse

backbone

After

search

Shape

comple-

mentarity

Motion plan-

ning

Flexible Motion

planning

Required Articulation Full

(small

molecule)

Before

search

(generate

configura-

tions)

Energy
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4 Research Proposal

4.1 Problem Statement

Protein interactions play important roles in various aspects of the molecular mechanisms

of biological processes. Protein docking techniques are used in pharmaceutical applications

such as the modulation of protein interactions with small molecules in drug design. In

practice, finding the binding of two flexible molecules is more important than reconstructing

the complex of two bound molecules. Thus, unbound docking is the major problem in

protein docking. The difficulty of this problem is due to the conformational changes that

occur during the binding process, which increase the complexity of the problem by a large

scale.

Existing flexible docking algorithms are developed to solve the unbound docking problem

(Chapter 3). Most of them model molecular flexibility by perturbing a set of parameters

coresponding to the degrees of freedom of the molecules. The idea is to generate a large set

of possible conformations and then select the good ones. In spite of these efforts, treatment

of backbone flexibility is still a major challenge (Section 3.3).

We propose to model the conformational changes that occur during the protein binding

process. Instead of seeking the correct solution from a large set of possible conformations,

we model how and why the conformational changes occur, guided by forces acting on the

atoms. The model can be used as part of a flexible docking algorithm to predict and refine

the conformational changes given candidate docking results.

We know that in physics, conformational changes occur because of electrical attraction

and repulsion, changes in atomic bonding, solvent, temperature, etc. It is computationally

expensive to model all the relevant factors. So, our goal is to find a guided way to model

conformational changes that is computationally efficient.

There are two research problems involved. Problem 1 is to determine an effective fitness

function that gives high fitness value to good candidate docking results and low fitness value

to bad ones. Problem 2 is to determine the conformational changes of the ligand given a

candidate docking result. The fitness function obtained in Problem 1 is used in Problem 2.

To describe these problems more precisely, we formulate the problems as follows.

Consider two proteins, a rigid receptor and a flexible ligand, that interact during binding.
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Let R = {rj} represent the set of 3D coordinates of the atoms in the receptor. Let U = {ui}

represent the set of 3D coordinates of the atoms in the unbound ligand before binding, and

B = {bi} the set of 3D coordinates of the atoms in the bound ligand after binding to the

receptor. Note that R and B are given in the same 3D coordinate system. So, information

about the binding site can be derived from the atoms that are in contact. Let T denote the

global rotation and translation of the ligand, and C denote the conformational changes of

the ligand. Then,

bi = C(T (ui)), ∀ i. (3)

Let F (R,B) denote a fitness function that computes the fitness of a possible complex of

receptor and ligand.

• Problem 1: Determine an effective fitness function.

Given Rk, Uk, Bk, find F (Rk, Bk) such that F (Rk, Bk)− F (Rk, C(T (Uk))) is

a monotonic function of the alignment error ‖Bk − C(T (Uk))‖ between Bk

and C(T (Uk)), where

‖Bk − C(T (Uk))‖ =
1

|Bk|
∑

i

‖bki − C(T (uki))‖2 . (4)

For Problem 1, an effective fitness function can be found by using a set of training

samples including known receptors with bound and unbound ligands. Since there is

a infinite number of C and T , it is impossible to verify all the possibilities. Thus,

the evaluation of the fitness function can be performed by sampling C and T and

measuring the correlation between F (Rk, Bk)−F (Rk, C(T (Uk))) and ‖Bk − C(T (Uk))‖

and checking whether F is monotonic.

• Problem 2: Determine the conformational changes.

Let T0 denote the initial guess of the global rotation and translation of the

ligand. Given R,U, F, T0, find C, T that maximize F (R,C(T (U))).

For Problem 2, a set of testing samples with known receptor R, bound ligand B

and unbound ligand U can be used to evaluate C and T found by the algorithm by

measuring the error EC given by

EC = ‖B − C(T (U))‖ . (5)
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4.2 Research Plan

Given the research problems, we present a research plan as follows:

1. Implement an FFT docking program.

The program can be used to generate initial guesses T0 of the ligand’s position and

orientation, which are the candidate docking results.

2. Determine an effective fitness function F .

The fitness function may consist of many factors including shape complementarity,

van der Waals potential, electrostatic complementarity, etc. The various factors can

be combined using a weighted sum, but other combinations are possible.

3. Develop an algorithm to refine T given an initial guess T0.

Regard the ligand as rigid, and refine the global rotation and translation to maximize

the fitness value given by function F . The refined T may be obtained by identifying

the forces acting on the ligand as a whole.

4. Develop an algorithm to find C, T given an initial guess T0.

Regard the ligand as flexible, and determine the conformational changes and the best

global rotation and translation of the ligand that maximize the fitness value given by

F . The conformational changes may be modeled by identifying flexible bonds and the

forces acting on each atom.
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5 Preliminary Work

Three sets of preliminary work have been accomplished:

1. implementation of FFT docking algorithm,

2. study of van der Waals potential and electrostatic complementarity, and

3. development of robust registration algorithm for the study of conformational changes.

5.1 FFT Docking

An FFT docking program is implemented which can produce candidate docking results for

bound docking problem. It can also provide initial guesses of the ligand’s rotation and

translation for unbound docking problem.

FFT rigid-body docking is an effective docking method for the bound docking problem.

Our project team member implemented an FFT docking program based on Katchalski-Katzir

and Gabb’s work [13, 21], but used a different atom model [45] (Figure 17). Katchalski-Katzir

and Gabb’s atom models both use thick surface layers and they allow large overlap of the

surface layer and the atom core. The new model has a thinner surface layer and the surface

core boundary is inside the van der Waals surface. Using the new model effectively avoids

deep penetration among atoms and improves the performance of the FFT docking program.

For details of the algorithms, please refer to Section 3.1.1 and [45].

The program takes bound cases as inputs and try to reconstruct the complexes. 60

candidate solutions are produced for each test case and ranked according to their FFT score.

To evaluate the performance of FFT docking algorithms, the root-mean-square deviation

(RMSD) between the docking result and the actual ligand in the complex (the ground truth)

is computed.

RMSD(B, T (U)) =

[
1

|B|
∑

i

‖bi − T (ui)‖2

]1/2

(6)

Table 2 lists the ranking and RMSD of the best candidate solution produced by the

program using various atom models. The best candidate solution is the one with the smallest

RMSD with respect to the ground truth. Using the new atom model, the program produces

better results compared to using the existing atom models. For the new model, 15 of the
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Table 2: Comparison of docking results using three different atom models. The results listed

are the RMSD and FFT rank of the best candidate solution of each test case.

Test Case Katchalski-Katzir’s Model Gabb’s Model New Model

RMSD (Å) FFT Rank RMSD (Å) FFT Rank RMSD (Å) FFT Rank

1ABI 7.152 14 4.885 45 0.243 2

1ACB 6.894 47 0.582 5 0.476 9

1CHO 15.257 22 12.12 20 0.59 4

1CSE 6.053 41 6.835 1 0.583 5

1FDL 10.44 32 16.527 44 14.823 27

1TGS 5.675 31 0.405 1 0.239 5

2KAI 5.998 12 5.821 51 0.637 10

2MHB 8.163 21 0.752 1 1.052 2

2PTC 5.648 11 2.589 20 0.511 4

2SIC 7.042 10 11.338 18 0.857 6

3HFM 8.118 39 9.397 41 0.552 4

4HVP 14.087 1 9.554 46 0.688 1

4SGB 5.907 13 0.552 1 0.44 1

4TPI 5.233 13 2.404 6 1.149 3

9LDT 25.954 55 17.23 26 0.898 1

9RSA 12.888 43 2.989 22 0.984 1

16 test cases have best candidate solutions ranked within the top 10 according to the FFT

score.

5.2 Evaluation of Van der Waals Potential and Electrostatic Com-

plementarity

In order to find an effective fitness function F , two possible factors that can be used in F

are evaluated: van der Waals potential and electrostatic complementarity. The methods

of calculating these two factors are implemented and tested on candidate docking results

produced by the FFT docking program described in the previous section. Various tests are

performed to study their properties.
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Figure 17: Various atom models used in FFT docking program. (a) The model used in

Katchalski-Katzir’s work [21]. (b) The model used in Gabb’s work [13]. (c) The new model.
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Table 3: Equilibrium separation reqm (Å) and well depth ε (kcal mol−1) used in computing

van der Waals potential.

reqm , ε C N O S H

C 4.00 , 0.150 3.75 , 0.155 3.60 , 0.173 4.00 , 0.173 3.00 , 0.055

N 3.75 , 0.155 3.50 , 0.160 3.35 , 0.179 3.75 , 0.179 2.75 , 0.057

O 3.60 , 0.173 3.35 , 0.179 3.20 , 0.200 3.60 , 0.200 2.60 , 0.063

S 4.00 , 0.173 3.75 , 0.179 3.60 , 0.200 4.00 , 0.200 3.00 , 0.063

H 3.00 , 0.055 2.75 , 0.057 2.60 , 0.063 3.00 , 0.063 2.00 , 0.020

5.2.1 Van der Waals Potential

Van der Waals potential is an important aspect in evaluating the goodness of the possible

solutions to protein docking. It is computed according to Equation 2 (Section 3.2.4), summed

over all pairs of atoms at the receptor-ligand interface, each consists of one atom from the

receptor and one atom from the ligand. The parameters used in the computation are listed

in Table 3 [29]. A negative potential corresponds to attraction between receptor and ligand,

and a positive potential corresponds to repulsion.

Van der Waals potentials of the candidate docking results produced by the FFT program

are computed. Table 4 lists the van der Waals potential and the corresponding rankings of

the best candidate solutions. Out of 16 test cases, there are 9 cases with their best candidate

solutions ranked within the top 10 according to van der Waals potentials. It shows that vad

der Waals potential can be used in the fitness function to select good candidate solutions,

but it is not as effective as the FFT score in bound docking.

The potentials of the bound complexes are also listed in Table 4 as a reference. For the

best candidate solution, almost all of their van der Waals potentials are higher than those of

the actual bound complexes (the ground truth). There are two test cases, 1ABI and 1CHO,

with positive van der Waals potentials for the ground truth. This is due to a single pair of

sulfur atoms that are closer to each other than predicted by the theory. Removing this pair

of atoms in the computation will lower the van der Waals potentials to negative values. This

situation may be caused by errors in measuring the atom coordinates using x-ray diffraction

or errors in the parameters used in the computation (Table 3).
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Table 4: Candidate results ranked using van der Waals potential. The data listed are the

ranks and van der Waals potentials of the best candidate solutions, and the van der Waals

potentials of the bound complexes (the ground truth).

Test Case Best Candidate Solution Bound Complex

FFT Rank VDW Rank VDW Potential VDW Potential

1ABI 2 26 826.69 533.616

1ACB 9 23 721.98 -73.37

1CHO 4 4 185.63 480.005

1CSE 5 1 -61.21 -104.529

1FDL 27 21 2057.51 -83.901

1TGS 5 4 -26.02 -125.114

2KAI 10 2 -8.35 -101.7

2MHB 2 12 764.19 -109.168

2PTC 4 3 70.87 -106.137

2SIC 6 6 224.12 -111.557

3HFM 4 3 186.65 -91.582

4HVP 1 1 -104.38 -213.975

4SGB 1 13 342.34 -93.457

4TPI 3 3 70.93 -117.802

9LDT 1 11 1246.71 -336.207

9RSA 1 15 681.08 -78.321

Because FFT docking method employs a surface layer on the atom model, which allows

for penetration, the candidate solutions produced may have intermolecular overlaps and

result in higher van der Waals potential (repulsion). This shows that the candidate solutions

are less stable than the bound complexes.

Candidate docking results are not perfect solutions, but can be very close to the ground

truth. As the bound complexes of the test cases are known, candidate results can be further

transformed to the correct position and orientation. Such transformations can be divided

into small steps to study the changes of van der Waals potential as the candidates get closer

to the ground truth.

Figure 18 shows the RMSD of the candidates at each steps of the transformation. It is

trivial that the RMSD decreases as the candidates get closer to the ground truth. Figure 19

33



shows the van der Waals potentials of the candidates at each steps of the transformation.

In most cases, the van der Waals potentials also decrease as the candidates get closer to the

ground truth. This property can be useful in the refinement of the transform matrix given

an initial guess. The refinement can be guided to seek a minimum van der Waals potential

which corresponds to the correct solution.

There are three cases that do not have a decreasing van der Waals potential. For cases

1ABI and 1CHO, the bound complexes have high van der Waals potentials as explained in

the previous paragraph. For case 1FDL, the best candidate result produced by FFT docking

program has RMSD = 14.82Å, which is a poor result. The candidate needs to be rotated

and translated by a large magnitude to become the correct solution, and thus causes the

fluctuation of its van der Waals potentials as it gets closer to the ground truth.

5.2.2 Electrostatic Complementarity

Electrostatic complementarity is another important aspect in evaluating the fitness of the

possible docking results. The electrostatic complementarity score is computed as the product

of the electric charge of the ligand and the electrostatic potential of the receptor, summed

over the whole system. The receptor is the source of the potential field and the ligand is a

collection of partial charges centered at its atomic coordinates. Let V (x) be the electrostatic

potential of the receptor at point x and Q(x) be the charge of the ligand at point x, then

the electrostatic complementarity score Eelec is given by

Eelec =
∫
V (x)Q(x)dx. (7)

The partial charges for both receptor and ligand are assigned according to an AMBER

parameter set [44]. The electrostatic potential of the receptor is generated by solving the lin-

earized Poisson-Boltzmann equation with the program Adaptive Poisson-Boltzmann Solver

(APBS) [2]. The potential is evaluated on a 128× 128× 128 discrete grid with 0.78Å spac-

ing, a solvent dielectric of 78.54, a protein dielectric of 1.0, a temperature of 298.15K and

a solvent radius of 1.4Å. The partial charges of the ligand are mapped to the same grid. A

negative value of Eelec reflects the complementarity of electrostatic potentials and thus the

solution with negative value of Eelec is better than the one with positive value.

The candidate docking results produced by the FFT program are used to evaluate Eelec.

Table 5 lists electrostatic complementarity scores and the corresponding rankings of the
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Figure 18: RMSD of the candidate results at each step of the transformation to the ground

truth. 10 steps of transformation are computed. The ground truth has RMSD = 0.
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Figure 19: Van der Waals potentials of the candidate results at each step of the transforma-

tion to the ground truth. 10 steps of transformation are tested. In theory, the ground truth

has a minimum van der Waals potential.

36



Table 5: Candidate results ranked using electrostatic complementarity. The data listed

are the ranks and electrostatic complementarity of the best candidate solutions, and the

electrostatic complementarity of the bound complexes (the ground truth).

Test Case Best Candidate Solution Bound Complex

FFT Rank VDW Rank Elec Rank Elec Complm Elec Complm

1ABI 2 26 7 -64.82 -66.74

1ACB 9 23 1 -130.59 -15.41

1CHO 4 4 6 -112.66 -24.5

1CSE 5 1 8 -21.23 -4.32

1FDL 27 21 13 -8.06 -5.32

1TGS 5 4 9 -44.92 -20.02

2KAI 10 2 7 -56.1 -19.5

2MHB 2 12 12 -18.7 -4.99

2PTC 4 3 2 -98.15 13.9

2SIC 6 6 2 -88.11 -4.22

3HFM 4 3 35 -0.4 1.07

4HVP 1 1 11 -4.72 -6.71

4SGB 1 13 11 -15.54 -2.76

4TPI 3 3 3 -80.16 -12.76

9LDT 1 11 2 -68.91 -33.02

9RSA 1 15 3 -45.78 -46.52

best candidate solutions. Out of 16 test cases, there are 11 cases with their best candidate

solutions ranked within the top 10 according to Eelec. It shows that electrostatic comple-

mentarity can be used to evaluate the fitness of candidate results. However, similar to the

van der Waals potential, it is not as effective as the FFT score in bound docking.

Table 5 also shows the electrostatic complementarity of the bound complexes. In theory,

Eelec of the ground truth should be smaller than those of the candidate solutions. However,

our test results show that almost all the best candidate solutions have Eelec smaller than

those of the ground truth. Many factors contribute to this result, for example, the use of

discrete grids in the computation, and the intermolecular overlaps in the candidate solutions

produced by the FFT docking program. The overlaps cause the charges of the ligand to be

inside the boundary of the receptor and result in very small Eelec.
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Since the intermolecular overlaps affect the evaluation of Eelec, three different ways of

handling overlaps in the computation were tested:

1. Exclude the overlaps in the computation. The ligand atoms that overlap the receptor

are discarded.

2. Displace the ligand’s overlapping atoms to randomly selected empty neighboring grid

points.

3. Displace the ligand’s overlapping atoms to empty neighbor grid points in the opposite

direction of penetration. Let x be the coordinates of a ligand atom that is overlapping

the receptor. Let {yi} be the set of coordinates of receptor atoms that are overlapping

the ligand atom at x. The direction V of penetration is given by

V =
∑

i

(yi − x) . (8)

After computing V, the ligand atom at x is displaced to a neighboring empty grid

point in the direction of −V.

Table 6 lists the results of these tests. In all tests, 13 of 16 test cases have higher (or the

same) ranks compared to the case before treatment of the overlaps. The guided displacement

of overlapping atoms has better performance than the other crude treatments. This shows

that when using electrostatic complementarity, overlap treatment is an important aspect for

increasing the reliability of the fitness score.

5.3 Robust Registration

Conformational changes happen when proteins bind to each other. To study these changes,

an unbound protein is spatially registered with its bound version and the displacements of

the atoms are measured by rigid transformation (rotation and translation).

Rigid registration has a drawback in comparing two conformational states of the same

protein. For a protein that binds with another molecule, conformational changes may occur

only in some parts of it. Rigid registration will result in misalignment everywhere so that the

overall error is minimized. Therefore, to study conformational changes, robust registration

is preferred. Robust registration aligns the unchanged parts of the two molecules as much

as possible such that conformational changes are distinguished.
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Table 6: Results of tests on different treatments of intermolecular overlaps in evaluating

electrostatic complementarity score.

Test Case Eelec of Bound

Complex

FFT

Solution

Excluding

Overlaps

Random Dis-

placement

Guided Dis-

placement

Rank Eelec Rank Eelec Rank Eelec Rank Eelec

1ABI -66.74 7 -64.82 4 -14.47 7 -14.28 5 -14.03

1ACB -15.41 1 -130.59 1 -29.78 1 -31.61 1 -31.58

1CHO -24.5 6 -112.66 4 -29.87 4 -36.76 5 -34.72

1CSE -4.32 8 -21.23 2 -20.1 3 -20.33 3 -20.75

1FDL -5.32 13 -8.06 49 5.42 29 2.32 44 6.09

1TGS -20.02 9 -44.92 4 -23.95 4 -34.51 4 -33.24

2KAI -19.5 7 -56.1 3 -21.09 2 -36.64 2 -27.01

2MHB -4.99 12 -18.7 3 -6.17 4 -8.21 4 -8.81

2PTC 13.9 2 -98.15 1 -47.87 1 -56.58 2 -51.14

2SIC -4.22 2 -88.11 6 -6.84 8 -8.34 5 -8.12

3HFM 1.07 35 -0.4 37 0.67 32 0.19 33 0.16

4HVP -6.71 11 -4.72 5 -2.94 5 -4.85 5 -4.28

4SGB -2.76 11 -15.54 9 -3.45 11 -3.82 6 -4.29

4TPI -12.76 3 -80.16 3 -12.12 4 -14.21 4 -12.26

9LDT -33.02 2 -68.91 2 -34.85 2 -36.28 2 -35.13

9RSA -46.52 3 -45.78 1 -51.37 1 -50.3 1 -50.36
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Proteins are made of residues and each residue contains several atoms. The correspon-

dence between the atoms in unbound protein and those in bound protein is known. A

residue contains enough atoms for determining a transform matrix. So, we can register each

residue and determine the residues with the smallest conformational changes. The robust

registration algorithm can be summarized as follows:

1. For each residue, compute the transformation T between its bound and unbound ver-

sion using the atoms in this residue. Then, register the whole molecule using T and

measure the global registration error of the whole molecule.

2. Collect a set of residues one at a time in increasing order of the global registration error.

Compute the transformation of this set, and use it to register the whole molecule. Also

compute a local registration error of the set of residues. Stop adding residues when

the error increases significantly.

Figure 20 shows the global registration error curves for 18 test cases. The residues that

produce high global registration errors are possibly those having conformational changes.

Figure 21 shows the local registration errors of sets of 5%, 10%, ... 100% of all residues for

18 test cases.

Using this algorithm, we identify those parts of the molecule that can be registered with

a small error. These are the residues that have little or no conformational changes. Then,

the same transformation is applied to register the whole molecule. Thus, conformational

changes are distinguished. Figure 22 to 24 show comparisons of robust registration with

rigid registration.
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Figure 20: Sorted global registration errors corresponding to each residue.
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Figure 21: Local registration errors of sets of 5%, 10%, ... 100% of all residues.
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Figure 22: Registration of bound and unbound protein Nidogen-G3. (a) Rigid registration

shown as wireframe. (b) Robust registration shown as wireframe. (c) Rigid registration

shown as backbone. (d) Robust registration shown as backbone. The bound molecule is in

blue and the unbound molecule is in red.

43



Figure 23: Registration of bound and unbound protein LicT homodimer. (a) Rigid registra-

tion shown as wireframe. (b) Robust registration shown as wireframe. (c) Rigid registration

shown as backbone. (d) Robust registration shown as backbone. The bound molecule is in

blue and the unbound molecule is in red.
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Figure 24: Registration of bound and unbound protein SAG1. (a) Rigid registration shown

as wireframe. (b) Robust registration shown as wireframe. (c) Rigid registration shown as

backbone. (d) Robust registration shown as backbone. The bound molecule is in blue and

the unbound molecule is in red.
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6 Conclusion

In this proposal, we propose to model the conformational changes in protein interactions.

An assumption is made that the receptor is rigid and the ligand may have conformational

changes. In order to assess the goodness of a conformation, an effective fitness function is

required. Therefore, two research problems are proposed: the first one is to determine an

effective fitness function, and the second one is to model the conformational changes given

an initial transformation of the ligand at a possible binding site.

The research plan consists of four stages. The first stage of the research plan is done. The

second stage has been explored by studying the properties of van der Waals potential and

electrostatic complementarity. Van der Waals potential can be a good factor for the fitness

function because it decreases as the candidate docking solution gets closer to the ground

truth. Electrostatic complementarity can not be used directly before the intermolecular

overlaps are handled properly. The third stage can be inspired by van der Waals potential

and its property. The refinement can be guided to seek a minimum van der Waals potential

which corresponds to the correct solution. The fourth stage remains to be done.

The research problem can be further extended to unbound docking problem. An unbound

docking problem can be divided into two sub-problems: (1) determine the possible binding

site, and (2) determine the transformation and conformational changes of the ligand.

Conformational changes are the key aspect in protein interactions and handling them

is important for an unbound docking problem. With knowledge of possible binding site,

simulation of conformational changes can lead to prediction of a complex made by flexible

proteins. Therefore, the proposed research problem is useful for pharmaceutical applications

such as drug design that require unbound docking techniques.
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