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Abstract

Many people suffer from hip fractures, especially people suffering from os-
teoporosis. Doctors rely on radiographs, i.e., x-ray images, to establish the
precise nature of a fracture. An automated fracture detection system can
assist the doctor by performing the first examination to screen out the easier
cases, leaving a small number of difficult cases and the second confirmation
to the doctors. This thesis outlines a fracture detection system and focus
on measuring the neck-shaft angle of the femur. The accuracy of using the
neck-shaft angle for determining femur fractures is also tested.
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Summary

Many people suffer from hip fractures, especially people suffering from os-

teoporosis. Doctors rely on radiographs, i.e., x-ray images, to establish the

precise nature of a fracture. An automated fracture detection system can

assist the doctor by performing the first examination to screen out the easier

cases, leaving a small number of difficult cases and the second confirmation

to the doctors.

This thesis outlines a fracture detection system, and focuses on the ex-

traction of the femur bone contour and measurement of the femoral neck-

shaft angle. Snakes combine with Gradient Vector Flow field are used to

extract the femur outline. Given the boundary contour, the orientations of

the femoral shaft and the femoral neck are computed. The angle between

these two orientations is the neck-shaft angle. Using the neck-shaft angle

as a criterion for discriminating between fractured and healthy femurs, the

method achieves a correct classification rate of 94.5%.



Chapter 1

Introduction

1.1 Motivation

Many people suffer from fractures of the bone, especially people suffering

from osteoporosis. Osteoporosis is a disease characterized by low bone mass

and deterioration of bone tissue (Fig 1.1). This condition leads to increased

bone fragility and risk of fracture. If not prevent or left untreated, the

disease can progress painlessly until a bone breaks. Osteoporosis related

bone fractures occur typically in the hip, spine and wrist (Fig 1.2). Any

bone can be affected but of special concern are fractures of the hip as such

fractures almost always requires hospitalization and major surgery. It can

also impair a person’s ability to walk unassisted and may cause prolonged or

permanent disability.

Some 800 people suffer hip fractures in Singapore every year due to os-

teoporosis and Singapore General Hospital (SGH) sees about 350 of such



1.1. Motivation

(a) Healthy Bone (b) Osteoporotic Bone

Figure 1.1: Comparison between osteoporotic and healthy bone.

Figure 1.2: Common fracture sites for osteoporosis
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1.1. Motivation

patients each year. According to studies, a quarter of the hip fractured pa-

tients die within the first year and seventy percent of the survivors require

walking aids, became wheelchair bound or bedridden [33].

Doctors rely on radiographs, i.e., x-ray images, to establish the precise

nature of a fracture (see Fig 1.3). Currently doctors in Singapore General

Hospital examine each radiograph twice to determine whether a fracture

exists. Manual inspection of radiographs for fractures is both a tedious and

time consuming process. On top of that, doctors will get too tired to perform

the task reliably after examining numerous radiographs. As some fractures

are easier to identify than others, an automated fracture detection system can

assist the doctor by performing the first examination to screen out the easier

cases, leaving a small number of difficult cases and the second confirmation

to the doctors. Automatic interpretation of medical images can relieve some

of the labor intensive work of the doctors thus improving the accuracy of the

diagnosis.

In this research, emphasis will be placed on detecting common hip frac-

tures of the femur as such fractures account for the largest portion of fracture

incidents in the population. Section 1.2 will explain in detail the anatomy of

the femur and Section 1.3 will describe different fractures of the femur.

5



1.2. The Femur

Figure 1.3: A radiograph example of the hip.

1.2 The Femur

The femur is the longest and strongest bone in the skeleton. It is connected

to the pelvis to form the hip joint and connected to the tibia to form the

upper knee joint (Fig. 1.4). Each femur directly bears the weight of the upper

body.

The femur is almost perfectly cylindrical in the greater part of its ex-

tent. It is divisible into a body and two extremities: the upper and lower

extremities.

The Body or Shaft

The body or shaft, almost cylindrical in form, is a little broader above

than in the center (Fig 1.5). It is slightly arched, so as to be convex in

6



1.2. The Femur

Figure 1.4: Anterior skeleton anatomy
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1.2. The Femur

front and concave behind.

Upper Extremity

The upper extremity comprises the head, neck, a greater trochanter

and a lesser trochanter (Fig. 1.5). The head is globular and the neck is

a flattened pyramidal bone connecting the head with the shaft of the

femur. The neck forms an angle of about 125 degrees with the shaft,

but it varies in inverse proportion to the development of the pelvis.

The angle also varies considerably in different persons of the same age.

The greater and lesser trochanters provide leverage to the muscles that

rotate the thighs on it axes.

Lower Extremity

The lower extremity is somewhat cuboid in form and it consists of two

oblong eminences known as the condyle (Fig 1.6)

Neck-Shaft Angle

The neck-shaft angle is commonly used by doctors to detect fractures in

the femur. The neck-shaft angle is determined by measuring the angle

subtended by the lines drawn through the axes of the femoral shaft and

the femoral neck (Fig 1.7). The neck-shaft angle for a healthy adult

femur is approximately 120 to 130 degrees.

8



1.2. The Femur

Figure 1.5: Upper extremity and body of the femur.

Figure 1.6: Lower extremity of the femur.
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1.3. Anatomy of Fracture

Figure 1.7: Neck-shaft angle

1.3 Anatomy of Fracture

A fracture may be a complete break in the continuity of a bone or it may be

an incomplete break or crack. The fracture site is often used to classify the

type fracture. Hip fractures can be classified as head, neck, intertrochanteric,

trochanteric or subtrochanteric. The following is a classification found in [16].

Femoral Neck Fractures

Femoral neck fractures occur between the end of the femoral head and

the intertrochanteric region (Fig 1.8).

Intertrochanteric Fractures

10



1.3. Anatomy of Fracture

(a) (b)

Figure 1.8: Femoral neck fracture (b) occurs at the femoral neck region (a).

Intertrochanteric fractures occur in the bone between the femoral neck

and the femoral shaft (Fig 1.9). These fractures may involve both the

greater and lesser trochanter.

Greater Trochanteric Fractures

This type of fracture occurs in the greater trochanter (Fig 1.10). It

may occur in elderly patients suffering from osteoporosis and may result

from direct trauma such as a fall.

Subtrochanteric Fractures

Subtrochanteric fractures occur between the lesser trochanter and the

shaft of the femur (Fig 1.11).

11



1.3. Anatomy of Fracture

(a) (b)

Figure 1.9: Intertrochanteric fracture (b) occurs at the intertrochanteric re-
gion (a).

(a) (b)

Figure 1.10: Greater trochanteric fracture (b) occurs at the greater
trochanteric region (a).

12



1.4. Project Objectives

(a) (b)

Figure 1.11: Subtrochanteric fracture (b) occurs at the subtrochanteric region
(a).

1.4 Project Objectives

The overall goal of the project is to develop a system to detect fractures of

the femur automatically, which consists of three modules (Figure 1.12).

Firstly, given an x-ray image of the hip, the Femur Localization module

will need to find the location of the left and right femur in the image. Precise

object localization is a difficult problem in computer vision. This module is

investigated by another student and is thus not the focus of this thesis.

Next, to analyze the geometry of the femur, a more accurate outline of the

femur is needed. The locations of the two femurs identified by the “Femur

Localization” module will serve as the initial search locations in the “Femur

Contour Extraction module”. Active contours, also know as snakes [23] are

used in the “Femur Contour Extraction” module. If a snake is placed close

13



1.4. Project Objectives

Figure 1.12: Project Overview.
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1.5. Organization of Thesis

to the femur outline, the snake algorithm will make use of image features

to guide and deform itself to converge on the outline of the femur. The

output from the snake algorithm is a more accurate description of the femur’s

boundary contour and is more suitable for analyzing potential fracture of the

femur.

Finally, in the “Fracture Detection” module, the contour of the femurs

will be analyzed to compute the neck-shaft angles. Any femurs with abnormal

neck-shaft angles will be classified as fractured.

In summary, the main objective of this thesis is to develop the algo-

rithms necessary for the “Femur Contour Extraction” and “Fracture Detec-

tion” modules.

1.5 Organization of Thesis

After highlighting the motivation and project objectives in this chapter, re-

lated work will be reviewed in Chapter 2. The details of the algorithms for

the “Femur Contour Extraction” and “Fracture Detection” module will be

discussed in Chapter 3 and Chapter 4 respectively. Experimental results of

the algorithms are discussed in Chapter 5. Finally, future direction for this

work is highlighted in Chapter 6, followed by the conclusion in Chapter 7.

15



Chapter 2

Related Work

Medical image interpretation is a hard problem as any non-trivial algorithm

will involve some form of automated system to understand the information

contained in the image. Fortunately, the general shape, location and orien-

tation of the objects of interest are usually known in medical image analysis.

Such information may be represented in a model of the object as initial con-

ditions, constraints on model parameters or constraints during model fitting

procedure. Once the model has been established, analysis of the model can

take place.

There is a wealth of model representations used in medical image interpre-

tation literature. They include free-form deformable models [23, 31, 32], para-

metric deformable templates [36], point distribution model [11, 12], graphical

templates [3] and skeleton-based templates [29, 30].



2.1. Free-Form Deformable Model

2.1 Free-Form Deformable Model

Free-form deformable models contains no global structure except for some

regularization constraints such as continuity or smoothness constraint of the

boundary. Without any constraints on the global shape, it can represent

arbitrary shape as long as it satisfies the regularization constraints.

Active contours [23, 31, 32] or snakes are good examples of free-form

deformable models. These contours will evolve under the influence of image

forces (such a edges or intensity) that pull it towards desired features and

internal forces that enforce smoothness and continuity constraints on the

contour.

This approach of evolving based on local image features makes the snake

more vulnerable to image noise and initial position. Many improvements

have been suggested to overcome these shortcomings [1, 9, 10, 34].

With an initialization that places the snake close to the object boundaries,

the snake algorithm can extract an accurate representation of the object’s

outline. Such detailed outlines are useful for constructing higher level repre-

sentation of the contour such as centroid-radii model [8, 20] and the curvature

primal sketch [4, 26].

17



2.1.1 Centroid-Radii Model

2.1.1 Centroid-Radii Model

The centroid-radii model [8, 20] samples a set of points from the outline of

the object. These points will be used to re-parameterize the original contour

in terms of the distance from the centroid to the points (call radii lines) as

well as the angle from a reference line to the radii lines.

This approach is useful for objects with fairly consistent shape but in the

case of femur fractures, the centroid may be drastically different from one

case to the other.

2.1.2 Curvature Primal Sketch

Curvature primal sketch [4] extracts significant changes in curvature along the

contour across varying levels of details (i.e., multiple level of curve smoothing)

called the generalized scale space image of planar curve [26]. These changes

are classified into five different groups of primitives based on the curvature

discontinuity and are used for matching purposes.

This technique has been successfully used for object recognition [27] but

the representation is too sparse for fracture detection. For example in some

fracture incidents, it may not increase or decrease the number of curvature

primal sketch primitives. Hence, this will pose a problem when trying to

detect fractures based on such primitives. Furthermore, the lesser trochanter

18



2.2. Parametric Deformable Templates

may not be present in all the femur images and may thus flag off a wrong

alert during fracture detection.

2.2 Parametric Deformable Templates

Deformable templates [36] are hand-crafted models represented by a collec-

tion of parameterized curves. These curves are uniquely described by a set

of parameters. Changing the parameters will change the geometric shape of

the template.

A good example is the work of Yuille et al. [36] who constructed de-

formable templates to extract facial features. Their parametric models for

eye and mouth templates consist of circles and parabolic curves. The shape

of the template is controlled by the radius of the circle and the parameters

of the parabola. A set of regularizing constraints are used to impose on

the shape to limit the deformations such that it result in reasonable shapes.

By defining energy terms describing the deformation of the template and

energy terms for the image features, the detection algorithm will become a

minimization procedure based on the energy terms.

For this technique a good initialization of the contour is necessary for good

results. On top of that, this scheme is not suitable for shapes with compli-

cated outlines as it will be difficult to describe the outline using a small set

19



2.3. Point Distribution Model

of curves. Secondly the approximate orientation, scale and translation of the

object to be segmented has to be known beforehand to craft the regularizing

constraints and it will be difficult to build a template encompassing all the

different classes of fractures.

2.3 Point Distribution Model

The Point Distribution Models (PDM) [14, 25] approach assumes the exis-

tence of a set of training examples from which to derive a statistical descrip-

tion of the shape and its variation. This approach is most useful for describing

objects that have well understood general shape but which cannot be easily

described by a rigid model.

The shape is defined as all the geometrical information that remains when

location, scale and rotational effects are filtered out from an object [15].

One way to represent a shape is to locate a finite number of points on the

boundary of the object (a sequence of pixel co-ordinates) called landmark

points. To ensure that the set of points satisfy the definition of a shape,

the effects of scale, translation and rotation are filtered out by aligning the

training samples. A common procedure for aligning the data is the Procrustes

Analysis [6, 13, 18]. Principal Component Analysis space is used to extract a

parameterized model of the training data and with this parameterized model,

20



2.4. Graphical Template Model

it allows new shapes, different from the training samples, to be synthesized.

Point distribution models are used in Active Shape Models [11, 12, 13]

to search for objects of interest in an image using the PDM. The search is

formulated as an optimization problem in which the difference between the

synthesized shape and the actual image is to be minimized. This algorithm

has been proven to be successful in medical segmentation [5] and analysis [19].

The main drawback of this approach is that the PDM requires human

intervention to annotate landmark points in the training images and this can

be very time consuming. Currently automatic and semi-automatic methods

are being developed to aid this task of annotating landmark points.

2.4 Graphical Template Model

The model in a Graphical Template [2, 3] is represented as a graph. Vertices

will represent landmark points and edges represent important geometric re-

lations among the landmark points. Such graphs are usually hand-crafted

and differ from application to application.

The Graphical Template Model is used mainly as a registration algorithm.

The algorithm attempts to localize the model by scanning for candidates of

each of the landmarks. These landmarks are extracted from the image using

robust local operators. The collection of landmark points which satisfy the

21



2.5. Skeleton Based Model

graph constraints and yielding the best match, will be chosen to represent

the object in the image.

2.5 Skeleton Based Model

Figure 2.1: The medial axis (solid line) is defined in terms of maximal discs

(dotted circles).

A medial axis, or skeleton, of a shape is defined as the locus of the centers of

all maximal discs contained in the shape. A maximal disc contained in the

shape is any circle with that touches the boundary of the shape at two or

more points (Figure 2.1).

An intuitive way to construct the medial axis is the prairie fire transform.

Imagine that the interior of the object is composed of dry grass and a fire is

started at all points of the boundary. The fire will move in at uniform speed

towards the middle of the object. At points where two fronts of fire meet,

they will extinguish each other. The locations where the fronts meet are the

22



2.5. Skeleton Based Model

locations of the medial axis points.

Shape modeling typically requires a robust variant of the traditional me-

dial axis so that small changes in the outline of the shape does not severely

alter its topology [17]. Most skeleton extraction algorithms require a seg-

mented image as the input. An exception is the algorithm proposed by Pizer

et al. [30] where they introduced a model comprising of nets of medial and

boundary primitives. This model can estimate the boundary of the object

and its medial axis based on the intensity gradient in the original gray scale

image.
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Chapter 3

Extraction of Femur Contour

An overview of the algorithm for extracting the contour of the femur is shown

in Figure 3.1. It consists of a sequence of processes. First a modified Canny

edge detector (Section 3.1) is used to compute the edges from the input x-ray

image of the hip followed by computing the Gradient Vector Flow field [34]

(Section 3.3) for the edges. Next, the snake algorithm [23] (Section 3.2)

combine with the Gradient Vector Flow will move the active contour, i.e, the

snake to the contour of the femur.

For the snake algorithm to work well, the initial points of the snake should

be placed close to the femur boundary. Currently the initial points of the

snake are placed manually as automatic placement of the initial points of the

snake is a difficult problem and it is not the focus of this thesis.



3.1. Modified Canny Edge Detection

Figure 3.1: Femur contour extraction algorithm.

3.1 Modified Canny Edge Detection

The Canny edge detector [7] takes as input a gray scale image and produces

as output an image showing the position of the edges. It works as follows.

The image is first smoothed by Gaussian convolution. Next, a simple 2D first

derivative operator is applied to the smoothed image to highlight regions of

the image with high first derivatives. Using the gradient direction calculated,

the algorithm performs non-maxima suppression to eliminate pixels whose

gradient magnitude is lower than its two neighbors along the gradient di-

rection. Finally these thin edges are linked up using a technique involving

double thresholding. Although Canny edge detector works well in detecting

the outline of the femur, it also detects a large number of spurious edges

close to the shaft (Figure 3.2b). Such spurious edges will affect the snake’s

25



3.1. Modified Canny Edge Detection

(a) (b) (c)

Figure 3.2: Result of Canny edge detection. (a) Original femur image. (b)

Canny edge with low threshold values. (c) Canny edge with more smoothing

and higher threshold values. Notice that a large portion of femoral head has

disappeared (c).

26



3.1. Modified Canny Edge Detection

convergence on the outline of the femur and have to be removed. Attempting

to remove the spurious edges by increasing the smoothing effect will reduce

these spurious edges but the edge information at the femur head will also be

lost (Figure 3.2c). Contributing to the problem is the fact that the femur

head overlaps with the hip bones and edge magnitudes of the femur head in

this region is low. Hence simple thresholding based on edge magnitude will

fail .

The problem of preserving femur head edges and at the same time re-

moving spurious edges can be solved by incorporating information from the

intensity image into the Canny edge algorithm. Looking at the original in-

tensity x-ray image of the femur (Figure 3.2a), areas containing bones have

higher intensity than non-bone regions. Hence this information can be used

to distinguish spurious edges from femur head edges. The Canny edge de-

tector with a small smoothing effect is used to detect the femur head edges

while spurious edges with both low intensity value and low gradient magni-

tude values are removed (Figure 3.3d).

In summary, a pixel is marked as an non-edge point if

1. it is detected by Canny edge detector,

2. it has an intensity lower than a threshold Γ, and

3. it has an edge magnitude lower than the same threshold Γ.
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3.2. Snakes and Active Contours

(a) (b) (c) (d)

Figure 3.3: Modified Canny edge detection with various threshold values.

(a) 20%, (b) 50%, (c) 70%, (d) 90%

The threshold Γ is actually a percentage value. In the current implementa-

tion, a non-edge pixel must have an intensity and an edge magnitude lower

than 90% of the total pixels. Figure 3.3 shows the edge detection results

with various threshold values.

3.2 Snakes and Active Contours

Snakes or active contours became popular after the seminal paper by Kass,

Witkin and Terzopoulos [23]. The contour extraction module makes use of

snake to snap onto the contour of the femur (Figure 3.4).

Snakes are formulated as energy-minimizing contours controlled by two
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3.2. Snakes and Active Contours

forces:

1. Internal contour forces which enforce the smoothness constraint.

2. Image forces which attracts the contour to the desired features, in this

case, edges.

Esnake =

∫

1

0

Eint(v(s)) + Eimage(v(s))ds (3.1)

Representing the position of the snake parametrically by v(s) = (x(s), y(s)),

the energy of a snake Esnake (Eqn 3.1) is a sum of the internal energy Eint

of the snake and the image energy Eimage.

Internal Energy

The internal energy Eint is composed of a first-order term controlled

by α(s) and a second order term controlled by β(s).

Eint =
(

α(s) |vs(s)|
2 + β(s) |vss(s)|

2
)

/2 (3.2)

The terms vs and vss represents the first and second derivative of v

respectively. α(s) characterizes the tension along the snake and β(s)

characterizes the bending of the curve. Currently, α(s) and β(s) are

set as values α and β.
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3.2. Snakes and Active Contours

Image Energy

In the current implementation, the snake is programmed to converge

onto edges and modified Canny edge detector (Section 3.1) is used

to compute the edges Eedge from the input images. The image en-

ergy Eimage will be Eedge weighted appropriately by a negative weight

−wedge.

Eimage = −wedgeEedge (3.3)

Minimization Procedure

A snake that minimize the energy functional Esnake must satisfy the

following Euler equations [23] :

αxss + βxssss +
∂Eimage

∂x
= 0 (3.4)

αyss + βyssss +
∂Eimage

∂y
= 0 (3.5)

Where xss and xssss are the second and fourth derivatives of x, similarly

for yss and yssss.

In computer implementation, Eqn 3.1 is discretized as follows :

Esnake =
n

∑

i=1

Eint(i) + Eimage(i) (3.6)

Using a vector notation with vi = (xi, yi) = (x(ih), y(ih)) and approxi-

mating the derivatives xss, xssss, yss and yssss in Eqn 3.4 and 3.5 using
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3.2. Snakes and Active Contours

finite difference, Eint(i) can be expanded as :

Eint(i) =
αi |vi − vi−1|

2

2h2
+

βi |vi−1 − 2vi + vi+1|
2

2h4
(3.7)

For a closed contour snake, we can define v(0) = v(n). Define fx(i) =

∂Eimage/∂xi and fy(i) = ∂Eimage/∂yi where the derivatives are approxi-

mated by finite difference. Therefore the corresponding Euler equations

(Eqn 3.4, 3.5) become

αi(vi − vi−1)− αi+1(vi+1 − vi) + βi−1(vi−2 − 2vi−1 + vi)

− 2βi(vi−1 − 2vi + vi+1) + βi+1(vi − 2vi+1 + vi+2) + (fx(i), fy(i)) = 0

(3.8)

Rewriting the above Euler equations in matrix form we have

Ax + fx(x,y) = 0 (3.9)

Ay + fy(x,y) = 0 (3.10)

Where A is a penta-diagonal banded matrix and below is an example
for a 7 point closed contour with constant α and β :

A =





















c1 d1 e1 0 0 a1 b1

b2 c2 d2 e2 0 0 a2

a3 b3 c3 d3 e3 0 0
0 a4 b4 c4 d4 e4 0
0 0 a5 b5 c5 d5 e5

e6 0 0 a6 b6 c6 d6

d7 e7 0 0 a7 b7 c7





















ai = βi−1

bi = −αi − 2βi−1 − 2βi

ci = αi + αi+1 + βi−1 + 4βi + βi+1

di = −αi+1 − 2βi − 2βi+1

ei = βi+1

(3.11)

To solve Eqn 3.9, the snake is made dynamic by treating x and y as
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3.3. Gradient Vector Flow

function of time and solved iteratively [23].

x(t + 1) = (A + γI)−1(γx(t)− fx(x(t),y(t))) (3.12)

y(t + 1) = (A + γI)−1(γy(t)− fx(x(t),y(t))) (3.13)

where γ is the Euler step size. (A + γI)−1 can be calculated by LU

decomposition in O(n) time, where n is the length of the snake.

3.3 Gradient Vector Flow

Gradient Vector Flow (GVF) [34] is a type of external force for active con-

tours. The GVF was created to overcome two shortcomings of the original

active contour formulation i.e poor convergence to concave boundaries and

sensitivity to initialization. GVF is computed as a diffusion of the gradient

vectors of a gray-level edge map derived from the image.

The GVF field is defined as the vector field G(x, y) = (q(x, y), r(x, y))

that minimizes the energy functional

ε =

∫ ∫

µ(q2

x + q2

y + r2

x + r2

y) + |∇E|2 |G−∇E|2 dxdy (3.14)

where E is an edge map E(x, y) derived from the image. Using calculus of

variations, the GVF can be found by solving the following Euler equations
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3.4. Combining Snake with GVF

µ∇2q− (q−E2

x + E2

y) = 0 (3.15)

µ∇2r− (r−E2

y + E2

y) = 0 (3.16)

Equations 3.15 and 3.16 can be solved by treating q and r as functions

of time and solving

q(x, y, t + 1) =µ∇2q(x, y, t)

− (q(x, y, t)− Ex(x, y)) · (Ex(x, y)2 + Ey(x, y)2)

(3.17)

r(x, y, t + 1) =µ∇2r(x, y, t)

− (r(x, y, t)−Ey(x, y)) · (Ex(x, y)2 + Ey(x, y)2)

(3.18)

The steady state solution (as t → ∞) of equations 3.17 and 3.18 is the

require solution of the Euler equations 3.15 and 3.16. Details of the numerical

implementation for Eqn 3.15 and 3.16 can be found in [35].

3.4 Combining Snake with GVF

The snake algorithm is combine with the external force computed by the GVF

to improve the performance of snake. To incorporate the GVF into the snake

algorithm, after computing the solution q and r in equation 3.17 and 3.18,

replace fx and fy from equation 3.12 and 3.13 with q and r respectively.

With the GVF snake, only a small number of initialization points are

needed to start the snake algorithm (Figure 3.4) and successive iterations
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3.4. Combining Snake with GVF

of the algorithm will re-distribute the snake points more regularly along the

contours.

(a) (b) (c)

Figure 3.4: With small number of initialization points in (a) an accurate

outline of the femur can be obtained using snake combine with GVF (b). (c)

shows the result of using snake without GVF and it is difficult to get the

snake to snap onto the concave structure at the femoral neck.
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Chapter 4

Measuring Neck-Shaft Angle

from Femur Contour

The contour lines along the femoral shaft are almost parallel. If normal lines

are drawn from one side of the shaft to the opposite side and compute the

midpoints of these lines, then the mid-points would be aligned parallel to the

shaft (Figure 4.1). We call these normal lines level lines as each line denotes

a level along the femoral shaft. Section 4.1 will explain in detail how such

lines are constructed and Section 4.2 will how the midpoints of the level lines

are used to determine the orientation of the shaft. The level lines are also

useful for computing the orientation of the femoral neck, which is elaborated

in Section 4.3. Once the shaft orientation and the neck orientation have been

computed, the neck-shaft angle can be easily computed as the angle the neck



4.1. Computing Level Lines

Figure 4.1: Normal lines on the femur shaft.

and shaft orientation.

4.1 Computing Level Lines

The construction of the level lines depends on the normals of the contour

points and there are a few ways to compute the normal for a point on the con-

tour. A common approach is to use finite difference to estimate the derivative

and hence derive the normal direction. This technique uses a small number

of points in the neighborhood of the point of interest to derive the normal.

It is sensitive to small changes in the neighbors’ positions of the points.

36



4.1. Computing Level Lines

On the other hand, with a dense sampling of points along the contour,

a larger set of points can be used to compute the normal at a point using

Principal Component Analysis (PCA) [21, 22]. To compute the normal of a

contour point, choose a neighborhood of points around the point of interest.

This set of points represents a segment of the contour and PCA is applied to

this segment of points. Given a set of points in 2D, PCA returns two eigen-

vectors and their associated eigenvalues. The eigenvector with the largest

eigenvalue will point in the direction parallel to this segment of points and

the other eigenvector gives the normal direction at the point of interest.

Once the normal for each point on the contour has been calculated, the

set of level lines L can be computed. Let pi and pj denote the vector repre-

sentation of two points on the contour and ni and nj be the associated unit

normals. Then the line l(pi,pj) that connects points pi and pj is a level line

if

|ni · nj| ≈ |(pi − pj) · ni| ≈ |(pi − pj) · nj| ≈ 1 (4.1)

In the current implementation, two orientations v1 and v2 are similar i.e.,

|v1 · v2| ≈ 1 if |v1 · v2| ≥ 0.98
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4.2. Computing Orientation of the Femoral Shaft

4.2 Computing Orientation of the Femoral

Shaft

The orientation of the femur shaft can be computed by extracting the mid-

points of the level lines on the shaft (Figure 4.2). Given level lines li(p
1
i ,p

2
i )

and the midpoints mi = 1

2
(p1

i + p2
i ), sort mi in decreasing order of y-

coordinates of mi (assuming the origin is at the top-left corner of the image)

and call them m′

i. The first midpoint m′

1 must be a midpoint along the

femoral shaft. Now for each midpoint m′

i, i ≥ 2, include m′

i as a shaft point

if m′

i is near to m′

i−1.

After finding the midpoints of the shaft, the PCA algorithm is used to

estimate the orientation of the midpoints. The eigenvector with the largest

eigenvalue computed from the PCA algorithm will represent the orientation

of the shaft midpoints.

4.3 Computing the Orientation of the Femoral

Neck

The computation of femoral neck’s orientation is more complicated because

there is no obvious axis of symmetry. The algorithm consist of three main

steps.
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4.3. Computing the Orientation of the Femoral Neck

Figure 4.2: The midpoints of the level lines are shown as white dots. The

midpoints along the shaft give a good estimate of the orientation of the

femoral shaft.
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4.3.1 Computing Initial Estimation of Femoral Neck’s Orientation

1. compute an initial estimate of the neck orientation (Section 4.3.1) ,

2. smooth the femur contour (Section 4.3.2), and

3. search for the best axis of symmetry using the initial neck orientation

estimate (Section 4.3.3).

4.3.1 Computing Initial Estimation of Femoral Neck’s

Orientation

The longest level lines in the upper region of the femur always cut through the

contour of the femoral head (Figure 4.3). Given this observation, an adaptive

clustering algorithm [24] is used to cluster long level lines at the femoral head

into bundles of closely spaced level lines with similar orientations. The bundle

with the largest number of lines is chosen, and the average orientation of the

level lines in this bundle is regarded as the initial estimate of the orientation

of the femoral neck.

The adaptive clustering algorithm is useful as it does not need to choose

the number of clusters before hand. The general idea is to group the level

lines such that in each group, the level lines are similar in terms of orientation

and spatial position. The adaptive clustering algorithm groups a level line

into its nearest cluster if the orientation and midpoint of the cluster is close.

If a level line is far enough from any of the existing clusters, a new cluster
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4.3.1 Computing Initial Estimation of Femoral Neck’s Orientation

Figure 4.3: Level lines along the femoral neck intersects the femoral head

contour.

will be created for this level line. For level lines that are neither close nor far

enough, they will be left alone and not assigned to any cluster.

With the adaptive clustering algorithm, it ensures each cluster has a

minimum similarity of R1 for the cluster orientation and minimum similarity

of R2 for the mid-points distance. The algorithm also ensures that the cluster

differs by a similarity of at most S1 and S2 for the orientation and mid-points

distance respectively. Varying the values of R1, R2, S1 and S2 controls the
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4.3.2 Smoothing the Original Contour

granularity of clustering and the amount of overlapping between clusters.

Algorithm 1: Computing initial estimation of femoral neck’s orienta-
tion.

Input: Set of level lines L = {li}, with corresponding orientation ui

and midpoint mi.

Output: A point phead on the femoral head contour.

Note that each cluster k is characterized by an orientation uk and a
midpoint mk.

1 foreach li ∈ L do

Find cluster k such that orientation uk is most similar to ui and
mk is close to mi.
If |uk · ui| ≥ R1 and |mi −mk| ≤ R2 (i.e similar in orientation
and spatially close).
Then include li in cluster k
Else if |uk · ui| ≤ S1 and |mi −mk| ≥ S2

Then create a new cluster with line li.
end

2 Update cluster orientation and midpoint
Repeat 1 and 2 until convergence

4.3.2 Smoothing the Original Contour

Consider a parametric equation for a curve v = (x(s), y(s)) and g(s, σ) is

a 1-D Gaussian kernel of width σ then X(s, σ) and Y (s, σ) represents the

components of a smoothed curve,

X(s, σ) = x(s) ∗ g(s, σ) (4.2)

Y (s, σ) = y(s) ∗ g(s, σ) (4.3)
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4.3.3 Computing the Axis of Symmetry for the Femoral Head and

Neck

(a) Original (b) σ = 2 (c) σ = 6 (d) σ = 10

Figure 4.4: Contour smoothing. (a) Original femur contour. (b,c,d) smooth

contours with different σ.

Observe that in Figure 4.4(c) the outline of the femoral head and neck is

almost symmetrical after sufficient smoothing has been applied to the curve.

The algorithm exploits this symmetry to estimate the orientation of the neck.

Currently σ is chosen to be 5.

4.3.3 Computing the Axis of Symmetry for the Femoral

Head and Neck

The general idea of determining the axis of symmetry is to find a line through

the femoral neck and head such that the contour of the head and neck coin-

cides with its own reflection about the line (Figure 4.6).
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4.3.3 Computing the Axis of Symmetry for the Femoral Head and

Neck

Given a point pk along the contour of the femoral head and neck, obtain

the midpoint mi along the line joining contour point pk−i and pk+i. That is,

we obtain a midpoint for each pair of contour points on the opposite sides

of pk (Figure 4.5(a)). Now, we can fit a line lk through the midpoints mi to

obtain a candidate axis of symmetry (Figure 4.5b). If the contour is perfectly

symmetrical, and the correct axis of symmetry is obtained, then each contour

point pk−i is exactly the mirror reflection of pk+i. So the error Ek for lk is

Ek =
1

n

n/2
∑

i=−n/2

∣

∣pk+i − p′

k−i

∣

∣ (4.4)

where p′

k−i is the reflection of pk−i about lk. Ek indicates how good is lk as

an axis of symmetry. The best fitting axis of symmetry is a midpoint fitting

line lt associated with pt that minimizes the error:

Et = min
k

Ek (4.5)
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4.3.3 Computing the Axis of Symmetry for the Femoral Head and

Neck

(a) (b)

Figure 4.5: Generating a candidate axis of symmetry. Outline of the contour

and midpoints of the pairing (a). Fitting a line lk through the midpoints (b).

Figure 4.6: Determining axis of symmetry of femoral neck. The white contour

denotes the smoothed contour of the femoral head and neck, and black circles

are the reflection of the contour points about the straight line.
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Chapter 5

Test Results and Discussion

Manual measurement of neck-shaft angles turns out to be quite inconsistent.

So, there is no accurate and consistent ground truth for assessing the accuracy

of the algorithm that measures the neck-shaft angle. Instead, experiments

are conducted to determine how accurate can the measured neck-shaft angle

be used to distinguish healthy femurs from fractured femur.

5.1 Classification using Neck-Shaft Angle

5.1.1 Test Setup

A set of 64 radiographic images of the hip were obtained. Of these 64 hip

images, 19 of them contained fractures. Out of the 19 hip fractures, 12 were

left femur fractures and 7 were right femur fractures. Each image contains



5.1.2 Test Results

at most one fracture.

Three measurements were taken for each radiographic image: the neck-

shaft angles for the left and right femur and the absolute difference between

the left and right neck-shaft angles. The doctors frequently compare the

left and right femur to look for significant differences between them. Hence,

another classification will be based on the difference of the left and right

neck-shaft angles.

5.1.2 Test Results

A summary of the result of running neck-shaft angle measurement of the

left and right femurs can be found in Figure 5.1 and Figure 5.2 respectively.

The summary for the difference of left and right neck-shaft angles is shown

in Figure 5.3. The x-axis represents the different test cases and the y-axis

represents the neck-shaft angle measured in degrees. The dots represent the

healthy femurs and the box around a dot denotes that the femur is fractured.

From Figure 5.1 and Figure 5.2, we can see that setting a threshold at 116

degrees yields the best classification accuracy. For the left-right difference,

Figure 5.3 shows that a threshold of 11 degrees yields the best classification

accuracy.

A summary of the classification results can be found in Table 5.1. The sec-
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5.1.2 Test Results
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Figure 5.1: Neck-shaft angle measurement for left femurs. The dotted line

denotes the classification threshold.
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5.1.2 Test Results
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Figure 5.2: Neck-shaft angle measurement for right femurs.The dotted line

denotes the classification threshold.
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5.1.2 Test Results

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Figure 5.3: Difference between left and right neck-shaft angles. The dotted

line denotes the classification threshold.
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5.1.2 Test Results

Left Femur Right Femur Left & Right Difference

Correct Classification

as fracture 12 3 15 14

as healthy 49 57 106 41

sub-total 61 (95.3%) 60 (93.8%) 121 (94.5%) 55 (85.9%)

Wrong classification

as fracture 2 1 3 4

as healthy 1 3 4 5

sub-total 3 (4.7%) 4 (6.2%) 7 (5.5%) 9 (14.1%)

Total 64 64 128 64

Table 5.1: Summary of classification results.
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5.1.3 Discussion on Classification Results

ond column contains the result for the left femur, the third column contains

the result for the right femur and the fourth column contains the combined

results for the left and right femur. The fifth column shows the results using

the neck-shaft angle difference.

Using a neck-shaft angle thresholding classifier, we can achieve an ac-

curacy of 95.3% and 93.8% for the left and right femurs respectively. The

overall accuracy for all the femurs is 94.5%. Misclassification rate is 4.7% for

the left femur and 6.2% for the right femur. The combined misclassification

rate is 5.5%. Out of 19 fractured cases, the classifier manages to detect 15

correctly (i.e, 80% of the total number of fractured femurs) and 4 are are

wrongly classified as healthy.

Using the neck-shaft angle difference between the left and right femurs

to classify the radiographic images, 55 images were correctly classified and

accuracy for correct classification is 85.9%. For the misclassifications, out of

55 images, 4 images were wrongly classified.

5.1.3 Discussion on Classification Results

The algorithm has performed very well in classifying individual femurs based

on neck-shaft angle. For example, for the femurs in Figure 5.4, the neck

shaft angles were correctly measured and correctly classified as healthy. The
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5.1.3 Discussion on Classification Results

(a) (b) (c) (d)

Figure 5.4: Femurs correctly classified as healthy .

(a) (b) (c) (d)

Figure 5.5: Femurs correctly classified as fractured.
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5.1.3 Discussion on Classification Results

(a) (b) (c) (d)

Figure 5.6: Fractured femurs in (a) and (b) are wrongly classified as healthy

due to small change in neck-shaft angle. Fractured femurs in (c) and (d) are

wrongly classified as there is no change in neck-shaft angle.

femurs in Figure 5.5 were correctly classified as fractured and the neck-shaft

angles were also correctly measured. There are two main reasons for the

misclassification of fractured femurs as healthy femurs. The first reason is

due to the fact that the fractures are not severe enough to change the neck-

shaft angle significantly. For example in Figure 5.6(a) and (b) both femurs are

fractured at the intertrochanteric region but the change in neck-shaft angle

is not significant enough to be detected by the classified. For the second

type of misclassification, a fracture has occurred but there is no change in

neck-shaft angle of the femur. For example, in Figure 5.6(c) and (d). Such

54



5.1.3 Discussion on Classification Results

(a) (b) (c)

Figure 5.7: The x-rays of (a),(b) and (c) were not taken in the expected

posture hence causing the classifier to fail.

fractures usually occur when the fracture occurs in the femoral neck region

and the femoral neck is shortened but the neck-shaft angle is unchanged.

The main reason for misclassification of healthy femurs as fractured is due

to the fact that the femurs were not taken in the expected position hence

distorting the measured neck-shaft angle (Figure 5.7).

For the misclassification using left-right neck-shaft angle difference, the

errors are similar to those encountered when classifying individual femur

bone. Femur bones that are not taken in the expected position will distort

the measured neck-shaft angle and the difference between the two femurs will

be inaccurate hence flagging off a false alert.
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Chapter 6

Future Work

In summary, the two main reasons for misclassification are:

1. Insufficient deformation in the shape to cause a large change in the

neck-shaft angle

2. Fractured femurs with no change in neck-shaft angle.

To solve problem (1) it is suggested that other ways of detecting fractures be

tried. For example, another feature to extract for diagnosing femur fractures

is the texture of trabecular lines (Figure 6.1). Such lines run from the shaft

of the femur through the neck and ending near the head of the femur. A

fracture in the neck of the femur will usually disrupt the smooth running of

these lines and an analysis of such pattern to pick up any major changes in

the trabecular pattern is useful for locating the fracture site.



Figure 6.1: Trabecular lines.

To solve problem (2) other measurements of the femur bone have to be

taken. An example will be measuring the ratio of the length of the femur

neck to other parts of the femur.

With the algorithms proposed, the neck-shaft angle of a front-view x-ray

image of the femur can be calculated. A more accurate method of measuring

neck-shaft angle can be computed using two x-ray images. The second x-ray

is taken at an oblique angle to the first. This approach takes into account 3D

structure of the femur bone and based on the projection of the femur bone

on two different planes the neck shaft angle in 3D can be computed. This

method have been used in [28] to manually measure the neck-shaft angles in
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young patients.
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Chapter 7

Conclusion

In this thesis, we study the problem of estimating neck-shaft angle from the

contour of the femur. A method is proposed to compute neck-shaft angle.

The method comprises two algorithms. The first algorithm extracts the femur

contour accurately from x-Ray images and the second algorithm computes

neck-shaft angle based on the contour of the femur. The contributions of this

research includes the following :

1. Developing two algorithms that form the core of a system to assist

doctors in detecting femur fractures.

2. A computational method of measuring the neck-shaft angle which is

more consistent and reproducible compared to manual measurement.



To the best of our knowledge, this is the first computer algorithm for

measuring the neck-shaft angle from x-ray images and using neck-shaft angle

to discriminate healthy femurs from fractured femurs. From the experiments

conducted, we have shown that using the neck-shaft angle measured by our

algorithm we can achieve a classification accuracy of 94.5%. In summary, this

research has provided a basis for future research in femur fracture detection

and developing algorithms to assist doctors in diagnosing fractures.
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