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Summary 
 
 
 

The rapid development of technologies for digital imaging and storage has led to 

the creation of large image databases that are time consuming to search using 

traditional methods.  As a consequence, content-based image organization and 

retrieval emerged to address this problem.  Most content-based image retrieval 

systems rely on low-level features of images that, however, do not fully reflect how 

users of image retrieval systems perceive images since users tend to recognize high-

level image semantics.  An approach to bridge this gap between the low-level image 

features and high-level image semantics involves assigning semantic labels to an 

entire image or to image blocks.  Crisp semantic labeling methods assign a single 

semantic label to each image region.  This labeling method has so far been shown by 

several previous studies to work for a small number of semantic classes.  On the other 

hand fuzzy semantic labeling, which assigns multiple semantic labels together with a 

confidence measure to an image region, has not been investigated as extensively as 

crisp labeling.   

This thesis proposes a fuzzy semantic labeling method that uses confidence 

measures based on the orthogonal distance of an image block’s feature vector to the 

hyperplane constructed by a Support Vector Machine (SVM).  Fuzzy semantic 

labeling is done by first training m one-vs-rest SVM classifiers using training 

samples.  Then using another set of known samples, a confidence curve is constructed 
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for each SVM to represent the relationship between the distance of an image block to 

the hyperplane and the likelihood that the image block is correctly classified.  

Confidence measures are derived using the confidence curves and gathered to form 

the fuzzy label or signature of an image block.   

To perform region matching, prototype signatures have to be obtained to represent 

each semantic class.  This is carried out by performing clustering on the signatures of 

the same set of samples used to derive the confidence curves and taking the centroids 

of the resulting clusters.  The multiple prototype signatures obtained through 

clustering is expected to capture the large variation of objects that can occur within a 

semantic class.  Region matching is carried out by computing the Euclidean distance 

between the signature of an image block and each prototype signature. 

Experimental tests were carried out to assess the performance of the proposed 

fuzzy semantic labeling method as well as to compare it with crisp labeling methods.  

Tests results show that the proposed fuzzy labeling method yields higher 

classification accuracy than crisp labeling methods.  This is especially true when the 

fuzzy labeling method is applied to a set of image blocks obtained by partitioning 

images into overlapping fixed-size regions.  In this case, fuzzy labeling more than 

doubled the classification accuracy achieved by crisp labeling methods.   

Based on these tests results, we can conclude that the proposed fuzzy semantic 

labeling method performs better than crisp labeling methods.  Thus, we can expect 

that these results will carry over to image retrieval. 
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CHAPTER 1 
 
 
 

Introduction 
 
 
 
1.1  Background 

The rapid development of technologies involved in digital imaging and storage 

has greatly encouraged efforts to digitize massive archives of images and documents.  

Such efforts have resulted in considerably large databases of digital images which 

users will naturally want to access to find a particular image or group of images for 

use in various applications.  An obstacle to finding images in these databases however 

is that searching for a specific image or group of images in such a large collection in a 

linear manner can be very time consuming.  One straightforward approach to facilitate 

searching involves sorting similar or related images into groups and searching for 

target images within these groups.   An alternative approach involves creating an 

index of keywords of objects contained in the images and then performing a search on 

the index.  Either method however requires manually inspecting each image and then 

sorting the images or assigning keywords by hand.  These methods are extremely 

labor intensive and time consuming due to the mere size of the databases. 

Content-based image organization and retrieval has emerged as a result of the 

need for automated retrieval systems to more effectively and efficiently search such 
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large image databases.  Various systems that have been proposed for content-based 

image retrieval include QBIC [HSE+95], Virage [GJ97], ImageRover [STC97], 

Photobook [PPS96] and VisualSEEK [SC95].   These image retrieval systems make 

direct use of low-level features such as color, texture, shape and layout as a basis for 

matching a query image with those in the database.  Studies proposing such systems 

have so far shown that this general approach to image retrieval is effective for 

retrieving simple images or images that contain a single object of a certain type.   

However, many images actually depict complex scenes that contain multiple objects 

and regions. 

To address this problem, some researches have turned their attention to methods 

that segment images into regions or fixed-sized blocks and then extract features from 

these regions instead of from the whole images.  These features are then used to 

match the region or block features in a query image to perform image retrieval.  Netra 

[MM97], Blobworld [CBG+97] and SIMPLIcity [WLW01] are examples of region-

based and content-based image retrieval systems. 

However, low-level features may not correspond well to high-level semantics that 

are more naturally perceived by the users of image retrieval systems.  Hence, there is 

a growing trend among recent studies to investigate the correlation that may exist 

between high-level semantics and low-level features and formulate methods to obtain 

high-level semantics from low-level features.  A popular approach to this problem 

involves assigning semantic labels to the entire image or to image regions.  Semantic 

labeling of image regions thus is an important step in high-level image organization 

and retrieval. 
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1.2  Objective 

There have so far been three approaches to assigning semantic labels to images or 

image regions.  One, known as crisp labeling, classifies an image or image region into 

a single semantic class.  The second, often referred to as auto-annotation, predicts 

groups of words corresponding to images.  Finally, the third approach, which is the 

focus of this thesis, is called fuzzy semantic labeling. 

This thesis aims to develop an approach for performing fuzzy semantic labeling 

on natural images by assigning multiple labels and associated confidence measures to 

fixed-sized blocks of images.  More specifically, this thesis addresses the following 

problem: 

Given an image block R characterized by a set of features Ft, t = 1, ... , n 

and m semantic classes Ci, i = 1, … , m, compute for each i the confidence 

Qi(R) that the image region R belongs to class Ci.   

Here, the confidence measure Qi(R) may be interpreted as an estimate of the 

confidence of classifying image block R into class Ci.  Then, the fuzzy semantic label 

of block R, which contains the confidence measures, can be represented as the vector  

v = (Q1(R), … , Qm(R))T. 

Hence, with this study, we intend to make the following contributions: 

• We develop a method that uses multi-class SVM outputs to produce fuzzy 

semantic labels for image regions. 

• We demonstrate the proposed fuzzy semantic labeling method for a large number 

of semantic classes.  

• The method we propose adopts an approach that uses all the confidence measures 

associated with the assigned multiple semantic labels when performing region 

matching.   



 4 

• Furthermore, we also compare the performance of our proposed fuzzy semantic 

labeling method with those of two crisp labeling methods using multi-class 

support vector machine classifiers.  
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CHAPTER 2 
 
 
 

Related Work 
 
 
In this chapter, we review similar studies that present methods to associate image or 

image regions with words.  First we cover studies that perform crisp semantic 

labeling, which involves classifying an entire image or part of an image into exactly 

one semantic class.  This essentially results in assigning a single semantic label to an 

image.  Then, we follow this with some representative studies that perform auto-

annotation of images where multiple words, often called captions or annotations, are 

assigned to an image or image region.  Finally, we review studies that propose 

methods that perform fuzzy semantic labeling where, similar to auto-annotation, 

several words are also assigned to an image or image region.  But this time, a 

confidence measure is attached to each label. 

2.1 Crisp Semantic Labeling 

Early studies on content-based image retrieval initially focused on implementing 

various methods to assign crisp labels to whole images or image regions.  

Furthermore, these studies have also explored labeling methods based on a variety of 

extracted image features, sometimes separately and occasionally in combination. 
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In [SP98], Szummer and Picard classified whole images as indoor or outdoor 

scene using a multi-stage classification approach.  Features were first computed for 

individual image blocks or regions and then classified using a k-nearest neighbor 

classifier as either indoor or outdoor.  The classification results of the blocks were 

then combined by majority vote to classify the entire image.  This method was found 

to result in 90.3% correct classification when evaluated on a database of over 1300 

consumer images of diverse scenes collected and labeled by Kodak. 

Vailaya et al. [VJZ98] evaluated how simple low-level features can be used to 

solve the problem of classifying images into either city scene or landscape scene.  

Considered in the study were the following features: color histogram, color coherence 

vector, DCT coefficient, edge direction histogram and edge direction coherence 

vector.  Edge direction-based features were found to be best for discriminating 

between city images and landscape images.  A weighted k-nearest neighborhood 

classifier was used for the classification resulting in an accuracy of 93.9% when 

evaluated on a database of 2716 images using the leave-one-out method.  This method 

was also extended to further classify 528 landscape images into forest, mountain and 

sunset or sunrise scene.  In order to do this, the landscape images were first classified 

as either sunset/sunrise or forest and mountain scene for which an accuracy of 94.5% 

was achieved.  The forest and mountain images were then classified into either forest 

or mountain scene with an accuracy of 91.7%.   

A hierarchical strategy similar to that used by Vailaya et al. was employed in 

another study carried out by Ciocca et al. [CCS+03].  Images were first classified into 

either pornographic or non-pornographic.  Then, the non-pornographic images were 

further classified as indoor, outdoor or close-up images.  Classification was performed 

using tree classifiers built according to the classification and regression trees (CART).  
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This was demonstrated on a database of over 9000 images using color, texture and 

edge features.  Color features included color distribution in terms of moments of 

inertia of color channels and main color region composition, and skin color 

distribution using chromaticity statistics taken from various sources of skin color data.  

Texture and edge features included statistics on wavelet decomposition and on edge 

and texture distributions. 

Goh et al. [GCC01] investigated the use of margin boosting and error reduction 

methods to improve class prediction accuracy of different SVM binary classifier 

ensemble schemes such as one-vs-rest, one-vs-one and the error-correcting output 

coding (ECOC) method.  To boost the output of accurate classifiers with a weak 

influence on making a class prediction, used a fixed sigmoid function to map posterior 

probabilities to the SVM outputs.  In their error reduction method that uses what they 

call correcting classifiers (CC), they train, for each classifier separating class i from j, 

another classifier to separate class i and j from the other classes.  Their proposed 

methods were applied to classify 1,920 images into one of fifteen categories. Color 

features extracted from an entire image included color histograms, color mean and 

variance, elongation and spreadness while texture features included vertical, 

horizontal and diagonal orientations.  Using the fixed sigmoid function produced an 

average classification error rate of about 12 to 13% for the different SVM binary 

classifier ensemble schemes.  Their correcting classifiers error reduction method 

further improved error rate by another 3 to 10%. 

Then Wu et al. [WCL02] compared the performance of an ensemble of one-vs-

rest SVM binary classifiers to that of an ensemble of one-vs-rest Bayes point 

machines when carrying out image classification.  Using the same data set and image 

features in [GCC01], they found that the classification error rate for the ensemble 
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Bayes point machines of 0.5% to as 25.1% for the different categories considered did 

not vary much from that for the one-vs-rest SVM ensemble which ranged from 0.5% 

to 25.3%.  Furthermore, they reported that the average error rate for the ensemble of 

Bayes point machines was lower than that of the one-vs-rest SVMs by just a margin 

of 1.6%. 

Fung and Loe [FL99] presented an approach by defining image semantics at two 

levels, namely primitive semantics based on low-level features extracted from image 

patches or blocks and scene semantics.  Learning of primitive semantics was 

performed via a two-staged supervised clustering where image blocks were grouped 

into elementary clusters that were further grouped into conglomerate clusters.  

Semantic classes were then approximated using the conglomerate clusters.  Image 

patches were assigned to the clusters using k-nearest neighbor algorithm and then 

assigned the semantic labels of the majority clusters.  The study however did not give 

quantitative classification results. 

Town and Sinclair [TS00] showed how a set of neural network classifiers can be 

trained to map image regions to 11 semantic classes.  The neural network classifiers—

one for each semantic class—were trained on region properties including area and 

boundary length, color center and color covariance matrix, texture feature orientation 

and density descriptors and gross region shape descriptors.  This method produced 

classification accuracies for the different semantic classes ranging from 86% to 98%. 

Similar to [TS00], a neural network was trained as a pattern classifier in 

[CMT+97] by Campbell et al.   But instead of using fixed-size blocks as image 

regions, images were divided into coherent regions using the k-means segmentation 

method.  A total of 28 features representing color, texture, shape, size, rotation and 

centroid formed the basis for classifying the regions into one of 11 categories such as 
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sky, vegetation, road marking, road, pavement, building, fence or wall, road sign, 

signs or poles, shadows and mobile objects.  When evaluated on a test set of 3751 

regions, their method produced an overall accuracy of 82.9% on the regions. 

Belongie et al. [BCGM97] also chose to divide an image into regions of coherent 

color and texture which they called blobs.  Color and texture features were extracted 

and the resulting feature space was grouped into blobs using an Expectation-

Maximization algorithm.  A naïve Bayes classifier was then used to classify the 

images into one of twelve categories based on the presence or absence of region blobs 

in an image.  Classification accuracy for the different categories ranged from as low 

as 19% to as high as 89%. 

2.2 Auto-annotation  

One of the earlier works on automatic annotation of images is that by Mori et al 

[MTO99] which employs a co-occurrence model.  In their proposed method, images 

with key words are used for learning.  Then when an image is divided into fixed-size 

image blocks, all image blocks inherit all words associated with the entire image. A 

total of 96 features, consisting of a 4×4×4 RGB color histogram and an 8-directions × 

4-resolutions histogram of intensity after Sobel filtering, were calculated from each 

image block and then clustered by vector quantization. The estimated likelihood for 

each word is calculated based on the accumulated frequencies of all image blocks in 

each cluster.  Then given an unknown image, the image is divided into image blocks 

from which features are extracted.  Using these features, the nearest centroids for each 

image block are determined and the average of the likelihoods of the nearest centroids 

is calculated.  Then words with the largest average likelihood are output.  When 

applied on a database of 9,681 images with a total of 1,585 associated words, this 
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method achieved an average “hit rate”  of 35%.  “Hit rate”  here is defined as the rate at 

which originally attached words appear among the top output words.  Additional tests 

carried out and described in [MTO00] using varying vocabulary size showed that “hit 

rate”  for the top ten words ranged from 25% when using 1,585 words to 70% when 

using 24 words.  The “hit rate”  for the top three words, on the other hand, ranged from 

40% when using 1,585 words to 77% when using 24 words. 

Barnard and Forsyth [BF01] use a generative hierarchical model to organize 

image collection and enable users to browse through images at different levels.  In the 

hierarchical model, each node in the tree has a probability of generating each word 

and an image segment with given features: higher-level nodes emit larger image 

regions and associated words (such as sea and sky) while lower-level nodes emit 

smaller image segments and their associated words (such as waves, sun and clouds).  

Leaves thus correspond to individual clusters of similar or closely-related images.  

Taking blobs such as those in [BCGM97] as image segments, they train the model 

using the Expectation Maximization algorithm.  Although they gave no specifics 

regarding the number of images and words used in their experiments, Barnard and 

Forsyth report that, on the average, an associated word would appear in the top seven 

output words.   

In [BDF01], Barnard et al. further demonstrated the system proposed in [BF01] 

using 8,405 images of work from the Fine Arts Museum of San Francisco as training 

data and using 1,504 from the same group as their test set.  When 15 naïve human 

observers were shown 16 clusters of images and were instructed to write down 

keywords that captured the sense of each cluster, about half of the observers on the 

average used a word that was originally used to describe each cluster.   
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In Duygulu et al. [DBF+02], image annotation is defined as a task of translating 

blobs to words in what is known as the translation model.  Here, images are first 

segmented into regions using Normalized Cuts.  Then only those regions larger than a 

threshold size are classified into region types (blobs) using k-means based on features 

such as region color and standard deviation, region average orientation energy, region 

size, location, convexity, first moment and ratio of region are to boundary length 

squared.  Then the mapping between region types and keywords associated with the 

images is learned using a method built on Expectation Maximization (EM).  

Experiments were conducted using 4,500 Corel images as training data.  A total of 

371 words were included in the vocabulary where 4-5 words were associated with 

each image.  In the evaluation tests, only the performance of the words that achieved a 

recall rate of at least 40% and a precision of at least 15% were presented.  When no 

threshold on the region size was set, test results using a test set of 500 images reveal 

that the proposed method achieves an average precision is around 28% and average 

recall rate is 63%.  The given average precision however includes an outlier value of 

100% achieved for one word with an average precision of 21% for the remaining 13 

words.  Because only 80 out of the 371 words could be predicted, the authors 

considered re-running the EM algorithm using the reduced vocabulary.  But this did 

not produce any significant improvement on the annotation performance in terms of 

precision and recall. 

Jeon et al. [JLM03] use a similar approach by first assuming that objects in an 

image can be described using a small vocabulary of blobs generated from image 

features using clustering. They then apply a cross-media relevance model (CMRM) to 

derive the probability of generating a word given the blobs in an image.  Similar to 

[DBF+02], experiments were conducted on 5,000 images which yielded 371 words 
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and 500 blobs.  Test results show that with a mean precision of 33% and a mean recall 

rate of 37%, the annotation performance of CMRM is almost six times better than the 

co-occurrence model proposed in [MTO99] and twice better than the translation 

model of [DBF+02] in terms of precision and recall.  

Blei and Jordan [BJ03] extended the Latent Dirichlet Allocation (LDA) Model 

and proposed a correspondence LDA model which finds conditional relationships 

between latent variable representations of sets of image regions and sets of words.  

The model first generates representative features for image regions obtained using 

Normalized Cuts and subsequently generates caption words based on these features.  

Tests were performed on a test set of 1,750 images from the Corel database using 

5,250 images from the same database to estimate the model’s parameters.  Each 

image was segmented into 6-10 regions and associated with 2-4 words for a total of 

168 words in the vocabulary.  By calculating the per-image average negative log 

likelihood of the test set to assess the fit of the model, Blei and Jordan showed that 

their proposed Corr-LDA model provided at least as good a fit as the Gaussian-

multinomial mixture and the Gaussian-multinomial LDA models.  To assess 

annotation performance, the authors computed the perplexity of the outputted 

captions.  They define perplexity as equivalent algebraically to the inverse of the 

geometric mean per-word likelihood.  Based on this metric, Corr-LDA was shown to 

find much better predictive distributions of words than either of the two other models 

considered. 

Similar to the models in [JLM03] and [BJ03], [LMJ03] presents a model called 

the continuous-space relevance model (CRM).  Their approach aims to model a joint 

probability for observing a set of regions together with a set of annotation words 

rather than create a one-to-one correspondence between objects in an image and 
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words in a vocabulary.  The authors stress that a joint probability captures more 

effectively the fact that certain objects (e.g., tigers) tend to be found in the same 

image more often with a specific group of objects (e.g. grass and water) than with 

other objects (e.g. airplane).  With the same dataset provided in [DBF+02], CRM 

achieved an annotation recall of 19% and an annotation precision of 16% on the set of 

260 words occurring in the test set; and an annotation recall of 70% and an annotation 

precision of 59% on the subset of 49 best words. 

2.3 Fuzzy Semantic Labeling  

Labeling methods using fuzzy region labels have been proposed in an attempt to 

overcome the limitations and difficulties encountered when labeling more complex 

images with crisp labels.  Fuzzy region labels are primarily multiple semantic labels 

assigned to image regions.  

A study by Mulhem, Leow and Lee [MLL01] recognized the difficulty of 

accurately classifying regions into semantic classes and so explored the approach of 

representing each image region with multiple semantic labels instead of single 

semantic labels.  Disambiguation of the fuzzy region labels was performed during 

image matching where image structures were used to constrain the matching between 

the query example and the images. 

The only study so far that has focused on fuzzy semantic labeling is that by Li and 

Leow in [LL03].  They further explored fuzzy labeling by introducing a framework 

that assigns probabilistic labels to image regions using multiple types of features such 

as adaptive color histograms, Gabor features, MRSAR and edge-direction and 

magnitude histograms.  The different feature types were combined through a 

probabilistic approach and the best feature combinations were derived using feature-
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based clustering using appropriate dissimilarity measures.  The subset of features 

obtained was then used to label a region.  Because feature combinations were used to 

label a region, this method could assign multiple semantic classes to a region together 

with the corresponding confidence measures.  To evaluate the accuracy of the fuzzy 

labeling method, the image regions were classified into the class with the largest 

corresponding confidence measure.  Using this criterion and without setting a 

threshold on the minimum acceptable confidence measure, a classification accuracy 

of 70% was achieved on a test set of fixed-size image blocks cropped from whole 

images.  

2.4 Summary  

The studies as reviewed in Section 2.1 have shown that a relatively high 

classification accuracy can be achieved using the crisp labeling methods that they 

proposed. But since these methods have been demonstrated on labeling at most 15 

classes, the good classification performance may not necessarily be extendable to 

labeling a much larger number of semantic classes that commonly occur in a database 

of complex images.  It is unlikely that very accurate classifiers can be derived in such 

a case because of the noise and ambiguity that are present in more complex images.  

Crisp labeling methods therefore may not be very practical when used for the labeling 

and retrieval of complex images. 

In the auto-annotation methods, a much larger word vocabulary size, that is, 

number of classes in the context of the reviewed crisp labeling methods, was 

considered.  However, the good evaluation test results reported can be deceiving as 

they cannot be directly compared with the results obtained for crisp labeling.  The “hit 

rates” , for instance, in [MTO99] and [MTO00] reflect how often output words 
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actually include the words originally associated with the image.  Naturally, “hit rates”  

will be higher because the group of output words is already considered correct if at 

least one of the original associated words appears in the output words.   On the other 

hand, accuracy values reported in crisp labeling are based on how often a single word 

assigned to or associated with an image matches the single word originally associated 

with the image or image region.  This is analogous to considering only the top one 

output word in auto-annotation.  The same can be fairly said of accuracy values 

reported on region classification tests performed to assess the performance of fuzzy 

semantic labeling method in [LL03].  Thus, a “hit rate”  of 70% obtained for the top 

three output words, for instance, may actually translate to a “hit rate” of roughly just 

23% for the top one output word. 

In [LL03] on fuzzy semantic labeling, aside from the high classification accuracy 

achieved, the probabilistic approach taken has the following advantages: 

�  It makes use of only those dissimilarity measures appropriate for the feature 

types considered. 

�  It adopts a learning approach that can easily adapt incrementally to the 

inclusion of additional training samples, feature types and semantic classes.   

Although [LL03] presented a novel approach using fuzzy labeling and 

demonstrated it for 30 classes, a number larger than those used in the studies of crisp 

semantic labeling, it had not demonstrated the advantage of fuzzy semantic labeling 

over crisp labeling.  Moreover, in the performance evaluation, only a single 

confidence measure (the one with the largest value) of a fuzzy label was used.  

Potentially useful information contained in the other confidence measures was 

omitted.  We intend to address these shortcomings with the contributions made by our 

proposed fuzzy semantic labeling method as outlined in Section 1.2. 
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CHAPTER 3 
 
 
 

Semantic Labeling 
 
 

This chapter first discusses crisp semantic labeling to lay the foundation for our 

proposed fuzzy semantic labeling. 

 
3.1. Crisp Semantic Labeling  

Crisp semantic labeling is essentially a classification problem where an image or 

image region is classified into one of m semantic classes Ci where i = 1, 2, …, m.  As 

discussed in Chapter 2, crisp labeling involves assigning a single semantic label to the 

image or image region and can be carried out using a variety of methods based on 

various image features. 

In this section, we discuss how crisp semantic labeling can be performed using 

multi-class classifiers based on Support Vector Machines (SVMs) [Vap95, CV95].  

While several methods have been used to perform crisp labeling, we choose to use 

SVM for classification due to its advantages over other learning methods.  SVM is 

guaranteed to find the optimal hyperplane separating samples of two classes given a 

specific kernel function and the corresponding kernel parameter values.  This aspect 

leads to considerably better empirical results compared to other learning methods 

such as neural networks [Vap95].  Wu et al. [WCL02] in particular pointed out that 
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although SVMs achieved a slightly lower classification accuracy compared to Bayes 

point machines, SVMs are more attractive for image classification because they 

require a much lesser time to train.  Chappelle et al. in [Cha99] also obtained good 

results when they tested SVM for histogram-based image classification. 

3.1.1.  Support Vector Machines 

Support Vector Machines [Vap95, CV95] are learning machines designed to solve 

problems concerning binary classification (pattern recognition) and real-valued 

function approximation (regression).  Since the problem of semantic labeling is 

essentially a classification problem, we focus solely on how SVMs perform 

classification.  First, we describe how an SVM tackles the basic problem of binary 

classification. 

In order to present the underlying idea behind SVMs, we first assume that the 

samples in one class are linearly separable from those in the other class.  Within this 

context, binary classification using SVM is carried out by constructing a  hyperplane  

 

 

 

 

 

 

 

 

 

Figure 3.1. An optimal hyperplane for the linearly separable case. 
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that separates samples of one class from the other in the input space.  The hyperplane 

is constructed such that the margin of separation between the two classes of samples 

is maximized while the upper bound of the classification error is minimized.   Under 

this condition, the optimal hyperplane is defined by 

  wTx + b = 0 (3.1) 

and the margin of separation ρ to be maximized is given by (Figure 3.1) 

  
w
2=ρ . (3.2) 

We can likewise define the following decision function 

  f(x) = wTx + b. (3.3) 

Given any sample represented by the input vector x, the sign of the decision function 

f(x) in Eq. 3.3 indicates on which side of the optimal hyperplane the sample x falls.  

When f(x) is positive, the sample falls on the positive side of the hyperplane and is 

classified as class 1.  On the other hand, when f(x) is negative, the sample falls on the 

negative side of the hyperplane and is classified as class 2.  Furthermore, the 

magnitude of the decision function, |f(x)|, indicates the sample’s distance from the 

optimal hyperplane.  In particular, when |f(x)| ≈ 0, the sample falls near the optimal 

hyperplane and is most likely an ambiguous case.  We may extend this observation by 

assuming that the nearer x is to the optimal hyperplane, the more likely is there an 

error in its classification by the SVM. 

In practice, samples in binary classification problems are rarely linearly separable.  

In this case, SVM carries out binary classification by first projecting the feature 

vectors of the nonlinearly separable samples into a high-dimensional feature space 

using a set of nonlinear transformations ΦΦΦΦ(x).  According to Cover’s theorem, the 

samples become linearly separable with high probability when transformed into this 
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new feature space as long as the mapping is nonlinear and the dimensionality of the 

feature space is high enough. This enables the SVM to construct an optimal 

hyperplane in the new feature space to separate the samples.  Then, the optimal 

hyperplane in the high-dimensional feature space is given by: 

 wT  ΦΦΦΦ(x) + b = 0 (3.4)  

The nonlinear function ΦΦΦΦ(x) is a kernel function of the form K(x, xi) where xi is a 

support vector.  The decision function now is  

 bKf
i

i
T +=

�
),()( xxwx  (3.5)  

Commonly used kernel functions K(x, xi) include linear function, polynomial 

function, radial base function or Gaussian and hyperbolic tangent  (Table 3.1).   

Although SVMs are originally designed to solve binary classification problems, 

multi-class SVM classifiers have been developed since most practical classification 

problems involve more than two classes.  The main approach for SVM-based multi-

class classification is to combine several binary SVM classifiers into a single 

ensemble.  Generally, the class that is ultimately assigned to a sample arises from 

consolidating the different outputs of the binary classifiers that make up the ensemble.  

These methods include one-vs-one [KPD90], one-vs-rest [Vap98],  Directed Acyclic 

Graph (DAG) SVM [PCS00], SVM with error-correcting output code  (ECOC)  

Table 3.1.   Commonly used SVM kernel functions 

Type Kernel Function 

Linear   xT xi + 1  

Polynomial p
i

T )1( +xx , p > 1 

Gaussian ������
−− 2

2�2

1
exp ixx  

Hyperbolic tangent tanh ( β0 x
T xi + β1 ) 
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[DB91] and binary tree [Sal01].  Of these methods, only the one-vs-rest 

implementation and DAG SVM will be discussed in more detail because they are 

used in this study. 

One-vs-rest SVM.  One-vs-rest implementation [Vap98] is the simplest and most 

straightforward of the existing implementations of a multi-class SVM classifier.  It 

requires the construction of m binary SVM classifiers where the uth classifier is 

trained using class u samples as positive samples and the remaining samples as 

negative samples.  The class assigned to a sample is then the class corresponding to 

the binary classifier that classifies the sample positively and returns the largest 

distance to the optimal separating hyperplane. 

An advantage of this method is that it uses a small number of m binary SVMs.  

However, since only m binary classifiers are used, there is a limit to the complexity of 

the resulting decision boundary.  Moreover, when a large training set is used, training 

a one-vs-rest SVM can be time consuming since all training samples are needed in 

training each binary SVM. 

Directed Acyclic Graph (DAG) SVM.  Another implementation of a multi-class 

SVM classifier is the Directed Acyclic Graph (DAG) SVM developed by Platt et al. 

[PCS00].  A DAG SVM uses m(m-1)/2 binary classifiers arranged as internal nodes of 

a directed acyclic graph (Figure 3.2) with m leaves.  Unlike the one-vs-rest 

implementation, each binary classifier in the DAG implementation is trained only to 

classify samples into either class u or class v.   Evaluation of an input starts at the root 

and moves down to the next level to either the left or right child depending on the 

outcome  of the  classification at the root.   The same process is  repeated down the 

rest of  the tree until a leaf is reached and the sample is finally assigned a class. 

One advantage of DAG SVM is that it only needs to perform m-1 evaluations to  
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Figure 3.2.   A directed acyclic graph decision tree for the classification task with 
four classes. 

 

classify a sample.  On the other hand, besides requiring the construction of m(m-1)/2 

binary classifiers, DAG SVM has a stability problem: if just one binary 

misclassification occurs, the sample will ultimately be misclassified.  Despite this 

problem, the performance of the DAG SVM is slightly better or at least comparable to 

other implementations of multi-class SVM classifier as demonstrated in [PCS00, 

HL02, Wid02].   

3.1.2. Crisp Labeling Using SVMs 

Using the multi-class SVM classifier implementations discussed in Section 3.1.1, 

we can assign crisp labels of m semantic classes to image regions in two ways as 

described below. 

First crisp labeling method. The one-vs-rest implementation of the multi-class 

SVM classifier is used for labeling image regions with crisp labels.  The j th one-vs-

rest binary SVM is trained to classify regions into either class j or non-class j.  After 
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training, a region i is classified using all the m one-vs-rest binary classifiers.  Then 

region i is assigned the crisp label c if among the SVMs that classify region i 

positively, the cth SVM returns the largest distance between region i 's feature vector 

and its hyperplane.  If no SVM classifies region i as positive, then region i would be 

labeled as “unknown”.   

Second crisp labeling method. The second crisp labeling method is to classify a 

region i using the DAG SVM into one of m semantic classes, say, class c.  The crisp 

label of the region i would then be c. 

 

3.2. Fuzzy Semantic Labeling  

As stated previously, fuzzy semantic labeling is carried out by assigning multiple 

semantic labels along with associated confidence measures to an image or image 

region.  Our proposed method assigns a fuzzy label or signature in the form of vector  

  v = [v1 v2 … vm ]
T (3.6) 

where vj is the confidence that the image or image region belongs to class j.   

The fuzzy labeling algorithm mainly consists of two phases: the training phase 

(Section 3.2.1) and the labeling phase (Section 3.2.3).  During image retrieval, fuzzy 

labels or signatures are matched and compared.  The procedure we use in region 

matching is described in Section 3.2.4. 

3.2.1 Training Phase 

The training phase of the fuzzy labeling algorithm consists of two main steps: (1) train 

m one-vs-rest SVMs and (2) construct a confidence curve for each of the trained 

SVMs.  
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Step 1. Train m one-vs-rest binary SVMs.   

The j th SVM is trained using training samples to classify image regions into either 

class j or non-class j.  

Step 2. Construct confidence curves. 

A confidence curve is constructed for each SVM to approximate the relationship 

between a sample’s distance to the optimal hyperplane and the confidence of the 

SVM’s classification of the sample.   

To obtain the confidence measures, we may examine the relationship between the 

distance f(x) of a sample x from the hyperplane constructed by the SVM and the 

confidence of classification of the sample by the SVM.   As stated earlier, the distance 

f(x) of a sample x to the hyperplane is computed  using the decision  function given in 

Eq. 3.5.   

Given the positions of samples in the feature space used by an SVM, an error in 

classification is more likely to occur for samples that fall near the optimal hyperplane.   

Samples that lie far away from the optimal hyperplane are more likely to be correctly 

classified than those that lie near the optimal hyperplane.  This relationship between 

distance to hyperplane and likelihood of correct classification can be represented by a 

mapping or confidence curve.  The confidence curve is obtained using a set of 

samples other than that used to train the SVMs and whose classes are known.  This set 

of samples will be referred to as the set of generating samples or the generating set for 

the remainder of this thesis. 

To obtain the confidence curve, the generating samples are first classified using 

each of the m SVMs trained in the training phase.  For each SVM, the distance of 

each sample in the generating set to the hyperplanes is computed.  The samples in the 
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Figure 3.3.   A sample confidence curve. 
 

generating set are then sorted in increasing order of distance.  A recursive algorithm, 

described in Section 3.2.2, is applied to recursively partition the range of distances 

into intervals such that the classification accuracy within each interval can be 

measured and the accuracy changes smoothly from one interval to the next.  This 

results in a confidence curve such as that shown in Figure 3.3.  We choose to obtain 

the confidence curve in this manner since we would like a confidence measure to be 

based on the classification accuracies of the samples in the generating set rather than 

be an arbitrary function of the distance d of a sample x to the hyperplane, such as the 

logistic function (1 + exp(d(x)))-1.  Also note that while the resulting confidence curve 

is considerably smooth, it need not be monotonically increasing even if, ideally, 

confidence is expected to increase as distance from the hyperplane increases.  

Furthermore, since the classification accuracy is bounded between 0 and 1, the 

confidence curves of the SVMs also provide nonlinear normalizations of distance 

ranges of different SVMs to confidence measure within the [0,1] range. 
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3.2.2 Construction of Confidence Curve 

The algorithm that constructs the confidence curve recursively partitions the range 

of distances of the samples into intervals such that the classification accuracy within 

each interval can be measured and the accuracy changes smoothly from one interval 

to the next.  Imposing these two requirements essentially results in a smooth 

confidence curve. 

Since the main goal now is to obtain a smooth curve, we can use the following 

rationale for the construction algorithm. In a smooth curve, the angles formed by line 

segments that define the curve are large whereas those in a jagged curve are small.  

Since we want to obtain a smooth curve, the algorithm aims to eliminate these small 

angles by merging intervals until all angles are greater than or equal to a pre-defined 

threshold. 

Let us define  a  confidence  curve C = { Z, E}  as  consisting of  a  series of  

vertices  Z = { z0, z1, z2 … zn}  connected by n edges E = { e1, e2, … , en} .   Each edge 

is defined as ei = (z i-1, z i) for i = 1, 2, … , n, i.e., the edge ei has z i-1 and z i as its 

endpoints.   It follows that adjacent edges ei and ei+1 form an angle θi with its vertex 

at zi.  In the context of our problem, the vertex zi is the point with coordinates (µi, pi) 

where µi defines the midpoint of the interval [ai, bi] and pi is the percentage of 

samples in the interval [ai, bi] that belong to class c.  The algorithm that constructs the 

smooth curve is shown as Figure 3.4. 

The algorithm examines all angles θi and takes note of the smallest angle θmin.  

Given that this angle has its vertex at point zmin, we look at the intervals corresponding 

to the two vertices adjacent to zmin and take the interval containing fewer samples.  

This interval [ax, bx] is then merged with [amin, bmin].  The result of merging the two 

intervals is illustrated in Figure 3.5.   Merging is repeated until all θi are greater than 
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Figure 3.4. Algorithm for obtaining a smooth confidence curve. 
 

Figure 3.5. A sample segment of a confidence curve showing angle θi defined by 
edges ei and ei+1 that connect the vertices zi-1, zi and zi+1.  Dotted lines 
show the updated line segments after merging the ith interval with the 
(i+1)th interval. 

 

or equal to the given threshold θ* .  At this point, the resulting curve is now smooth 

since all angles on the curve are large. 

Initially, all intervals contain a single sample such that µm = dm, the distance of the 

single sample in the interval to the hyperplane, and pm = 1 if the sample was correctly 

classified and pm = 0, otherwise. 
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 (a) (b) 

Figure 3.6. Given (a) the distance dc of a sample to the hyperplane, the expected 
confidence vc of the sample can be estimated from (b) the confidence 
curve using linear interpolation. 

 

3.2.3 Labeling Phase 

In the labeling phase, a sample is first classified using the SVMs trained in the 

training phase.  The distances of the sample to the SVMs’ hyperplanes are computed.  

The confidence measure vc with respect to each SVM c is then obtained from the 

confidence curve using linear interpolation (Figure 3.6).  This expected classification 

accuracy vc can be regarded as the confidence measure for SVM c. Now the sample 

can be assigned a fuzzy label or signature v = [v1 v2 … vm ]
T. 

Note that with the first crisp labeling method using m one-vs-rest SVMs described 

in Section 3.1.3, a sample’s signature would  be v such that at most one of the vj’ s is 1 

if at least one of the binary classifiers classifies the sample positively.  In the case 

where none of the binary classifiers in the one-vs-rest SVM implementation classifies 

the sample positively, the sample’s signature would be a null vector.  With the second 

crisp labeling method using DAG SVMs, exactly one of the vj’ s is 1 and the rest are 0. 

�
 

dc 

Optimal hyperplane 
constructed for classifying 

class c vs. non-class c 

Distance to hyperplane 

Confidence 

Confidence curve 
derived for class c  

dc 

 

vc 

 



 28 

3.2.4 Region Matching 

To perform region matching, we need to first obtain the prototype signatures of 

known samples.  This requires two steps. 

Step 1. Obtain signatures of known samples. 

First, we take the same set of samples used to generate the confidence curves and 

obtain their signatures by following the steps discussed in the labeling phase.  These 

signatures are needed in the next step where prototype signatures are obtained. 

Step 2. Obtain prototype signatures for each semantic class. 

A simple way to obtain prototype signatures is to take the average of the 

signatures vci of the nc generating set samples belonging to semantic class c.  That is, 

  
�

=
cn

i
ci

c
c n

vp
1

 (3.7) 

This clearly results in a single prototype signature pc for each semantic class c. 

However, a large variation of signatures can occur within a single semantic class 

due to the large variation of objects even within a semantic class.  Thus we should 

obtain more than one prototype signature for each semantic class to capture the 

diversity of objects within a single semantic class.  In order to obtain multiple 

prototype signatures, we perform clustering on those samples in the generating set 

belonging to class c according to their signatures.  Two clustering methods were 

considered: k-means clustering and adaptive clustering proposed in [LL01].  In k-

means clustering, the appropriate number of clusters k is chosen with the aide of 

silhouette values that measure how well the samples are clustered.  Silhouette values 

are discussed in Section 3.2.5.  For adaptive clustering [LL01], the maximum radius 

of the clusters, nominal separation between clusters and the minimum number of 
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samples per cluster were set.  This enabled adaptive clustering to generate the most 

appropriate number of clusters given these restrictions. 

After having obtained the clusters for each semantic class, the cluster centroids, 

i.e., the mean signatures of the samples in each of the k clusters belonging to a 

semantic class, are computed and taken as the prototype signatures pci of the semantic 

class c: 

 ki
n

cin

j
cij

ci
ci ,...,1

1 == � vp  (3.8) 

where nci is the number of samples in the ith cluster for semantic class c.  Since k ≥ 1 

a semantic class can therefore have more than one prototype signature. 

In empirical tests, it was found for some prototype signatures pci = [ pci1 pci2 … 

pcim ]T, i = 1, …, k of a semantic class c, that  

  ciccij
j

pp ≠}{max . (3.9) 

That is, the prototype signature of class c indicates that the confidence of belonging to 

class c is actually lower than those of other classes.  Hence, these prototype signatures 

are misleading and are thus regarded as unreliable and may not be used in region 

matching. 

Given the signature v of a sample region r and prototype signatures pci of a class 

c, the distance d between the region and the class c is simply the minimum Euclidean 

distance between v and pci: 

  ),(min),( ci
k

dcrd pv= . (3.10) 

The computation of Eq. 3.10 may include only the reliable prototype signatures or 

both the reliable and unreliable prototype signatures.   In Chapter 4, we will show that 
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region matching performance is poorer when unreliable prototype signatures are used 

together with reliable prototype signatures. 

3.2.5 Clustering Algorithms 

K-means clustering and silhouette plots.  K-means clustering is a well-known 

approach to generating a specific number of disjoint clusters.  In the k-means 

clustering algorithm, each object is assigned to one of k clusters so that a given 

measure of dispersion among the clusters is minimized.  Often this measure of 

dispersion is the sum of distances or sum of squared Euclidean distances of each 

sample from the mean or centroid of its cluster. Even though the algorithm is 

efficient, among its disadvantages is the difficulty in predicting what number of 

clusters will produce optimal clustering.  One way to determine the optimal number of 

clusters is to run the algorithm over a range of values for k that are near the number of 

clusters one expects from the data.  Then one can observe how the sum of distances 

reduces with increasing values of k.  This procedure, however, can be tedious and 

inaccurate since it is often difficult in the first place to know what range of values for 

k to use.   Many other criteria that can be used to solve the problem of selecting the 

optimal value for k are discussed by Milligan and Cooper in [MC85]. 

One proposed solution to this problem uses silhouette plots developed by 

Rousseeuw [Rou87].  Silhouette plots are graphical displays that can be used to aid in 

the interpretation and validation of cluster analysis results.  Given the clusters 

generated by a clustering algorithm, a silhouette can be constructed for each cluster in 

order to show which samples lie well within the cluster and which do not.  The 

silhouette of samples in a cluster is constructed by plotting the silhouette value of 

each sample in the cluster in decreasing order.   The silhouette value of a sample 

measures how similar that sample is to other samples in its own cluster compared to 
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samples in other clusters.  The silhouettes of all clusters generated are displayed in a 

single diagram, such as the three shown in Figure 3.7, in order to create an overall 

graphical representation of the clustering results.  This allows the user to visually 

compare the quality of the clusters.  

A silhouette value of a sample i, s(i), is obtained as follows.  Given a sample i that 

has been assigned to some cluster A, let dA(i) denote average dissimilarity of i to all 

other samples assigned to cluster A.  Now consider another cluster C that is different 

from cluster A so that we have dC(i), the average dissimilarity of i to all samples 

assigned to cluster C.  After computing for dC(i) for all other cluster C ≠ A, determine 

cluster B for which dB(i)= min dC(i) for all C ≠ A.  Given these average dissimilarities, 

the silhouette value s(i) is computed as: 

  .
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One can see that –1 ≤ s(i) ≤ 1.  Moreover, when s(i) is close to 1, this indicates 

that the sample i has been assigned to the most appropriate cluster, A, rather than to 

the closest second-best choice which is cluster B.  An s(i) that is about zero occurs 

when a(i) and b(i) are approximately equal suggesting that it is not too clear if sample 

i should have been assigned to either cluster A or cluster B.  On the other hand, a 

silhouette value s(i) that is close to –1 indicates that the sample i actually lies closer to 

cluster B than to cluster A.  This indicates that sample i should have been assigned to 

cluster B rather than to A.  Therefore, having been assigned to cluster A by the 

clustering algorithm, sample i in this case has possibly been assigned to the wrong 

cluster. 

Rousseeuw further suggests that one may take the average silhouette value over all 

objects for a given clustering.   This summary value can also be interpreted as the 
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 (b) (c) 

Figure 3.7. Three silhouette plots obtained for the same data set. (a) k = 3.  All three 
clusters have wide uniform silhouettes but some samples in cluster 3 
have negative silhouette values indicating that this may not be the right 
number of clusters for the data set.  (b) k = 4.  All four clusters have 
wide uniform silhouettes and no sample has negative silhouette values.  
This indicates that this may be the best number of clusters for the data 
set.  (c) k = 5.  Two clusters (3 and 4) have samples with low silhouette 
values and cluster 3 has a sample with a negative silhouette value 
indicating that this may not be the right number of clusters for the data 
set either. 
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Figure 3.8.  Adaptive clustering algorithm. 
 

average silhouette plot width for the entire data set.  More importantly, it also can be 

used for the selection of the optimal value of k by choosing the k for which the 

average silhouette value is as high as possible.  Thus, the optimal number of clusters k 

is that for which the overall average silhouette value or overall average silhouette 

width is the largest as illustrated in Figure 3.7. 

Adaptive clustering.  The adaptive clustering algorithm proposed in [LL01] 

overcomes the problem of finding the appropriate number of clusters encountered 

with ordinary k-means clustering. By fixing the maximum cluster radius R and the 

nominal separation S between clusters, the algorithm generates only those clusters that 

meet these criteria.  The adaptive clustering algorithm is described in Figure 3.8. 

The adaptive clustering algorithm assigns a sample p to the nearest cluster A if it is 

near enough to cluster A.  Else, if it is too far away from the nearest cluster, a new 

cluster is created containing the sample p.   

This clustering algorithm ensures that each cluster has a maximum radius of R and 

that clusters are separated by a distance of approximately S.  Moreover, it also ensures 

Repeat 

For each sample p 

Find the nearest cluster k to sample p. 

If no cluster is found or distance dkp ≥ S 

create a new cluster containing sample p. 

Else if dkp ≤ R 

add sample p to cluster k. 

For each cluster i 

If cluster i has at least Nm samples 

update centroid ci of cluster i. 

Else remove cluster i. 
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that each cluster contains a significant number of samples because small clusters are 

removed.   Hence it can also automatically determine the appropriate number of 

clusters.  Adaptive clustering has been shown to be effective in creating adaptive 

color histograms for both image [LL01] and texture [LL02] retrieval and 

classification. 
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CHAPTER 4 
 
 
 

Evaluation Tests 

 
A series of evaluation tests were performed to quantitatively assess the performance 

of the proposed fuzzy semantic labeling method as well as compare it with the crisp 

labeling methods. 

4.1. Image Data Sets 

A variety of 31 semantic classes were identified.   Descriptions of typical image 

blocks for each semantic class are given in Table 4.1 while sample image blocks are 

shown in Figure 4.1 

For each semantic class, a total of 550 image blocks of size 64 × 64 pixels were 

cropped from images in the Corel library of 50,000 photos.  The image blocks were 

cropped such that each block contained objects of only one semantic class.  Each set 

of 550 well-cropped image blocks was further divided into three sets:  

1) The training set contains 375 image blocks chosen at random to be used to train 

the Support Vector Machines (SVMs). 

2) The generating set contains 125 image blocks chosen at random to be used for 

constructing the confidence curves and for obtaining the prototype signatures of 

each semantic class. 
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Table 4.1 Descriptions of image blocks for the 31 selected semantic classes. 

Class name Description 

big building  buildings either singly or in groups as in cityscapes 

brick wall  manmade stonework such as brick walls and stone walls 

calm water  water surfaces featuring little or no surface structure (i.e. reflective 
surfaces) 

choppy water  water surfaces featuring more prominent surface structure (waves 
and white water) such as that occurring on stormy sea surfaces and 
water falls 

clear day sky  sky regions that are of relatively uniform color including that during 
dawn and twilight 

clouds  sky regions that are covered partially or completely by clouds 

dome  architectural domes, towers and steeples 

fence  fences mainly featuring vertical structures such as picket fences, 
metal fences and ceramic banisters and excludes privacy-type 
fences such as stone walls 

fireworks  various firework displays generally displayed against a night sky 

flames  fire, lava flows, candle flames 

flowers  single blooms or compound flowers 

foliage  leaves, shrubbery and tree foliage (include summer and autumn 
foliage) 

fur  animal fur 

grass  grass-like vegetation including lawns and grasslands 

house  small houses either singly or in groups. 

human face  human faces in various views ranging from full-frontal to three-
quarters  

mountain  unobscured mountain peaks 

night sky  featureless (moonless and starless) regions of sky during nighttime 

paved road  road surfaces such as concrete or cement roads and cobblestone 
roads. 

pebbles  pebbles and gravel  

pillars  pillars, posts and columns 

rock face  naturally occurring single rocks, rock faces and rocky mountain 
sides 

roof  metal, tiled or thatched roofs. 

sand  sandy surfaces such as that which occurs on beaches and desserts 

scales  scale covering on reptiles, amphibians and fish 

snow  snow covered surfaces 

soil  ground surfaces 

staircase  stairways and stepped structures 

tree trunks  tree bark and trunks of trees appearing singly or in groups 

window  windows occurring singly or in groups. 

wooden surface  bare and painted or stained wood surfaces 
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Figure 4.1.  Sample images of  31 semantic classes used. 
 

3) The testing set contains 50 image blocks chosen at random for evaluating the 

performance of fuzzy semantic labeling. 

In total, there were 11,625 image blocks in the training set, 3875 image blocks in the 

generating set and 1,550 image blocks in the testing set. 

In practice, however, semantic labeling almost always has to be performed on 

image regions that do not necessarily contain objects of a single semantic class.  

Moreover, the object of interest may not be centered in the image block, i.e., the 

image blocks are not always well-cropped.  Hence, to evaluate how well the labeling 

method can generalize to image blocks that are not well-cropped, an additional 800 

images were selected from the Corel photo library to form a general test set.  The 

selection of images was made to ensure that among these images, at least 25 contain 

regions of big buildings, at least 25 contain brick walls, and so on.  Each image was 

partitioned at regular intervals into 77 overlapping image blocks of size 64 × 64 

pixels.  Each image block was manually assigned a label to denote the ground truth  
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which was one of the following: 

�  one of the 31 semantic classes if the image block contained objects belonging 

to exactly one semantic class;  

�  “unknown” if the image block contained objects that did not belong to any of 

the 31 of the semantic classes; or  

�  “ambiguous”  if the image block contained objects in more than one semantic 

class. 

As a result of the manual assignment of labels, a total of 26179 (42.5%) image blocks 

were labeled with one of the known semantic classes, 4588 (7.4%) were labeled as 

“unknown” and 30833 (50.1%) were labeled as “ambiguous” .  The set of image 

blocks that were labeled with one of the known semantic classes was used in the 

evaluation tests in addition to the test set of well-cropped image blocks. 

 

4.2   Low-Level Image Features 

Four different types of low-level features, namely, fixed color histograms, Gabor 

features, multiresolution simultaneous autoregressive features (MRSAR) and edge 

histograms, were extracted from each image block i.  These features are generally 

known to be good features for image classification and retrieval and have been used 

singly or in combination in existing methods.  In this study we chose to use all four 

features together.  The different features were concatenated into a single feature 

vector of 274 dimensions of which 165 were for color histogram, 30 for Gabor 

features, 15 for the MRSAR features and the remaining 64 for edge histogram.   

Since the different features were of different scales but were assumed to be 

equally important in training the support vector machines, the data were normalized 

across different feature types.  Principle component analysis (PCA) was used to 
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determine the normalization factor.  The data were normalized so that the largest 

eigenvalues for the four feature types were the same.  This prevents accidental biasing 

of the one-vs-rest support vector machines towards those feature types with large 

values.  

4.2.1  Fixed Color Histogram 

The colors in an image or image block play a major role in distinguishing objects 

among different semantic classes.  For example, image blocks containing objects 

belonging to the semantic classes grass and foliage are generally green, those of the 

class clear day sky is almost always blue and those of snow are usually white.  Color 

histograms are often used to represent the distribution of color features in an image or 

image block.  This is often preferred to a single feature since a distribution can more 

fully describe the variation of colors that occurs throughout the image or image block.  

In the fixed-binning method for obtaining a color histogram, the color space is 

partitioned into rectangular bins [SB91].  The method is called “ fixed-binning”  

because once the different bins are derived, the same binning scheme is applied to all 

images or image blocks. 

4.2.2  Gabor Feature 

Gabor texture features [MM96] are features for measuring texture differences.  

This is especially useful for structured and oriented features which occur in some 

semantic classes considered in this study such as pillars, brick walls and staircases. 

The Gabor wavelet transform of an image I(x, y) can be defined as: 

  111111 ),(),(),( dydxyyxxgyxIyxW mnmn −−∗=
�

 (4.1) 

where *  indicates the complex conjugate and gmn(x, y) is the generating function used 

to obtain the class of self-similar functions called Gabor wavelets.  It is assumed that 
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the local texture regions are spatially homogenous.   The mean and standard deviation 

of the magnitude of the transform coefficients defined below are used to represent the 

region for classification and retrieval purposes: 

 dydxxyW�
mnmn
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),(

� �
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In this study, we set the number of scales to five and the number of orientations to 

six resulting in the feature vector  

  [ ]303001010000 ������f �= . (4.3) 

4.2.3  Multi-resolution Simultaneous Autoregressive (MRSAR) Feature 

Other natural images can contain random textures such as foliage and fireworks 

instead of structured textures.  In order to capture the characteristics of random 

textures, multi-resolution simultaneous autoregressive (MRSAR) features [MJ92] 

were also extracted from the image block samples.    

The MRSAR model is a second-order model described by five parameters at each 

resolution level.  In this study, a symmetric MRSAR was applied to the L*  component 

of the L*u*v*  image data.  The pixel value L* (x) at a certain location x was modeled 

as a linearly combination of the pixel values L* (y) of the neighboring pixels y and a 

zero-mean additive independent Gaussian noise term ε(x) as shown in the following 

formula: 
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L
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 (4.4) 

where µ is the bias that is dependent on the mean value of L* , u is the set of neighbors 

of the pixel at location x, and θ(y) are the model parameters.  The neighbors were 

defined for the three different window sizes used: 5×5, 7×7 and 9×9.  These window 

sizes are said to provide the best overall retrieval performance over the entire Brodatz  
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database according to [PKL93] and [LP96].   

Five parameters were used to represent the MRSAR models.  These parameters 

include the bias µ and the four model parameters θ(y), one at each neighboring 

position y.   These parameters were estimated using the least squares technique.  This 

procedure was repeated for each of the three window sizes considered to form a 15-

dimensional feature vector. 

In order to extract the MRSAR feature of a given image block, a 21×21 

overlapping window was moved over the image at increments of two pixels in both 

the horizontal and vertical directions, obtaining a multi-resolution feature vector each 

time.  The mean vector t over all windows in a given image block are the MRSAR 

features associated with that image block. 

4.2.4  Edge Direction and Magnitude Histogram 

Normalized edge direction and magnitude histograms [Bra99, BLO00] were 

extracted from the images in the following manner: 

The image block was first transformed to the HSI (hue, saturation, intensity) 

space. The hue channel was neglected while other two channels were convolved with 

the eight Sobel operators [Bra99], one for each of eight quantized directions.  For 

each pixel, its gradient magnitude was taken as the largest magnitude of the responses 

of the Sobel operators, and its directions was taken as the quantized direction of the 

corresponding operator.  Then the pixels with low gradient magnitudes were 

discarded.  Next, the gradient magnitudes of the remaining pixels were quantized into 

eight levels.  This set of pixels with eight quantized directions and eight quantized 

magnitudes form the 8 × 8 edge histograms. 
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4.3  Parameter Settings 

4.3.1  SVM Kernel and Regularizing Parameters 

The choice of the regularizing parameter C and the kernel of a support vector 

machine affect the SVM’s performance and thus have to be chosen with care.  One 

method that can be used to help make the selection is to measure the performance of 

the SVM on testing samples under various parameter values.  Another is an analytical 

approach that requires estimating the bounds on the generalization performance.  In 

this study, we chose to use the former method for practical reasons. 

The binary one-vs-rest SVMs were first trained and evaluated using five 

representative semantic classes with different kernels and regularizing parameter 

values.   Only five semantic classes were used in these preliminary tests because 

training for all 31 semantic classes was very time consuming.   The five classes were 

selected based on initial tests performed to identify those classes for which the SVM 

yielded the best, average and worst performance.    

When a polynomial kernel was used, no convergence of training occurred.  

Moreover, no significant difference in performance was observed for different values 

of C.  Tests were further carried out using the Gaussian kernel with various values of 

σ and regularizing parameter C set to 100.   

Tables 4.2 and 4.3 show the classification precision and the classification 

accuracy achieved for each of the five selected classes for varying values of σ.  The 

average precision and average accuracy computed over the five selected classes are 

plotted against σ in Figure 4.2.  Precision and accuracy in this context are defined as 

follows: 

Let Ac be the set of testing samples that actually belong to class c and let Sc be the  
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Table 4.2 Precision achieved for selected five classes in preliminary tests using 
different values for Gaussian kernel parameter σ. 

  Value for kernel parameter σσσσ 

 Class 0.100 0.125 0.250 0.375 0.500 0.625 0.750 

1 grass 81.8% 82.4% 86.4% 82.9% 85.2% 87.0% 90.0% 

2 foliage 64.0% 65.5% 77.8% 83.1% 89.1% 92.3% 93.3% 

3 flowers 80.2% 84.1% 85.3% 87.4% 90.7% 92.2% 96.9% 

6 rocks 40.9% 43.8% 50.8% 65.8% 82.6% 94.1% 100.0% 

18 brick 55.8% 58.9% 64.5% 73.0% 77.2% 82.2% 93.8% 

 Average 69.6% 71.7% 76.9% 81.5% 87.1% 91.0% 95.3% 

 
 
Table 4.3 Accuracy achieved for selected five classes in preliminary tests using 

different values for Gaussian kernel parameter σ. 

  Value for kernel parameter σσσσ 

 Class 0.100 0.125 0.250 0.375 0.500 0.625 0.750 

1 grass 72.0% 71.2% 60.8% 50.4% 41.6% 32.0% 28.8% 

2 foliage 45.6% 44.0% 39.2% 39.2% 32.8% 28.8% 22.4% 

3 flowers 71.2% 72.0% 69.6% 66.4% 62.4% 56.8% 49.6% 

6 rocks 30.4% 28.0% 24.0% 20.0% 15.2% 12.8% 8.0% 

18 brick 42.4% 42.4% 39.2% 36.8% 35.2% 29.6% 24.0% 

 Average 58.9% 58.1% 53.1% 48.8% 44.1% 39.1% 34.3% 
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Figure 4.2 Average precision and average accuracy achieved for different values of 
Gaussian kernel parameter σ. 
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set of testing samples that the SVM labels as class c.  Then, 

precision = 
c

cc

S

SA ∩
  and   accuracy = 

c

cc

A

SA ∩
. 

Precision was also considered as a criterion in addition to accuracy in selecting the 

best parameter settings in view of eventually using the proposed fuzzy semantic 

labeling method for image retrieval.   

From the results in Tables 4.2 and 4.3 and Figure 4.1, it is understandable that 

there was a trade off between precision and accuracy: precision increased as σ 

decreased while the reverse occurred with accuracy.  It may be desirable to choose σ 

= 0.75 because the average precision was at its highest at 95.3% at this point but then 

the corresponding average accuracy of 34.3% was considered too low.  The value for 

σ where the most acceptable balance between precision and accuracy was thought to 

have been achieved was 0.125 where precision was still of an acceptable level at 

71.7% and accuracy was more acceptable at 58.1%.   

Thus, the Gaussian kernel was used in the final evaluation tests with kernel 

parameter σ set at 0.125 and regularizing parameter C at 100 since these settings 

yielded the most balanced results based on precision and accuracy. 

4.3.2  Adaptive Clustering 

Adaptive clustering discussed in Section 3.2.3 requires setting maximum cluster 

radius R, nominal separation S among the clusters and the minimum number of 

samples per cluster.  Similar to the empirical approach used in selecting the kernel 

and regularizing parameters for the SVM, the best radius was selected by generating 

clusters over a range of values for R and measuring the performance of the fuzzy 

semantic labeling algorithm on the testing set.  At the same time, nominal separation S  
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Table 4.4 The average, maximum and minimum number of clusters for different 
values of cluster radius R. 

Radius R Number 
of 

Clusters 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 

Average 0.13 0.45 0.74 1.32 2.03 2.71 2.52 2.71 2.74 

Max 2 3 3 2 3 5 4 5 6 

Min 0 0 0 0 0 1 1 1 1 
          

Radius R Number 
of 

Clusters 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 

Average 2.74 2.19 2.13 2.03 2.00 2.03 1.81 1.84 1.74 

Max 4 4 3 3 3 4 3 3 3 

Min 1 1 1 1 1 1 1 1 1 
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Figure 4.3 Average number of clusters over all classes for different values of cluster 

radius R. 
 
 
 
Table 4.5 Average accuracy achieved for selected values of cluster radius R. 

 Radius R 

 0.200 0.225 0.250 0.275 

Accuracy 32.2% 33.0% 36.2% 41.7% 
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was set such that no overlap occurs among the clusters.  Clusters with less than ten 

samples were also discarded. 

Figure 4.3 shows the average number of clusters taken over all 31 semantic 

classes for the different values of radius tested.   We can see that the average number 

of clusters peaks when the cluster radius was set to 0.225 and 0.250.   The average, 

maximum and minimum number of clusters for the different values of cluster radius R 

tested are shown in Table 4.4.   These results on the number of clusters show that 

when the cluster radius is small, no clusters were generated at all for at least one 

semantic class.  Naturally this is an undesirable situation since we want all the classes 

to have clusters to enable us to obtain prototype signatures for all classes.  The largest 

number of clusters generated for a class was six when cluster radius is 0.225. 

Since the average number of clusters peaks at around R = 0.225 and R = 0.25, 

performance tests were carried out in this small neighborhood of cluster radius values 

Results of these performance tests on a testing set shown in Table 4.5 imply that the 

accuracy is highest when R = 0.275 despite a lower average number of clusters 

compared to the other cases.   Therefore, a cluster radius of 0.275 was chosen. 

4.3.3  Prototype signatures 

As part of the region matching phase of the proposed fuzzy labeling method, 

prototype signatures were obtained for each semantic class via k-means clustering and 

adaptive clustering.   The application of the clustering algorithms on the signatures of 

the samples of a semantic class was expected to identify groups of homogenous 

signatures from which the prototype signatures for the semantic class can be derived.  

Since a prototype signature was taken for each cluster that results from clustering, the 

number of prototype signatures may be taken as a measure of the variation occurring 

within each semantic class. 
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For the case where k-means clustering was used, the clustering algorithm was 

performed for k = 2,…,15 clusters.  The number of clusters with the highest overall 

average silhouette value was selected to be the best value for k.   The Matlab 

Statistical Toolbox functions kmeans and silhouette were used for this purpose.   

A single cluster had to be used for the class of night sky image blocks.  When 

applied to the signatures of the night sky image blocks, the kmeans function 

produced an error for all the values of k tested when a cluster became empty during 

reassignment of samples among clusters.  Hence, the prototype signature for night sky 

was obtained by taking the average of all signatures of the construction samples for 

the class.  

Table 4.6 shows the number of prototype signatures obtained for each semantic class 

using the two clustering methods considered in this study.  From Table 4.6 we can see 

that with k-means clustering, most of the semantic classes produced just two or three 

clusters.  The classes that produced the most clusters was big buildings (13 clusters) 

followed by clouds (10 clusters).  The largest number of clusters that yielded reliable 

prototype signatures for a single class was four for the classes cloud, calm water and 

soil.  The rest of the classes had either one or two clusters that produced reliable 

prototype signatures. 

There was a smaller variation in the number of clusters resulting from applying 

adaptive clustering.  Here, the largest number of clusters was four for class choppy 

water.  Not all samples were included in the resulting clusters because only those 

clusters with at least ten samples were considered.  The largest number of clusters that 

produced reliable prototypes was three for the classes human face, window and 

staircase. 
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Table 4.6. Results of k-means clustering and adaptive clustering on signatures of 
known samples.  The table shows the number of clusters and the number 
of samples included in these clusters both for all clusters generated (All) 
and for only those clusters that contained reliable prototype signatures 
(Reliable). 

  K-means clustering Adaptive clustering 

  # of clusters 
# of samples 

included # of clusters 
# of samples 

included 

 Class name All Reliable All Reliable All Reliable All Reliable 

1 grass 2 2 125 125 2 2 104 104 

2 foliage 3 3 125 112 3 1 111 55 

3 flowers 2 2 125 125 2 1 116 87 

4 clouds 10 4 125 73 3 1 103 57 

5 clear sky 2 2 125 125 1 1 92 92 

6 rocks 8 2 125 75 2 2 102 102 

7 mountain 2 2 125 125 2 2 104 104 

8 sand 4 1 125 62 2 1 90 53 

9 calm water 8 4 125 91 2 2 75 75 

10 choppy water 5 2 125 98 4 1 105 52 

11 fur 3 1 125 114 2 1 83 73 

12 human face 2 2 125 125 3 3 117 117 

13 pebbles 2 2 125 125 2 2 121 121 

14 snow 3 1 125 84 2 1 101 82 

15 roof 4 2 125 114 2 2 106 106 

16 paved road 3 2 125 63 2 1 93 37 

17 dome 2 2 125 125 2 2 92 92 

18 brick wall 2 2 125 125 3 2 101 59 

19 tree trunk 2 2 125 125 2 2 104 104 

20 wooden surface 2 1 125 79 2 1 94 74 

21 window 3 2 125 120 3 3 104 104 

22 fences 2 2 125 125 2 2 112 112 

23 flames 2 2 125 125 2 2 121 121 

24 fireworks 2 2 125 125 3 1 102 80 

25 night sky 1 1 125 125 1 1 113 113 

26 big building 13 2 125 38 1 1 96 96 

27 house 2 2 125 125 2 2 110 110 

28 soil 9 4 125 79 2 2 96 96 

29 scales 2 2 125 125 2 1 92 61 

30 pillars 2 2 125 125 2 2 102 102 

31 staircase 2 2 125 125 3 3 115 115 
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If we compare the number of samples that were included in those clusters that 

yielded reliable prototype signatures, a larger number of samples were ultimately 

included for nearly all classes when k-means clustering was used.  The only 

exceptions were rocks, big buildings and soil.  Another interesting difference between 

the results produced by the two clustering algorithms is the number of clusters for the 

class big buildings.  Here, k-means clustering produced 13 clusters out of which only 

two yielded reliable prototype signatures accounting for just 38 samples.  On the other 

hand, adaptive clustering produced a single cluster containing 96 samples which 

yielded a reliable prototype signature. 

4.3.4  Confidence Curve 

The choice for threshold angle θ* in the recursive algorithm for producing the 

confidence curve is highly subjective.   A few values of θ* were tested and that which 

produced the smoothest confidence curves for all classes was chosen.   Thus, θ* was 

set to 97π/120 or approximately 155°. 

The sample confidence curve shown in Figure 3.3 resulting from the above setting  

is typical of the confidence curves obtained for the different semantic classes.  It is 

interesting to note that beyond a distance of –1, that is, one unit beyond the margin of 

separation on the negative side of the optimal hyperplane, the percentage of image 

blocks in the generating set belonging to class c practically drops to near zero. 

 

4.4 Semantic Labeling Tests 

4.4.1  Experiment Set-Up 

To assess the accuracy of fuzzy semantic labeling quantitatively, a region 

classification test was performed on both the well-cropped image blocks and the 



 50 

general test image blocks.  In carrying out these region classification tests, our main 

goal, as stated at the beginning of this chapter, is to compare the performance of our 

proposed fuzzy semantic labeling method with that of crisp labeling methods based on 

SVMs.  We also aim to compare the performance of fuzzy labeling when using single 

prototype signatures per class to that when using several prototype signatures 

obtained through clustering, as well as to determine if excluding unreliable prototype 

signatures will affect performance.  The following labeling methods were compared:  

�  crisp labeling using DAG SVM trained with the training set only,  

�  crisp labeling using DAG SVM trained with a combination of both the training 

set and the generating set,  

�  crisp labeling using one-vs-rest SVMs trained with the training set only, 

�  crisp labeling using one-vs-rest SVMs trained with a combination of both the 

training set and the generating set 

�  fuzzy labeling using a single prototype signature per class,  

�  fuzzy labeling using all prototype signatures obtained by k-means clustering, 

�  fuzzy labeling using all prototype signatures obtained by adaptive clustering, 

�  fuzzy labeling using reliable prototype signatures obtained by k-means 

clustering,   

�  fuzzy labeling using reliable prototype signatures obtained by adaptive 

clustering.  

The training and the generating sets used to training the DAG SVM and the one-

vs-rest SVMs are those described in Section 4.1.  Normally, the DAG SVM and the 

one-vs-rest SVMs would be trained using the training set only.  But since our fuzzy 

labeling method uses additional information provided by the generating set through 

the construction of the confidence curves and computation of prototype signatures, we 
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thought that this might give the fuzzy labeling method an unfair advantage over the 

crisp labeling methods trained using only the training set.  Consequently, we also 

considered training the DAG SVM and the one-vs-rest SVMs using a combination of 

the training and the generating sets. 

Region classification, carried out only for evaluation purposes, was performed by 

computing the distance d(r, c) between an image block r and each of the classes         

c = 1, …, 31 using Eq. 3.10.  Then, the image block was assigned the class for which 

the distance was the smallest over all 31 classes.  

4.4.2  Overall experimental results 

Tables 4.7 and 4.8 show the experimental results on the set of well-cropped image 

blocks and on the set of general test image blocks.  Given in these tables are 

classification accuracy (ClsAcc) and labeling effectiveness (LabEff) which were 

computed to measure performance.  These are defined as:  

ClsAcc = Ncorrect / Tknown 
LabEff = Ncorrect / Tclass 

where 

Tknown = total number of image blocks manually labeled with one of the 31 
classes 

Tclass = total number of image blocks classified 
Ncorrect = number of correctly classified image blocks. 

First of all, Table 4.7 shows that all the methods with the exception of crisp 

labeling with one-vs-rest SVMs and fuzzy labeling using prototype signatures from 

adaptive clustering can assign a known label to all test image blocks.  Crisp labeling 

with one-vs-rest SVMs can label only around 67% to 70% of the well-cropped image 

blocks.  Not all image blocks are assigned known labels using the one-vs-rest SVM 

approach because some image blocks may not be classified positively by any of the m 

one-vs-rest SVMs.  Hence the image block receives a zero vector as a fuzzy label.   
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Table 4.7  Experimental results on well-cropped image blocks. 

 Crisp Labeling Fuzzy Labeling 

 DAG One vs Rest  k-means clustering Adaptive clustering 

 Training 
only 

Training + 
Generating 

Training 
only 

Training + 
Generating 

Single 
signature 

All 
signatures 

Reliable 
signatures 

All 
signatures 

Reliable 
signatures 

ClsAcc 58.3% 61.7% 51.2% 55.2% 59.6% 52.5% 60.8% 41.7% 41.9% 
LabEff 100.0% 100.0% 67.6% 70.9% 100.0% 100.0% 100.0% 68.6% 68.5% 

 

 
Table 4.8  Experimental results on general test image blocks. 

 Crisp Labeling Fuzzy Labeling 

 DAG One vs Rest  k-means clustering Adaptive clustering 

 Training 
only 

Training + 
Generating 

Training 
only 

Training + 
Generating 

Single 
signature 

All 
signatures 

Reliable 
signatures 

All 
signatures 

Reliable 
signatures 

ClsAcc 10.4% 9.7% 10.5% 11.1% 21.6% 19.8% 24.7% 17.8% 17.3% 
LabEff 100.0% 100.0% 19.1% 21.6% 100.0% 100.0% 100.0% 84.2% 83.6% 
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Similarly, fuzzy labeling using prototype signatures obtained by adaptive clustering 

manages to label only around 68% of the well-cropped image blocks.  In this case, not 

all  image blocks are assigned known labels because image blocks whose signatures 

lie outside the set cluster radius of 0.275 are not assigned labels.  In other words, such 

image blocks are said to belong to some “unknown” semantic class. 

Table 4.7 further shows that not all fuzzy labeling methods performed better than 

crisp labeling on the well-cropped test samples.  The highest classification accuracy 

of 61.7% was actually achieved with DAG SVM trained with a combination of the 

training and the generating sets.  But this was followed very closely by fuzzy labeling 

using reliable signatures obtained through k-means clustering (60.8%), as well as by 

fuzzy labeling using single prototype signatures (59.6%).   Furthermore, fuzzy 

labeling using adaptive clustering performed even worse than crisp labeling  in terms 

of classification accuracy.   

On the other hand, different results were obtained when region matching was 

performed on the image blocks in the general test set  (Table 4.8).  Both crisp labeling 

using one-vs-rest SVMs and fuzzy labeling using adaptive clustering were unable to 

label some image blocks in the general test set.  However, labeling effectiveness for 

crisp labeling using one-vs-rest SVMs was much worse, being only 21.6% when 

trained with the training and the generating sets combined, and 19.1% when trained 

with the training set only.  For fuzzy labeling using adaptive clustering, there was a 

marked improvement when labeling image blocks in the general test set with labeling 

effectiveness increasing to around 84%.   

More importantly, we can also observe that fuzzy labeling clearly outperforms 

crisp labeling in terms of classification accuracy when labeling image blocks in the 

general test set.  While both crisp labeling methods have a classification accuracy of 
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just around 10%, fuzzy semantic labeling actually almost doubles this figure in most 

cases.  With a classification accuracy of 24.7%, using only reliable signatures 

obtained through k-means clustering more than doubles the classification accuracy of 

crisp labeling.  This translates to correctly labeling 19 out of the 77 image blocks that 

make up an entire image.  Correctly labeling 19 image blocks in an image should be 

sufficient to perform image retrieval. 

Another observation that can be made is that among crisp labeling methods, DAG 

SVM generally performs labeling better than one-vs-rest.  This is actually consistent 

with the results in past comparative studies [PCS00, HL02, Wid02].  More notably, 

DAG SVM can label all image blocks while one-vs-rest can label only some of the 

image blocks.   

Multiple prototype signatures obtained with k-means clustering, but not with 

adaptive clustering, also yielded better results than single prototype signatures. This 

may be taken as a confirmation of the large variation occurring within a single 

semantic class that is not captured by single prototype signatures. 

In Section 3.2.3, we stated that some prototype signatures of a class c were 

believed to be misleading because they indicated a higher confidence for some class k 

other than the class they were supposed to represent.  Our choice of using only the 

reliable prototype signatures is justified by the results since generally better 

classification accuracy was obtained using only the selected (reliable) prototype 

signatures.  This holds true whether or not the test was performed on the set of well-

cropped image blocks or on the general test set. 

In summary, we can make the following observations:  

�  Fuzzy labeling generally performed better than crisp labeling. 
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�  Among the crisp labeling methods considered, DAG SVM generally performed 

better than one-vs-rest SVMs. 

�  Fuzzy labeling methods using multiple prototype signatures per class was better 

than using a single prototype signature for each class.  This however is only true 

for prototype signatures obtained using k-means clustering. 

�  Prototype signatures obtained through k-means clustering provided better overall 

labeling performance compared to prototype signatures obtained through adaptive 

clustering. 

�  Reliable prototype signatures generally produced higher classification accuracy. 

�  Fuzzy semantic labeling using reliable prototype signatures from k-means 

clustering most consistently performed well for both the set of well-cropped 

image blocks and the image blocks in the general test set. 

4.4.3  Experimental Results on Individual Classes 

Since fuzzy semantic labeling using reliable prototype signatures from k-means 

clustering consistently performed well among all semantic labeling methods 

compared in this study, we now focus on the performance of this labeling method on 

the individual semantic classes.  The confusion matrices resulting from performing 

region classification on the image blocks in both the set of well-cropped image blocks 

and the general test set are shown in Tables 4.9 and 4.10.  Both tables also show the 

individual accuracy and precision achieved for each semantic class. 

Accuracy was relatively high for well-cropped image blocks in the test set, 

ranging from a high of 94% to a low of 34% (Table 4.9).  The highest accuracies were 

achieved for flames and night sky (94%), followed closely by clear day sky (90%), 

human faces (90%) and pebbles (88%).  The lowest accuracy was achieved for big 

buildings. 
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On the other hand, precision achieved for the test set of well-cropped samples had 

a high of 98% (night sky) and a low of 24% (rocks).  Understandably, image blocks 

belonging to the semantic class of night sky were the most homogenous among the 31 

classes considered in this study.  Other semantic classes with high precision were roof 

(85%), grass (83%), choppy water (82%) and flame (81%). 

It is interesting to note that many image blocks of calm water were mislabeled as 

clouds possibly because some image blocks of calm water included reflective water 

surfaces that actually reflected the sky above.  The mislabeling of big buildings as 

domes is also easy to explain since most images of single buildings shown at a 

distance resemble steeples and domes. 

As revealed by the relative overall performance obtained on the set of well-

cropped image blocks and on the general test set, accuracy drops significantly when 

labeling is performed on general test set (Table 4.10).  While the highest accuracy of 

85.8% achieved with clear day sky is comparable to the highest accuracy achieved 

with the test set of well-cropped image blocks, the worst accuracy achieved is 

extremely low at 0.5% for roofs, followed closely by 0.7% for human faces.  In fact, 

out of the more than 26,000 image blocks manually labeled with one of the 31 

semantic classes, only 15 were classified as human faces and 28 were classified as 

roofs.  This result for human faces in particular on the general test set is in complete 

contrast to that achieved with image blocks of human faces in the set of well-cropped 

image blocks.  This further confirms that labeling is much more difficult when human 

faces are not well-centered in image blocks in the general test set.  This observation 

may well be generalized to the other classes where more confusion occurs when an 

image block contains objects from multiple semantic classes or when the object of 

interest is not centered in the image block. 
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As in the case of accuracies achieved on the general test set, precisions for 

individual classes for the general test image blocks are lower than those for the well-

cropped image blocks.  The highest precisions were achieved with flowers (75%), 

foliage (71%), night sky (69%) and grass (67%) although foliage was often 

mislabeled as grass.  Each of the classes for rocks, domes and houses achieved the 

lowest precision of only 6%.  A very large number of image blocks were in fact 

mislabeled as rocks: 6265 of which only 384 were actually rocks.  Also among those 

with low precision were the classes for roofs (7%), paved roads (8%) and fences 

(9%).  Many of the image blocks labeled as paved roads and fences actually belonged 

to the class of big buildings.  This is so possibly because single buildings taken at an 

upward angle resembled images of paved road shown in perspective and images of 

big buildings, particularly those of cityscapes, resembled fences.  Similarly, most 

image blocks of roofs were mislabeled as brick walls, rocks and mountains possibly 

because images of roofs shown up close resembled brick walls and images of roof 

gables resembled rock outcroppings and mountain peaks. 

Similar to the overall classification results (Section 4.4.2), classification results of 

individual classes for well-cropped samples are better than those for general test 

samples.  Nevertheless, fuzzy labeling still performs better than crisp labeling 

particularly for image blocks in the general test set.  This affirms the strength of fuzzy 

labeling over crisp labeling.  Furthermore, since image blocks in the general test set 

resemble those typically encountered in image retrieval,  it is expected that fuzzy 

semantic labeling should perform better than crisp labeling when applied to image 

retrieval in real-world situations. 

 



 

 
Table 4.9 Confusion matrix for region classification performed on well-cropped image blocks.  Fuzzy labeling method using only reliable 

prototype signatures obtained using k-mean clustering. 
 
  Assigned Label 

 
Actual  
Label 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Total Recall 

                                   

1 grass 33 4 1 0 0 1 0 0 1 0 2 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 3 2 0 0 50 66.0% 
2 foliage 5 33 0 0 0 3 0 1 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 1 2 0 1 50 66.0% 

3 flowers 1 3 32 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3 3 0 2 3 0 1 0 0 50 64.0% 
4 clouds 0 0 0 23 6 1 0 1 8 1 1 0 0 3 0 3 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 50 46.0% 

5 clear sky 0 0 0 1 46 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 92.0% 
6 rocks 0 0 0 0 0 16 1 0 0 0 2 1 4 0 0 1 1 2 6 0 1 1 1 0 0 2 0 4 2 1 4 50 32.0% 

7 mountain 0 0 0 0 3 1 29 0 1 2 0 0 1 1 1 2 1 0 2 0 1 1 0 0 0 1 2 0 0 0 1 50 58.0% 
8 sand 0 0 0 0 0 6 0 27 0 0 4 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 7 0 0 1 50 54.0% 

9 calm water 0 1 0 1 1 0 1 1 31 1 0 0 0 4 0 3 1 0 0 2 0 2 0 0 0 0 0 1 0 0 0 50 62.0% 
10 choppy water 0 0 0 4 0 0 5 0 4 27 0 1 0 5 0 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 50 54.0% 

11 fur 1 0 0 1 0 3 1 0 0 0 23 1 0 2 2 2 0 1 4 0 2 0 0 3 0 0 0 2 0 1 1 50 46.0% 
12 human face 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 0 1 0 2 0 0 0 2 0 0 0 0 50 90.0% 

13 pebbles 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 50 88.0% 
14 snow 0 0 0 5 1 2 3 2 3 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 68.0% 

15 roof 0 0 0 0 0 1 0 0 0 0 0 1 0 0 29 3 1 2 1 0 0 1 1 0 0 1 0 1 0 0 8 50 58.0% 
16 paved road 0 0 1 0 0 1 0 6 2 0 0 2 0 0 1 23 0 0 0 0 1 1 0 0 1 1 1 4 0 0 5 50 46.0% 

17 dome 0 0 0 2 1 0 2 0 1 0 0 0 0 0 0 0 33 1 1 0 2 0 0 0 0 3 2 0 1 0 1 50 66.0% 
18 brick wall 0 0 0 0 0 2 0 2 1 1 2 0 3 0 0 0 0 27 0 3 1 0 0 0 0 0 0 6 0 0 2 50 54.0% 

19 tree trunk 0 0 1 0 0 5 0 0 1 0 0 0 3 0 0 1 0 2 20 1 2 2 0 4 0 0 3 2 0 1 2 50 40.0% 
20 wood 0 0 1 1 0 4 0 1 1 0 4 0 0 2 0 4 0 0 3 22 2 1 0 0 0 0 0 1 2 0 1 50 44.0% 

21 window 0 0 1 0 0 1 0 0 0 0 1 0 2 0 0 1 2 0 2 0 30 3 0 0 0 0 0 1 0 6 0 50 60.0% 
22 fences 0 0 1 0 0 4 0 1 0 0 0 0 0 0 0 3 0 1 2 0 3 25 0 0 0 0 1 1 3 2 3 50 50.0% 

23 flames 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 47 0 0 0 0 0 1 0 0 50 94.0% 
24 fireworks 0 0 3 0 0 3 0 0 0 0 2 1 0 0 0 0 0 0 1 0 1 0 2 37 0 0 0 0 0 0 0 50 74.0% 

25 night sky 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 50 94.0% 
26 big building 0 1 0 0 1 1 1 0 0 0 1 3 0 0 0 1 8 0 2 0 3 1 0 0 0 17 8 0 1 1 0 50 34.0% 

27 house 0 0 1 0 0 0 2 0 0 0 0 0 2 0 0 1 0 0 1 0 3 1 0 0 0 4 33 0 0 0 2 50 66.0% 
28 soil 0 0 0 0 0 5 0 7 0 1 1 0 2 0 0 2 0 1 2 2 0 0 0 0 0 0 1 24 0 0 2 50 48.0% 

29 scales 0 1 1 0 0 1 2 0 0 0 0 0 2 1 0 1 0 0 2 0 1 5 1 3 0 0 1 0 26 2 0 50 52.0% 
30 pillars 0 0 0 1 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 3 5 0 0 0 0 2 1 0 1 32 0 50 64.0% 

31 staircase 0 0 0 0 0 3 0 1 1 0 2 0 1 0 0 3 0 0 1 1 2 3 0 0 0 2 0 3 0 0 27 50 54.0% 
                                   
 Total 40 43 43 39 60 66 47 51 57 33 47 58 65 54 34 56 51 39 55 36 62 50 58 51 48 36 59 62 42 46 62   
 Precision 83% 77% 74% 59% 77% 24% 62% 53% 54% 82% 49% 78% 68% 63% 85% 41% 65% 69% 36% 61% 48% 50% 81% 73% 98% 47% 56% 39% 62% 70% 44%   
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Table 4.10 Confusion matrix for region classification performed on the general test image blocks.  Fuzzy labeling method using only reliable 

prototype signatures obtained using k-mean clustering. 
 
  Assigned Label 

 
Actual 
Label 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Total Recall 

                                   

1 grass 367 34 0 6 87 254 0 22 245 0 4 0 1 0 0 12 0 3 53 10 0 8 0 0 0 3 1 24 32 0 6 1172 31.3% 
2 foliage 137 471 11 21 29 969 10 8 248 2 6 1 6 4 0 31 70 7 283 0 42 66 2 36 32 113 9 30 55 39 39 2777 17.0% 

3 flowers 2 25 42 3 19 480 0 1 42 2 1 0 2 3 0 6 37 1 38 0 5 11 69 4 0 35 1 7 18 2 0 856 4.9% 
4 clouds 0 1 0 512 1117 82 67 20 214 8 4 0 0 300 1 63 36 0 7 10 1 3 25 0 27 1 0 2 3 0 8 2512 20.4% 

5 clear sky 0 0 0 28 1540 18 9 4 30 0 0 0 0 75 0 4 3 0 1 4 0 0 0 0 75 0 0 2 1 0 0 1794 85.8% 
6 rocks 1 12 0 19 34 384 3 12 76 0 5 1 12 17 4 25 3 62 35 2 39 31 0 6 4 50 2 66 4 32 32 973 39.5% 

7 mountain 0 4 0 97 59 137 84 1 77 8 1 0 0 55 4 51 22 0 5 0 9 30 0 2 10 23 4 2 2 1 4 692 12.1% 
8 sand 4 0 0 14 102 77 3 101 91 0 7 0 0 8 2 28 4 19 15 19 3 9 0 0 1 5 0 60 3 0 4 579 17.4% 

9 calm water 3 3 2 59 173 73 13 4 307 2 1 0 2 70 3 38 5 3 7 3 12 12 3 9 53 1 0 9 11 7 13 901 34.1% 
10 choppy water 0 0 0 103 45 36 9 1 90 25 0 0 0 109 0 31 2 0 3 1 4 0 1 0 0 6 0 4 1 0 4 475 5.3% 

11 fur 0 0 0 8 19 99 0 8 48 0 22 0 4 1 0 12 1 7 29 6 7 1 0 2 0 1 0 9 0 1 2 287 7.7% 
12 human face 0 1 0 2 1 66 0 0 6 0 1 3 2 1 0 3 4 0 7 0 2 7 10 1 0 8 0 0 0 0 1 126 2.4% 

13 pebbles 0 2 0 7 0 255 0 18 106 1 0 0 163 1 0 51 0 1 27 0 72 70 0 3 0 52 0 4 31 14 26 904 18.0% 
14 snow 0 0 0 129 332 44 26 5 84 6 1 0 0 283 0 26 17 0 5 0 0 3 2 0 0 18 0 1 1 0 1 984 28.8% 

15 roof 0 0 0 8 10 133 0 5 107 0 0 0 3 2 2 17 3 5 14 0 11 33 1 0 3 8 0 7 3 7 24 406 0.5% 
16 paved road 1 5 0 42 21 86 4 21 146 3 0 0 2 33 0 58 5 9 7 2 2 22 0 0 3 19 0 9 0 1 24 525 11.0% 

17 dome 0 2 0 24 60 66 6 1 30 1 4 0 0 19 0 28 22 0 7 0 3 10 0 3 7 10 0 0 0 0 4 307 7.2% 
18 brick wall 0 2 0 0 11 205 0 7 47 0 2 0 20 0 5 5 1 30 21 0 3 4 0 0 0 37 0 63 2 3 17 485 6.2% 

19 tree trunk 5 29 1 9 15 421 0 3 79 1 0 2 8 14 0 21 18 2 215 4 98 29 2 18 3 97 2 4 15 178 18 1311 16.4% 
20 wood 0 0 0 13 37 166 2 16 122 0 12 0 3 13 0 44 7 9 46 70 15 25 5 0 0 6 0 34 0 7 20 672 10.4% 

21 window 0 5 0 15 5 259 2 1 34 0 0 0 5 21 0 19 2 4 17 1 101 43 2 0 0 26 0 4 7 56 6 635 15.9% 
22 fences 22 18 0 17 6 192 2 0 30 0 1 1 1 17 0 18 20 8 20 0 61 61 1 11 0 31 1 5 2 23 9 578 10.6% 

23 flames 0 0 0 3 69 84 1 0 40 0 0 0 0 1 0 4 13 0 7 4 2 1 174 20 0 6 0 0 5 3 8 445 39.1% 
24 fireworks 1 3 0 1 6 317 0 0 25 0 3 0 2 0 3 8 7 0 16 0 9 5 11 168 0 9 0 3 22 16 17 652 25.8% 

25 night sky 0 0 0 0 176 9 5 0 19 0 0 0 0 0 0 3 0 0 0 0 0 0 0 8 576 0 0 0 1 0 13 810 71.1% 
26 big building 1 27 0 56 28 532 9 2 184 3 1 4 12 39 1 65 47 0 52 0 109 57 12 5 40 138 11 7 37 64 73 1616 8.5% 

27 house 0 0 0 6 4 120 0 1 17 1 1 0 2 0 0 17 10 0 5 0 12 35 2 1 0 43 2 1 5 1 6 292 0.7% 
28 soil 3 0 0 8 24 226 0 22 107 0 4 1 0 0 1 11 3 39 23 6 1 2 0 0 0 7 0 198 11 0 7 704 28.1% 

29 scales 2 3 0 4 6 148 0 0 45 0 1 1 4 2 2 3 2 0 11 0 8 8 12 2 0 22 0 1 65 5 0 357 18.2% 
30 pillars 0 1 0 26 43 188 0 0 49 0 6 1 1 9 0 29 6 0 61 7 77 21 9 5 0 7 0 2 1 132 8 689 19.2% 

31 staircase 1 20 0 30 6 139 0 1 104 0 7 0 2 30 0 25 1 2 37 0 36 42 0 0 3 21 1 9 0 2 144 663 21.7% 
                                   
 Total 550 668 56 1270 4084 6265 255 285 2849 63 95 15 257 1127 28 756 371 211 1074 149 744 649 343 304 837 803 34 567 338 594 538   
 Precision 67% 71% 75% 40% 38% 6% 33% 35% 11% 40% 23% 20% 63% 25% 7% 8% 6% 14% 20% 47% 14% 9% 51% 55% 69% 17% 6% 35% 19% 22% 27%   
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CHAPTER 5 
 
 
 

Conclusion 
 
 
 

In this study, we have developed a fuzzy semantic labeling method for image 

blocks that assigns multiple semantic labels and associated confidence measures to 

each image block.  In order to obtain these confidence measures, we first trained a 

one-vs-rest binary Support Vector Machine (SVM) for each semantic class and 

approximated a confidence curve using the orthogonal distances of an extra set of 

image samples to the constructed hyperplanes.  Given the distance of a test sample to 

a hyperplane, we obtained the expected confidence of its classification into a semantic 

class from the derived confidence curve using linear interpolation.   

Using an image region’s fuzzy labels, region matching was then carried out by 

classifying the image region into the class with the prototype signature nearest to the 

signature of the image region.  Here, the Euclidean distance was used as a 

dissimilarity measure.  This method for region matching, in contrast to that in [LL02] 

as pointed out in Chapter 2, takes into consideration each and every confidence 

measure in an image region’s fuzzy label. 

We performed the proposed fuzzy semantic labeling on 31 semantic classes.  This 

number of classes was as large as that used in [LL02] and much larger than those used 

in existing crisp labeling methods.  Furthermore, our evaluation tests included 
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comparisons of the classification performance of the proposed fuzzy semantic 

labeling method with that of crisp labeling methods based on two multi-class SVM 

classifiers: one-vs-rest SVMs and Directed Acyclic Graph (DAG) SVMs.  Tests were 

performed on both a set of well-cropped image blocks and on a general test set 

consisting of fixed-size partitions of whole images.   

Test results show that the proposed fuzzy semantic labeling method generally 

performs better than the two crisp labeling methods.  The disparity in performance is 

even more prominent when classification is performed on the general test set despite 

an overall drop in performance.  This, however, is expected since noise and ambiguity 

in the general test image blocks are more pronounced than those in the well-cropped 

image blocks. 

Different methods for obtaining these prototype signatures for each semantic class 

were also explored.  One method simply required computing the average of the 

signatures of image regions in a semantic class and using this single “average”  

signature as a prototype signature for that semantic class.  The other method for 

obtaining prototype signatures involved performing clustering algorithms on image 

samples in a semantic class and taking the centroids of the resulting clusters as the 

prototype signatures of that semantic class.  K-means clustering and the adaptive 

clustering algorithms were used.  Evaluation tests show that multiple prototype 

signatures achieved higher classification accuracy than single prototype signatures.  In 

particular, prototype signatures obtained through k-means clustering yielded better 

test results than the prototype signatures obtained through adaptive clustering.   

We also recognized that some of the prototype signatures obtained were actually 

unreliable and may not be used for region matching.  Test results indeed confirm that 

discarding these unreliable prototype signatures does improve labeling accuracy.  On 
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the whole, fuzzy semantic labeling using reliable prototype signatures obtained 

through k-means clustering produced the best overall performance. 

Given the outcome of the evaluation tests, we can conclude that our proposed 

fuzzy semantic labeling method performs better than crisp labeling methods on a 

relatively large number of semantic classes.  We expect that this advantage over crisp 

labeling methods will carry over to semantic based image retrieval. 
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CHAPTER 6 
 
 
 

Future Work 
 
 
 

Evaluation tests performed in this study focused on how the proposed fuzzy 

semantic labeling method performs when used in image region classification.  Since 

image region classification is merely a step in image retrieval, it is important that 

additional tests be conducted to investigate how the proposed fuzzy semantic labeling 

method performs when applied to image retrieval.   

Instead of using fixed-size image blocks of an image, the proposed fuzzy semantic 

labeling method may be applied in combination with other image segmentation 

methods such as those employed by Campbell et al. [CMT+97] and Belongie et al. 

[BCG+97]. 

Features used as a basis for carrying out fuzzy labeling in this study were fixed 

color histograms, Gabor features, multiresolution simultaneous autoregressive 

features (MRSAR) and edge histograms.  Perhaps other features introduced in other 

studies may also be used to contribute other image information needed to improve 

labeling performance.  One of these is a structure feature proposed by Zhou et al. 

[ZRH99] that the authors describe as more general than texture or shape because it is 

a combination of texture and shape.  Consequently, it can capture some information 

that may not be captured by texture or shape features alone and is effective on non-



 64 

uniform natural images.  In addition to this, a color-spatial feature such as the color 

coherence histogram [PZM96] or the color correlogram [HKM+97] may contribute 

spatial information not provided by any of the four features considered in this study. 

The fuzzy semantic labeling method in this study involved approximating a 

confidence curve from which confidence measures of image blocks are obtained.  

Other methods that map the output of a Support Vector Machine (SVM) to class 

classification probabilities may be used in place of the recursive algorithm described 

in section 3.2.2.   Such methods include that by Platt [Pla99] where SVM outputs are 

mapped into probabilities by training an SVM and then fitting the SVM classification 

results to a two-parameter sigmoid model.  The two parameters in the sigmoid model 

are estimated via the maximum likelihood estimation method using a new set of 

training samples.   

Another similar method that may also be used is that by Goh, et al. [GCC01] as 

applied on the output of ensembles of SVM binary classifiers to enhance their 

accuracy.  Their method, a proposed improvement on Platt’s sigmoid fitting method, 

uses a fixed sigmoid function to boost the output of accurate classifiers with a weak 

influence on making a class prediction.  They also apply an error reduction procedure 

to reduce the effect of noise from inaccurate classifiers in an ensemble. 
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