Some shortcomings of Bernstein's algorithm

* Shortcoming 1. Bernstein's algorithm does not guarantee reconstructibility (or losslessness).

Example 3. Given R (Course\#, Preq\#, Cname, Cdesc) with

$$
\begin{aligned}
F= & \{\text { Course\#, Preq\# } \rightarrow \text { Cname } \\
& \text { Course } \# \text { Cname, Cdesc }\}
\end{aligned}
$$

Step $1 \quad G=\{$ Course\# \rightarrow Cname, Cdesc $\}$
Step $2 \quad \mathrm{H}=\mathrm{G}$
Step $6 \quad \mathrm{R}_{1}$ (Course\#, Cname, Cdesc)
Note: We lose information about Preq\#.
Q: How to resolve this problem?
In fact we have Course \longrightarrow Preq\#
(Note. It is a multi-valued dependency, to be discussed later. Bernstein's algorithm does not handle MVDs).
We need another relation:
R2 (Course\#, Preq\#)

Shortcoming 2. Bernstein's algorithm does not find all the keys.

Example 4. Given R ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) with $\mathrm{F}=\{\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{C} \rightarrow \mathrm{B}\}$ Apply the algorithm, we will get

$$
\mathrm{R}_{1}(\underline{\mathrm{~A}, \mathrm{~B}}, \mathrm{C}, \mathrm{D})
$$

$$
\mathrm{R}_{2}(\underline{\mathrm{C}}, \mathrm{~B})
$$

In fact, $\{A, C\}$ is also a key of R_{1}. This is called an implicit key.

Note: R_{1} is not in BCNF.

Note: To find all the keys of a relation is NP-complete.
Q: What is the meaning of NP-complete? A term from complexity theory.

Shortcoming 3. Bernstein's algorithm does not remove all the superfluous attributes (i.e. redundant attributes).
Example 5. Given $\mathrm{F}=\{\mathrm{AD} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{AB} \rightarrow \mathrm{E}$, $\mathrm{AC} \rightarrow \mathrm{F}\}$
Step $1 \quad G=F$
Step $2 \quad H=G=F$

Step $6 \quad R_{1}(\underbrace{A, B}, C, \quad$ D, E, F)
$\mathrm{R}_{2}(\mathrm{~B}, \mathrm{C})$
$\mathrm{R}_{3}(\underline{\mathrm{C}}, \mathrm{D})$

* Note:

C is superfluous in R1, but R1 is in 3NF. However, D is not superfluous. Remove C from R_{1} and get

Note: Ling \& Tompa \& Kameda method removes all superfluous attributes.

Shortcoming 4. The set of relations produced by the algorithm depends on the non-redundant covering found.
Example 6. Given $\mathbb{F}=\{\mathrm{AD} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{AB} \rightarrow \mathbf{E}$,

$$
\mathrm{AC} \rightarrow \mathbf{F}, \mathrm{AD} \rightarrow \mathbf{F}, \mathrm{AC} \rightarrow \mathbf{E}\}
$$

Case 1

Case 2
If $\mathrm{H}=\{\mathrm{AD} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{AB} \rightarrow \mathrm{E}, \mathrm{AC} \rightarrow \mathrm{F}\}$ Then the set of relation is

$\mathrm{R}_{2}(\mathrm{~B}, \mathrm{C})$
$\mathrm{R}_{3}(\underline{\mathrm{C}}, \mathrm{D})$
If $\mathrm{H}=\{\mathrm{AD} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{AB} \rightarrow \mathrm{E}, \mathrm{AD} \rightarrow \mathrm{F}\}$
Then the set of relations is
$R^{\prime}{ }_{1}(\underbrace{A, B}, D, E, F)$
$\mathrm{R}_{2}(\mathrm{~B}, \mathrm{C})$
$\mathrm{R}_{3}(\underline{\mathrm{C}, \mathrm{D})}$

Case 3 If $\mathrm{H}=\{\mathrm{AD} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{AC} \rightarrow \mathrm{F}, \mathrm{AC} \rightarrow \mathrm{E}\}$ Then we have

Note that AB is a key but it is not found by the algorithm.
Case 4 If $H=\{\mathrm{AD} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{AC} \rightarrow \mathrm{E}, \mathrm{AD} \rightarrow \mathrm{F}\}$
Then we have
$R^{\prime \prime \prime}{ }_{1}(\underbrace{A, C}, D, B, E, F)$
$R_{2}(\underline{B}, C)$
$R_{3}(\underline{C}, D)$
Note that AB is a key but it is not found by the algorithm.
Note that Case 2 gives the best solution. What is the meaning?
*hortcoming 5. A BCNF relation set may contain superfluous attributes, i.e. redundant attributes which can be removed.

Example: Given a set of relations

```
R1 (Model#, Serial#, Price, Color)
R2 (Model#, Name)
R
R4
```

Note: All relations are in BCNF, but R_{1} contains a superfluous attribute Price, i.e. Price can be removed from R_{1} without losing any information. How to prove it?

* Note: 3NF and BCNF are defined for individual relations but not the whole relational schema.

Ref: Ling, Tompa, \& Kameda method takes the whole relational schema into consideration and removes superfluous attributes.

Note. Some relations generated by Step 6 may have more than one key. We need to choose their preliminary key. Why and how to choose?

Q: Any impact on other relations after choosing primary key for some relation which has more than one key?
E.g. A database schema generated by Bernstein's Algorithm has the below relations:

Student (NRIC, S\#, Name, DOB)
Course (C\#, Title, Desc)
Take (NRIC, C\#, Grade)

Note that Student relation has two keys, i.e. NRIC and S\#. We choose S\# as its preliminary key, and we also need to change NRIC in Take relation to S\# and the relation Take becomes

Take (S\#, C\#, Grade)
Q: Why?

