
Automatic Generation of Buffer Overflow Attack Signatures:
An Approach Based on Program Behavior Models∗

Zhenkai Liang and R. Sekar
Department of Computer Science,

Stony Brook University, Stony Brook, NY 11794
{zliang, sekar}@cs.sunysb.edu

Abstract

Buffer overflows have become the most common target
for network-based attacks. They are also the primary mech-
anism used by worms and other forms of automated attacks.
Although many techniques have been developed to prevent
server compromises due to buffer overflows, these defenses
still lead to server crashes. When attacks occur repeat-
edly, as is common with automated attacks, these protec-
tion mechanisms lead to repeated restarts of the victim ap-
plication, rendering its service unavailable. To overcome
this problem, we develop a new approach that can learn
the characteristics of a particular attack, and filter out fu-
ture instances of the same attack or its variants. By doing
so, our approach significantly increases the availability of
servers subjected to repeated attacks. The approach is fully
automatic, does not require source code, and has low run-
time overheads. In our experiments, it was effective against
most attacks, and did not produce any false positives.

1 Introduction

In the past few years, there has been an alarming increase
in automated attacks that are launched by worms or zom-
bies. A key characteristic of such automated attacks is that
they are repetitive, i.e., multiple instances of the same at-
tack may be launched against the same victim machine in
a quick succession. A vast majority of these automated at-
tacks are due to buffer overflows, which account for more
than three-quarters of the US CERT advisories in the last
few years. Current technology for defending against buffer
overflows uses some form of guarding [5, 7, 8] or ran-
domization [1, 2, 3, 4, 14]. Although these techniques can
detect attacks before system resources, such as files, are
compromised, they cannot protect the victim process itself,
whose integrity is compromised prior to the time of detec-
tion. For this reason, the safest approach for recovery is to
terminate the victim process. With repetitive attacks, such
an approach will cause repeated server restarts, effectively

∗This research is supported in part by an ONR grant N000140110967
and an NSF grant CCR-0208877.

rendering the service unavailable during periods of attack.
For instance, at a relatively low rate of 10 attacks per sec-
ond, services such as DNS and NTP became unavailable
in our experiments. In contrast, we present an approach,
called ARBOR (Adaptive Response to Buffer OveRflows),
that filters out attacks before they compromise the integrity
of a server, thereby allowing the server to continue to run
without interruption. By doing so, ARBOR dramatically
increases the capacity of servers to withstand repetitive at-
tacks.

This paper builds on the core idea outlined in [17] of
using program behavior models to recognize those inputs
that carry buffer overflow attacks, and discarding them. As
compared to the earlier technique of automated patch gener-
ation [29], as well as subsequent works such as [26, 30, 32],
our approach predicts attacks at the earliest possible stage,
namely, at the point of network input. This enables reliable
recovery in our approach. In contrast, previous approaches
recognize buffer overflow attacks close to the point of mem-
ory corruption, and cannot always recover. Another impor-
tant benefit of our approach is that it generates a general-
ized vulnerability-oriented signature from a single attack
instance, and this signature can be deployed at other sites
to block attacks exploiting the same vulnerability.

1.1 Overview of Approach

ARBOR is based on the observation that attacks on net-
work services arrive via inputs to server processes. It makes
use of an off-the-shelf buffer-overflow exploit prevention
technique, specifically, address-space randomization (ASR)
[1, 3]. (Other techniques such as StackGuard would work
as well.) ARBOR compares the characteristics of benign
inputs with those of inputs received around the time of an
attack, and synthesizes a signature that matches the attack
input but not the benign ones. Once generated, this sig-
nature can be deployed within the victim process to filter
out future instances of the same attack (or its variants). It
may also be distributed to other servers using the same ver-
sion of software, so that an entire community of cooperating
servers may be protected from an attack, based on a single
attack sample. The two main steps in our approach, namely,
signature generation and recovery after discarding input, are
described in more detail below.

I. Automatic signature generation proceeds in two steps.

1. Identifying characteristic features of attacks. Buffer
overflow attacks are associated with excessively long in-
puts, and hence input length is one obvious criterion in sig-
natures. Moreover, buffer overflow attacks are based on
overwriting pointers and/or execution of attacker-provided
binary code. Thus, the presence of binary data in inputs is
a second useful criterion for signature generation.

We do not rely on other possible characteristics, such
as data or code sequences that repeat across attacks. Al-
though previous work on worm signature generation [15,
16, 22, 31, 33] has often relied on these characteristics, we
note that polymorphic worms, as well as intelligent attack-
ers, can easily modify these characteristics. In contrast, the
length and binary data characteristics are essential features
of buffer overflow attacks.

2. Using program context to improve signature accuracy.
Server programs accept inputs with different characteristics
in different contexts. For instance, only text data may be
acceptable during the authentication phase of a protocol,
while binary data may be accepted subsequently. A sim-
ple signature that is based on the presence of binary charac-
ters in input data will work correctly during authentication
phase, but will subsequently cause legitimate inputs to be
dropped. To increase the accuracy of signatures, we incor-
porate the context in which an input is processed into the
signature. Without the use of these contexts, ARBOR will
produce too many false positives to be useful.

II. Light-weight recovery after discarding input. After
discarding input, it is necessary for the server process to
take recovery actions, such as releasing resources that were
set aside for processing the (attack-bearing) request, and re-
turning control to the point where the program awaits the
next service request. Rather than trying to infer the exact set
of (application-specific) recovery actions, we observe that
networked servers expect and handle transient network er-
rors, which can cause their input operations to fail. ARBOR
leverages this error recovery code to perform the necessary
clean up actions. Specifically, whenever an input matches
an attack signature, this input is dropped, and an error code
signifying a network error is reported to the server.

1.2 Benefits of Our Approach

• Effectiveness against “real-world” attacks. We collected
11 remote buffer overflow attacks published by securi-
tyfocus.com. Since the development of exploit code is
a challenging task, we considered only those attacks for
which working exploit code was available on Red Hat
Linux (our experimental platform). ARBOR was effec-
tive in generating signatures for 10 of these 11 attacks.

• Preserving service availability. Our experiments show
that the availability of key servers (such as httpd, ntpd

and named), when exposed to repeated attacks, is im-
proved by at least an order of magnitude by ARBOR.

• Applicable to black-box COTS software. Our approach
does not require any modifications to the protected server,
or access to its source code.

• Low runtime overheads. ARBOR introduces low runtime
overheads of under 10%.

• High-quality signatures generated from a single attack
sample. These signatures are:

– general enough to capture attack variations that exploit
the same underlying vulnerability. Since our signatures
rely on essential characteristics of buffer overflow at-
tacks, attack variations that involve changes to exploit
code or other attack details will likely be captured.

– specific enough to avoid matches with benign inputs.
Attack inputs were usually many times larger than be-
nign inputs, and hence no false positives were observed
in our experiments.

The ability to generate a general signature from a single at-
tack sample distinguishes our approach from previous sig-
nature generation approaches [15, 16, 22, 31, 33, 40].

ARBOR signatures can be distributed over the Internet
to protect other servers running the same copy of software.
Such an approach can defend against fast-spreading worms.
Moreover, an entire community of servers can be immu-
nized from future instances of an attack, including servers
that lack buffer overflow exploit prevention capabilities.

Note that ARBOR signatures cannot be deployed on a
firewall (or an inline network filter), as they rely on program
context information available only within the address-space
of a server process. On the positive side, ARBOR is able to
handle end-to-end encryption because it can intercept in-
puts after decryption. For instance, ARBOR can handle
SSL encryption by intercepting SSL read, which returns
decrypted data, rather than read, which would return en-
crypted data. In contrast, a network layer filtering approach
would not be able to access decrypted data.

1.3 Organization of the Paper

The rest of the paper is organized as follows. Section 2 pro-
vides a technical description of our approach. An evaluation
of our approach is presented in Section 3. Related work is
discussed in Section 4, followed by a summary in Section 5.

2 Approach Description

Figure 1 illustrates our approach. It is implemented using
inline and off-line components. Inline components reside
within the address space of the process being protected by
our approach (protected process), and are optimized for per-
formance, whereas the off-line components perform time-
consuming tasks such as signature generation.

1. S0;
2. while (..) {
3. S1;
4. if (...) S2;
5. else S3;
6. if (S4) ... ;
7. else S2;
8. S5;
9. }
10. S3;
11. S4;

3

5
S S

3 4

4

6 7 8 10 11

S3

S2

S4
S5

S2 S5

S

S3 4S
1

S1

1

S00>

Figure 2. A sample program and its model.

The inline components “hook” themselves into the exe-
cution environment of the protected process by library in-
terception. The primary reason for using library intercep-
tion, as opposed to system call interception, is that it al-
lows interception of a richer class of events. For instance,
some server programs use buffered I/O using library func-
tions such as getc and scanf. In this case, many calls to
getc and scanf do not result in a read system call, as the
input may be returned from a buffer within the library. An
approach that relies on system call interception will conse-
quently miss many of the input operations made by a pro-
gram. A disadvantage of library interposition is that it can
be bypassed after a successful attack. However, ARBOR
relies only on the observations made before a successful at-
tack, so this drawback does not impact it.

The input filter intercepts all input actions of the pro-
tected process. The inputs returned by these actions are then
compared with the list of signatures currently deployed in
the filter. Inputs matching any of these signatures are dis-
carded, and an error code is returned to the protected pro-
cess. If the input is associated with a TCP connection, then
the input filter breaks the connection so as to preserve the
semantics of the TCP protocol.

The behavior model is a central component of ARBOR.
It enables our approach to leverage knowledge embedded
in the program for making filtering decisions, rather than
requiring manual encoding of application-specific syntax or
semantics of input contents. Library interception is used to
learn the behavior model of a protected process. In princi-

Alert

& Inputs

Model

Model

Input

Program

New Signatures

Filter
Input

Logger

Behavior

Library Interceptor

Process Detector

Analyzer

Off−line ComponentsInline Components

Figure 1. Architecture of ARBOR.

ple, the model can incorporate all standard C library func-
tions. In practice, we incorporate calls to (a) all input oper-
ations, and (b) all system call wrappers.

The logger records inputs for offline analysis. It also
saves the entire behavior model periodically (say, every 5
minutes) to the disk, so that the model does not have to
be rebuilt from scratch on process restarts. Any behavior
model that is saved very close to the time of an attack is not
reused. This ensures that actions associated with a success-
ful attack do not compromise the behavior model.

The off-line components include a detector and an ana-
lyzer. The detector is responsible for attack detection. It
promptly notifies the analyzer, which begins the process of
generating an attack signature. The generated signature is
then deployed in the input filter. This enables future in-
stances of the attacks to be dropped before they compromise
the integrity or availability of the protected process.

2.1 Behavior Model

Our approach is based on inferring program context that can
be used in making filtering decisions. We employ a program
behavior model to guide the search for useful program con-
text. Many of the recent approaches for extracting automata
models of programs [9, 10, 28, 35] can potentially be used
for this purpose. We have used the finite-state automaton
(FSA) technique of [28] due to its simplicity.

Figure 2 illustrates the FSA approach. The FSA model
is very similar to a control-flow graph of a program. How-
ever, the FSA only captures security-sensitive operations
(S1 through S5 in the figure) made by the program, while
leaving out the details of its internal computation. The states
in the FSA correspond to program locations (i.e., memory
addresses) from which these operations are invoked, while
the edges are labeled with operation names. (For readabil-
ity, line numbers are used in place of memory addresses in
Figure 2.) There is an edge from a state L1 to state L2 in
the FSA labeled with the call e whenever the program in-
vokes e from location L2, and the previous call made by
the program was from location L1. We point out that such
an FSA model can be constructed from the sequence of li-
brary calls intercepted by our system, without any access to
source code. (Further details about the learning technique
can be found in [28].)

2.2 Logger

The logger records information regarding intercepted oper-
ations for subsequent use by the analyzer. Following infor-
mation is logged in our current implementation: the call-
ing context for the operation, which includes the set of
all callers on the runtime stack at the point of call; return
code from the operation; and the values of integer-type ar-
guments. For input operations, the fraction of binary (i.e.,
non-ASCII) characters in the input is also logged.

Since the logger operates within the process space of the
protected server, a server crash can lead to loss or corruption
of buffered log data. To protect against this possibility, the
logger flushes the buffer after each input operation.

2.3 Input Filter

Signatures generated by ARBOR are deployed within the
input filter. Any input that matches a deployed signature
will be dropped, and an error code of −1 returned to the
process. The external variable errno is set to EIO to indi-
cate an input/output error. Since servers are built to expect
network errors, they invoke appropriate recovery actions to
quickly (and fully) recover from the error and proceed to
process the next request.

If a server uses TCP, reporting an error to the server with-
out notifying the client may lead to inconsistencies caused
by violation of reliable message delivery semantics of TCP.
To avoid this problem, the input filter closes the TCP con-
nection on which the bad input was received. (ARBOR can
determine whether a file descriptor is associated with a net-
work connection using fstat and getsockopt calls.)

2.4 Detector

The detector monitors the execution status of the protected
process. On an intrusion attempt, it raises an alert and ter-
minates the process. Our approach uses an existing tech-
nique, address space randomization (ASR) [3], to imple-
ment the detector. With ASR, the addresses of all program
objects (including code and data objects) are randomized.
All buffer overflow attacks reported so far have been based
on overwriting pointer values, e.g., the return address on the
stack. Due to ASR, the attacker does not know the value to
be used for the overwrite, as she does not know the location
of any of the objects (e.g., the code injected by the attacker)
in memory. As a result, attacks cause programs to crash due
to invalid memory access.

Note that ASR itself needs to be deployed within the pro-
tected process. The detector component shown in Figure 1
does not denote ASR, but an external process that intercepts
signals received by the protected process. In our implemen-
tation, it uses the ptrace mechanism in Linux. When the
detector intercepts a memory access related signal (SIGBUS,
SIGSEGV and SIGILL), it reports an attack.

Note that ASR interacts with the FSA behavior models
in some ways. In particular, since the base addresses of var-

ious code segments are randomized, the absolute memory
locations associated with the FSA states will change from
one execution of the server to the next. To compensate for
this, the FSA technique needs to decompose each memory
address into a pair (name, offset), where name identifies
the segment (e.g., the name of an executable or a shared
library) and offset denotes the relative distance from the
base of this segment. By the nature of ASR described in
[1, 3], this quantity remains invariant across all executions
of an ASR-protected server.

2.5 Analyzer

The analyzer generates signatures to distinguish attack-
bearing inputs from benign ones. The two main aspects of
signature generation in ARBOR are discussed below.

2.5.1 Obtaining Context Information

ARBOR relies on two types of contexts: current context and
historical context. The current context for an input opera-
tion captures the calling context for that operation. It helps
distinguish among different input operations used by a pro-
gram. For example, in Figure 2, even if S4 and S5 are both
read operations, their purpose may be different, as they are
invoked from different parts of the program. In our imple-
mentation, current context is defined by the program loca-
tion from which the input operation is performed (which is
the same as the state of the FSA model), and a sequence
of return addresses (up to 20 in our implementation) on the
top of the program’s stack. Moreover, instead of explicitly
remembering the list of all callers, we compute and use a
single 32-bit hash-value from them. (Recall that in order to
cope with ASR, all absolute addresses are decomposed into
(segment, offset) pairs before they are used.)

Historical context takes into account the FSA states that
precede an input operation. The rationale for using histori-
cal context is as follows. Often, network protocols involve
a sequence of steps. An attack may be based on sending an
unexpected sequence of messages, where each message, in
isolation, is indistinguishable (to ARBOR) from legitimate
messages previously seen. Historical context enables us to
utilize program context information across these steps, and
hence recognize unexpected sequences of messages.

In addition to providing the ability to handle truly multi-
step attacks, historical context also helps ARBOR handle
some cases where the attack is really delivered in the last
step, while all previous steps are legitimate. Typically, this
happens due to the fact that a server program performs all its
input actions from a single location, regardless of the type of
request being read. This can happen with a server that uses
“wait-read-process” loop structure, where the server waits
for the availability of any input, and then uses a read call to
read the entire input in one step into an internal buffer, and
then uses internal code to parse the contents of this buffer

and carry out the request. Since the current context remains
the same for all input operations made by such servers, all
types of messages will be lumped together into a single cat-
egory, thereby decreasing the likelihood of deriving a length
or character distribution based signature. This problem can
be mitigated using historical context. Specifically, note that
even though all input actions occur from the same program
location, the processing of these requests is almost sure to
be carried out by different functions, or more generally, dif-
ferent sections of code. It is also quite likely that the pro-
cessing step will involve one or more function calls that
are intercepted by ARBOR, thereby allowing it to distin-
guish between different types of messages. Now, consider a
server protocol where a message M1 is always followed by
a message of type M2 or M3. Although ARBOR cannot tell
whether it is M2 or M3 at the time of reading the message,
historical context seen during the processing of request M1

enables it to avoid confusing these two types of messages
with other message types. This factor, in turn, can enable
signature discovery.

2.5.2 Synthesizing Signatures

Inputs received closest to the time of detection are the ones
most likely to be attack-bearing. For this reason, the sig-
nature generation algorithm searches for a suspect input in
the reverse temporal order among recent inputs. (ASR typ-
ically detects attacks within a millisecond timeframe, so
the search can be limited to the previous 10ms for most
servers.) This search is carried out in two stages. The first
stage uses current context. If this fails, a historical context
is used in the second stage.

In the first stage, the analyzer first identifies the current
context for each recent input, and compares the input length
and binary character percentage for this context with all the
past inputs received in the same context. To speed up this
process, the FSA model already stores the maximum input
size and maximum fraction of binary characters seen among
all previous benign input actions in the same context. As a
result, ARBOR generates current context based signatures
within 10ms.

Unlike current context, an input operation can have mul-
tiple historical contexts. Part of signature discovery is to
identify the particular historical context that yields the best
signature. In general, a historical context can represent a
path in the FSA, but for simplicity, we have limited our cur-
rent implementation to refer to just a single context that pre-
cedes an input operation by k steps, for some k > 1. Our
technique starts with k = 1, and keeps incrementing k until
a historical context that can distinguish benign inputs from
attack input is identified, or k exceeds a certain threshold
(20 in our implementation). Note that this search requires
an examination of the information about previous benign
inputs that was recorder by the input logger.

After an input I is identified as malicious under a con-
text C, if its size a is significantly larger than the maximum
size bmax of benign inputs seen so far in C, then a size-
based signature is generated. Initially, the signature may
specify a size threshold of a − 1 in order to minimize the
likelihood of false positives. However, such an approach
can be exploited by an attacker to send a series of attacks
of successively smaller size, requiring our system to gener-
ate many signatures. To tackle this problem, the approach
can be made more adaptive, e.g., by setting a threshold of
max(a − 2k, bmax + 1) after k attack attempts. Signature
generation based on percentage of binary characters is done
in a similar way. The format of signatures is as follows:

At <function name>@(name, offset, hash)

[Distance <dist> <function name>@(name,

offset, hash)]

[Size <filtering size>] [Bin% <bin pct>]

“At” and “Distance” specify the program context;“Size”
and “Bin%” specify the conditions characterizing an attack.
We illustrate signature formats with two examples.

• At read@(S1,0xBFE0,0x3A4561FE) Bin% 0

Meaning: if a read operation is invoked from the S1 seg-
ment of the program at offset 0xBFE0 (from the base of
this segment), and the set of return addresses on the stack
hash to the value 0x3A4561FE, and the fraction of non-
ASCII characters in the input returned by this read is
non-zero, it needs to be dropped.

• At read@(S2,0xB2FE,0xF3928621)

Distance 5 time@(S2,0x2CD0,0x9823A53B) Size 500

Meaning: if a read operation is invoked at offset
0xB2FE in S2 segment of the program, and the set of re-
turn addresses on the stack hash to the value 0xF3928621,
and if time function was called from offset 0x2CD0 of
the same segment five steps earlier, and the return ad-
dresses on the stack hash to the value 0x9823A53B, an
input larger than 500 bytes must be dropped.

3 Evaluation

In this section, we experimentally evaluate the effectiveness
of ARBOR, its runtime overheads and availability. All ex-
periments were carried out on Red Hat Linux 7.3, except
those on lshd which used Red Hat Linux 8.0. Finally we
discuss false positives and false negatives.

3.1 Effectiveness in Signature Generation

In this evaluation, our focus was on real-world attacks.
Since developing exploit programs involves significant
amount of effort, we limited our selection to attacks with
working exploit code available on our OS platform, Red
Hat Linux. We selected eleven such programs shown in Fig-
ure 3. Six of them were chosen because they were widely

Attack Max Benign Input size Attack to Attack to
Program Vulnerability Effective? Length All Current Historical Benign Benign

Contexts Context Context Size Ratio BIN% Ratio
wu-ftpd CVE-2000-0573 Yes 473 8192 55 N/A 8.6 ∞

apache ssl CAN-2002-0656 Yes 419 815 0 N/A ∞ 1.0
ntpd CVE-2001-0414 Yes 500 1024 48 N/A 10.4 1.0
ircd CAN-2003-0864 Yes 490 8191 258 N/A 1.9 ∞

lshd CAN-2003-0826 Yes 5025 1024 376 N/A 13.4 1.0
gtkftpd BugTraq ID 8486 Yes 260 4096 195 N/A 1.3 ∞

samba CAN-2003-0201 Yes 2080 4144 4144 0 ∞ 1.0
epic4 CAN-2003-0328 Yes 1024 3477 3477 0 ∞ ∞

cvs CAN-2004-0396 Yes 1024 1024 1024 1024 1 ∞

passlogd BugTraq ID 7261 Yes 916 1049 1049 1049 0.9 4.0
oops CAN-2001-0029 No 1392 2048 2048 2048 0.7 1.0

Figure 3. Effectiveness of our approach in signature generation.

used programs, and as a result, would have had obvious
bugs fixed, thereby providing us with more sophisticated
attacks. These include the wu-ftpd FTP server, apache
web server, ntpd network time protocol server, ircd Inter-
net relay chat server, samba server that supports Windows-
compatible file and print sharing, and CVS server used for
source-code versioning. Of the remaining programs, pass-
logd (a passive syslog capture daemon) was chosen be-
cause it had a message subfield overflow that did not in-
crease overall message length, thereby posing a problem
for length-based signature detection. oops (a freeware web
proxy server) was chosen because it represents perhaps the
hardest example for ARBOR, providing no useful current or
historical context information. Other examples were mod-
erately popular programs, including gtkftpd, a FTP server
with a Gtk-based GUI, lshd, the GNU secure shell server,
and epic4, a popular Internet relay chat client.

The examples were also chosen to exercise different
types of memory errors, including stack overflow, heap
overflow, and format string bugs.

Figure 3 shows the results obtained with these programs,
organized into four groups according to the nature of sig-
natures generated. In the first group, current context was
enough to generate effective length-based signatures. Al-
though some of the programs receive inputs larger than the
attack-bearing input, the corresponding contexts were dif-
ferent. The second group consists of samba and epic4,
both of which read their inputs from a single location. This
means that the current context remains the same for all mes-
sage types. Since some of the messages, by their nature, are
very long, ARBOR could not generate a length-based sig-
nature. However, since both attacks use a sequence of mes-
sages, signatures can be generated using historical context.

In the third group, both current context and historical
context did not help to synthesize a length-based signature.
In the case of passlogd, there was only one message type,

so historical context was not applicable. Moreover, the at-
tack involved an overflow in a subfield of the message, so
the overall length was still within the size of benign re-
quests. A similar situation applied in the case of CVS as
well. However, both these attacks were characterized by
a large fraction of non-ASCII characters, whereas benign
inputs consisted of mostly ASCII characters. Hence signa-
tures based on character distributions were generated.

The last group consists of oops which is a proxy web
server. By its nature, it simply passes on its requests to an
external web server. As a result, it reads its input requests
from the same program location. Moreover, its input re-
quests are independent of each other. As a result, no useful
current or historical context was available. As a result, AR-
BOR failed to generate a signature.

From these results, we can see that program context is
very important for generating accurate signatures. Without
context information, length-based signatures can be gener-
ated for less than 10% of the attacks. This increases to 55%
and 72% with current and historical context. Using both
contexts and length as well as character distribution crite-
ria, successful signatures are generated for 91% of attacks.

3.2 Evaluation of Runtime Overhead

Since analysis is an offline process, we have not tuned the
signature generator for performance. For this reason, we
did not study its performance in our experiments.

The runtime overhead due to inline components was 7%
for a CPU-intensive benchmark (compilation of Openssh
version 3.8.1p1), and 10% for an Apache server.

A 7% to 10% overhead is modest, and it can be further

Program Partial Logging Full Logging
Compilation < 5% 7%
httpd < 5% 10%

Figure 4. Performance overheads.

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600

A
va

ila
bi

lit
y

Attack rate (per second)

httpd
httpd-ARBOR

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

A
va

ila
bi

lit
y

Attack rate (per second)

named
ntpd

named-ARBOR
ntpd-ARBOR

Figure 5. Availability Degradation under Repetitive Attacks

improved by logging only a fraction of the operations under
normal conditions, and switching to full logging during pe-
riods of attacks. For instance, if only 10% of the program
operations were logged during normal operation, this brings
the overheads to below 5%. With partial logging, logging
is turned on for a period of time (say 100 milliseconds) and
then turned off for a period (say, 900 milliseconds). The
potential downside to partial logging is that when the first
attack occurs, the associated input data may not have been
logged. But this can be corrected right away, as the logger
can be reconfigured to perform full logging after the first
attack. Thus, the only effect will be that of a slight delay
in signature generation. Note that the behavior model is al-
ways updated, so partial logging has no effect on the model.

3.3 Improvement in Server Availability

Figure 5 compares the availability of three key servers in
the face of repetitive buffer overflow attacks: the Apache
web server (httpd), the domain name server (named), and
the network time server (ntpd). The availability at a given
attack rate was measured as the ratio of server through-
put at that attack rate, expressed as a fraction of the server
throughput under no attacks. In all experiments, attacks
were carried out by one or more clients, while the server
was accessed in a legitimate fashion by another client. For
servers protected by our approach, the input filter dropped
requests and reported an error to the server. For an unpro-
tected server, the server would crash after processing input
from an attacker. The server was restarted automatically
after a crash. In the case of httpd, normal request ac-
cesses were simulated using WebStone. For other servers,
we wrote scripts to make repeated requests to the server.

In the absence of our protection, ntpd and named need
to be restarted after each attack, which is quite expensive.
As a result, our approach achieved about a factor of 10
to 100 improvement in their ability to withstand repetitive
attacks, i.e., for a given value of server availability, pro-
tected servers can withstand attacks at rates that are about
10 to 100 times higher than that of unprotected servers. In
the case of httpd, the Apache web server uses multiple

processes to serve requests, and attacks cause one of the
“worker processes” to die, not the main server. This means
that attacks do not require a server restart, but only that a
new process be created to replace the process that crashed
due to the attack. So the normal recovery process is more
efficient than ntpd and named. As a result, the availability
improvement due to ARBOR was closer to 10 than 100.

3.4 False Positives

We did not encounter false positives in our experiments,
as our approach generates signatures only when the attack
input size exceeds all previously encountered benign input
sizes in a given context. The column “Attack to Benign Size
Ratio” in Figure 3 shows that there is a significant differ-
ence between benign and attack input sizes, thus providing
a safety factor against false positives. It can also be seen
that for many programs, the BIN% ratio is ∞, once again
providing a margin of safety from false alarms. To further
reduce the possibility of false positives, we can combine
length and character distribution into a single signature.

For samba and epic4, the maximum size of 0 indi-
cates that the corresponding historical context was never
witnessed in the presence of benign requests. Similarly, for
apache, the context corresponding to the attack was never
witnessed with benign requests. This is not reassuring from
a false positive stand-point, as there is a possibility that this
is due to insufficient diversity among the clients we used.
Further analysis on apache revealed that the contexts cor-
responding to the legitimate and attack inputs were almost
the same — in fact, the difference was in a calling function
that appeared 15 frames higher in the call stack. If we rede-
fined “context” to use only the top 15 return addresses, then
the maximum benign request size increases to 138, which
gives us more confidence with respect to false positives.

We are currently investigating two ways to provide in-
creased assurances regarding false positives. The first way
is to use an adaptive definition of current context that varies
the number of return addresses used. The second way is
to derive a confidence metric for the signature based on the
number of benign samples seen in any given context.

3.5 False Negatives

In this section, we analyze several scenarios where signa-
ture generation may be expected to fail.

Attacks delivered through multiple packets. If an attack
is fragmented into multiple packets, then it may be neces-
sary for a server to perform multiple input operations to read
the attack input. Each input operation may return a small
amount of data, and hence fall below any size threshold
used in an attack signature. To address this limitation, we
observe that typically, a server will perform such read oper-
ations in a loop until the complete request is received. As
a result, all these input operations are made from the same
calling context, and there are no other input operations in
between. Our approach currently concatenates the results
of such a sequence of input operations, and is hence able to
deal with such fragmented attacks. However, it is possible
that some servers may read fragmented requests from differ-
ent parts of the program. In this case a more sophisticated
approach for assembling inputs will be needed.

Concurrent Servers. With concurrent servers, it is possi-
ble that operations associated with processing different re-
quests may be confused, which can be expected to make it
difficult to synthesize accurate signatures. However, we ob-
serve that ARBOR already incorporates a search for identi-
fying the attack-bearing inputs from recent inputs. Concur-
rency simply increases the number of recent requests that
need to be considered in the search, and hence does not un-
duly increase false negatives. Indeed, many of the attacks
in our experiments involved concurrent servers.

Message field overflows. Some attacks are characterized
by the fact that the input message is well within the max-
imum limits, but subfields of the message are not. Such
attacks can pose problems in some cases, but not in oth-
ers. If a server reads different message fields from different
program locations, then a signature can still be generated.
This behavior is common in text-based protocols that make
use of hand-written parsing code. For instance, sendmail
uses repeated calls to getc to read its input, and uses con-
ditionals and loops for parsing. Other servers may perform
a block read into a buffer, and then subsequently process
the data contained in the buffer. In such cases, a signature
may still be generated based on the presence of non-ASCII
characters, as was done in the case of passlogd. How-
ever, if the protocol involved is a binary protocol, then this
approach would fail as well.

DoS attacks aimed at evading character distribution sig-
natures. A typical buffer overflow attack contains binary
characters to represent pointer values and executable code.
An attacker can replace these characters with ASCII charac-
ters chosen to preserve the character distribution of benign
inputs. In this case, a character distribution based signature
would fail. The attack would not have the effect of injected
code execution, but will still cause the victim process to

crash. Thus, if the attacker’s goal is simply DoS, then such
a strategy would successfully evade our signatures. For this
reason, we prefer length-based signatures in ARBOR.

Addressing limitations. Motivated by the above difficul-
ties faced by ARBOR, we have recently developed COV-
ERS [19], a complementary approach for signature gener-
ation. To address the fragmentation problem, it aggregates
inputs read from multiple program locations into a single
session. To address the concurrency problem, it uses a tech-
nique to correlate the effects of attacks back to specific in-
puts. Finally, to handle message field overflows, it relies on
a manual specification of message formats. The principal
drawback of COVERS is this need for manual involvement.
In contrast, ARBOR accepts false negatives in some cases
to achieve fully automatic signature generation.

4 Related Work
The key ideas behind this paper were first sketched in [17].
Preliminary experimental results, together with a high level
exposition of the approach, were presented in [18]. Due to
length limitations, [18] does not provide a technical descrip-
tion of the approach, or a detailed experimental evaluation,
both of which are included in this full-length paper.

Detection of Memory Errors and/or Exploits [5, 7, 8]
describe techniques for preventing stack-smashing attacks.
Techniques such as address-space randomization [1, 3, 4]
provide broader protection from memory error exploits. In-
struction set randomization [2, 14] (and OS features such as
non-executable data segments) prevents foreign code injec-
tion attacks. Techniques such as [12, 13, 21, 27, 39] provide
comprehensive detection of all memory errors, whether or
not they are used in an attack . With all these approaches,
a victim process is terminated when a memory error (or its
exploitation) is detected, thereby leading to loss of server
availability during periods of intense attacks.

Approaches for Recovering from Memory Errors Auto-
matic patch generation (APG) [29] proposed an interesting
approach that uses source-code instrumentation to diagnose
a memory error, and automatically generate a patch to cor-
rect it. STEM [30] improved on APG by eliminating the
need for source code access, and instead using machine-
code emulation. Both approach force an error return on the
current function when an attack is detected. The difficulty
with this strategy is that the application may be unprepared
to handle the error-code, and as a result, may not recover. In
contrast, our approach forces error returns for input func-
tions, where server applications expect and handle errors.
Therefore, recovery is more reliable in our approach.

Failure-oblivious computing [26] uses CRED [27] to de-
tect all memory errors at runtime. When an out-of-bounds
write is detected, the corresponding data is stored in a sep-
arate section of memory. A subsequent out-of-bound read
will return this data. This approach makes attacks harm-

less, and allows for recovery as well. The main drawback
of this approach is that it typically slows down programs by
a factor of 2 or more.

DIRA [32] uses a source-code transformation for run-
time logging of memory updates. When an attack is de-
tected, all the updates made since the last network input op-
eration are undone, and the process restarted at this point.
However, their approach limits logging to global variable
updates for performance reasons. This limits light-weight
recovery, requiring a total application restart in some cases.

Xu et al. [38] developed an approach for diagnosing
memory error exploits and signature generation. Their ap-
proach uses a post-crash forensic analysis of address-space
randomized programs. Their signature consists of the first
three bytes of jump address included in a buffer overflow
attack. To minimize false positives, they suggest the use of
program contexts (specifically, current context), an idea we
had described in [18].

As compared to the above approaches, ARBOR has the
benefit that it generates vulnerability-oriented signatures, as
opposed to exploit-specific signatures that can miss attack
variants that exploit the same vulnerability. Moreover, it is
fully automatic, works on black-box COTS software, has
low runtime overheads, and recovers quickly and reliably
from attacks.

COVERS [19] presents a technique that complements
ARBOR — it can generate robust signatures that can be
deployed in the network, and can deal with message sub-
field overflows in a more robust fashion. However, this is
achieved at the cost of requiring manual effort in specifying
message formats, whereas ARBOR is fully automatic.

Network-level Detection of Buffer Overflows Butter-
cup [24] and [11] detect buffer-overflow attacks in net-
work packets by recognizing jump addresses within net-
work packets. Buttercup requires these addresses to be ex-
ternally specified, while [11] detects them automatically,
by leveraging the nature of stack-smashing attacks and the
memory layout used in Linux. [34] suggested a more ro-
bust approach for detecting buffer overflow attacks using
abstract execution of the attack payload. PayL [37] devel-
ops a new technique for anomaly detection on packet pay-
loads that can detect a wider range of attacks. However,
the technique has a higher false positive rate than the above
techniques. Shield [36] uses manually generated signatures
to filter out buffer overflows as well as other attacks.

Network Signature Generation Earlybird [31] and Au-
tograph [15], two of the earliest approaches for worm de-
tection, relied on characteristics of worms to classify net-
work packets as benign or attack-bearing. Honeycomb [16]
avoids the classification step by using a honeynet, which
only receives attack traffic. The signatures generated by all
three techniques rely on the longest byte sequence that re-
peats across all attack packets. A polymorphic (and meta-

morphic) attack can change its code as it propagates, which
can cause these signature generation techniques to fail. To
mitigate this problem, Polygraph [22] can generate multiple
(shorter) byte-sequences as signatures. Nemean [40] im-
proves on the above approaches by incorporating protocol
semantics into the signature generation algorithm. By do-
ing so, it is able to handle a broader class of attacks than
previous signature generation approaches that were primar-
ily focused on worms.

The above techniques operate at the network level, while
our approach works at the host level. This means that our
approach is able to exploit the internal state of server pro-
cesses (e.g., current or historical context) to generate more
robust signatures. More importantly, our approach is able
to generate a general vulnerability-oriented signature from
a single attack sample, whereas previous approaches re-
quire multiple attack samples to synthesize a generalized
signature. Indeed, the generality of the signature provided
by previous approaches is largely determined by the attack
samples available.

Hybrid Approaches for Signature Generation The
HACQIT project [25] uses software diversity for attack de-
tection. A rule-based algorithm is then used to learn char-
acteristics of suspect inputs. The approach generates an ef-
fective signature for Code Red, but its effectiveness for a
broader class of attacks was not evaluated.

TaintCheck [23] and Vigilante [6] track the flow of infor-
mation from network inputs to data used in attacks, e.g., a
jump address used in a code-injection attack. The signatures
generated by TaintCheck are somewhat simplistic — it uses
the 3 leading bytes of a jump address as a signature, which
can lead to false positives, especially with binary protocols.
Vigilante’s signatures consist of machine code derived from
the victim program’s code. These signatures do not pro-
duce false positives, but can be large and overly specific.
They suggested some heuristics for generalizing them, but
these heuristics were not well evaluated.

FLIPS [20] uses PayL [37] to detect anomalous inputs.
If the anomaly is confirmed by an accurate attack detector
(which, in their implementation, was based on instruction
set randomization), a content-based signature is generated
using techniques similar to network signature generation
techniques.

An advantage of ARBOR is our use of a relatively sim-
ple infrastructure that is based on library interposition. In
contrast, TaintCheck, Vigilante and FLIPS rely on relatively
complex infrastructures for runtime instruction emulation
or binary transformations.

5 Summary
Our approach solves two key problems encountered in au-
tomatic filtering of attacks. First, it automatically discov-
ers the signatures that distinguish attack-bearing data from

normal data. These signatures are synthesized by carefully
observing both the input data and the internal behavior of a
protected process. Second, it automatically invokes the nec-
essary recovery actions. Instead of simply discarding data,
a transient network error is simulated so that the applica-
tion’s own recovery code can be utilized to safely recover
from a foiled attack attempt. Our approach can work with
COTS software without access to source code.

ARBOR was effective in generating a signature for 10
of the 11 “real world” attacks used in our experiments,
thus demonstrating its effectiveness in blocking most buffer
overflow attacks. Moreover, false positives were not ob-
served in these experiments.

Although ARBOR is currently a stand-alone system, it
can be extended with the ability to communicate with other
systems, allowing it to send generated attack signatures and
attack payloads to system administrators and other systems
protected by our approach, so that these systems can block
out recurrences of the same attack without ever having wit-
nessed even a single attack instance.

We believe that the central idea of using program context
information to refine input classification has applicability
beyond the class of buffer overflow attacks, and is a topic of
our ongoing research.

References
[1] The PaX team. http://pax.grsecurity.net.

[2] E. Barrantes et al. Randomized instruction set emulation to disrupt
binary code injection attacks. In CCS, 2003.

[3] S. Bhatkar, D. DuVarney, and R. Sekar. Address obfuscation: An ef-
ficient approach to combat a broad range of memory error exploits.
In USENIX Security, 2003.

[4] S. Bhatkar, R. Sekar, and D. DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In USENIX
Security, 2005.

[5] T. Chiueh and F. Hsu. RAD: A compile-time solution to buffer
overflow attacks. In ICDCS, 2001.

[6] M. Costa et al. Vigilante: End-to-end containment of Internet
worms. In SOSP, 2005.

[7] C. Cowan et al. StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In USENIX Security, 1998.

[8] H. Etoh and K. Yoda. Protecting from stack-smashing
attacks. Published on World-Wide Web at URL
http://www.trl.ibm.com/projects/security/ssp, 2000.

[9] H. Feng et al. Anomaly detection using call stack information. In
IEEE S&P, 2003.

[10] J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive intrusion
detection. In NDSS, 2004.

[11] F. Hsu and T. Chiueh. CTCP: A centralized TCP/IP architecture for
networking security. In ACSAC, 2004.

[12] T. Jim et al. Cyclone: a safe dialect of C. In USENIX Annual
Technical Conference, 2002.

[13] R. Jones and P. Kelly. Backwards-compatible bounds checking for
arrays and pointers in C programs. In Intl. Workshop on Automated
Debugging, 1997.

[14] G. Kc, A. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In ACM CCS, 2003.

[15] H. Kim and B. Karp. Autograph: Toward automated, distributed
worm signature detection. In USENIX Security, 2004.

[16] C. Kreibich and J. Crowcroft. Honeycomb - creating intrusion de-
tection signatures using honeypots. In HotNets-II, 2003.

[17] Z. Liang, R. Sekar, and D. DuVarney. Immunizing servers from
buffer-overflow attacks. Presentation in ARCS Workshop, 2004.

[18] Z. Liang, R. Sekar, and D. DuVarney. Automatic synthesis of filters
to discard buffer overflow attacks: A step towards realizing self-
healing systems. In USENIX Annual Technical Conference, (Short
Paper) 2005.

[19] Z. Liang and R. Sekar. Fast and automated generation of attack
signatures: A basis for building self-protecting servers. In CCS,
2005.

[20] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo. FLIPS: Hybrid
adaptive intrusion prevention. In RAID, 2005.

[21] G. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In POPL, 2002.

[22] J. Newsome et al. Polygraph: Automatically generating signatures
for polymorphic worms. In IEEE S&P, 2005.

[23] J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In NDSS, 2005.

[24] A. Pasupulati et al. Buttercup: On network-based detection of poly-
morphic buffer overflow vulnerabilities. In IEEE/IFIP Network Op-
eration and Management Symposium, 2004.

[25] J. Reynolds et al. On-line intrusion detection and attack prevention
using diversity, generate-and-test, and generalization. Hawaii Intl.
Conference on System Sciences, 2003.

[26] M. Rinard et al. A dynamic technique for eliminating buffer over-
flow vulnerabilities (and other memory errors). In ACSAC, 2004.

[27] O. Ruwase and M. Lam. A practical dynamic buffer overflow de-
tector. In NDSS, 2004.

[28] R. Sekar et al. A fast automaton-based method for detecting anoma-
lous program behaviors. In IEEE S&P, 2001.

[29] S. Sidiroglou and A. Keromytis. A network worm vaccine architec-
ture. In WETICE, 2003.

[30] S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis. Building a
reactive immune system for software services. In USENIX Annual
Technical Conference, 2005.

[31] S. Singh et al. Automated worm fingerprinting. In OSDI, 2004.

[32] A. Smirnov and T. Chiueh. DIRA: Automatic detection, identifica-
tion and repair of control-hijacking attacks. In NDSS, 2005.

[33] Y. Tang and S. Chen. Defending against Internet worms: A
signature-based approach. In INFOCOM, 2005.

[34] T. Toth and C. Kruegel. Accurate buffer overflow detection via ab-
stract payload execution. In RAID, 2002.

[35] D. Wagner and D. Dean. Intrusion detection via static analysis. In
IEEE S&P, 2001.

[36] H. Wang et al. Shield: Vulnerability-driven network filters for pre-
venting known vulnerability exploits. In SIGCOMM, 2004.

[37] K. Wang and S. Stolfo. Anomalous payload-based network intru-
sion detection. In RAID, 2004.

[38] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automatic diag-
nosis and response to memory corruption vulnerabilities. In CCS,
2005.

[39] W. Xu, D. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of C programs.
In FSE, 2004.

[40] V. Yegneswaran, J. Giffin, P. Barford, and S. Jha. An architecture for
generating semantics-aware signatures. In USENIX Security, 2005.

