IMS (Information Management System) Data Model (Hierarchical Data Model) from C J Date's book (3rd Ed. 1981)

Fig. 16.1 PDBR type for the education database (schema)

Fig 16.2 Sample PDBR occurrence for the education database (database instance)

1

Many-to-many Relationships using Logical parent pointers

Fig 20.1 Required record structure for the survey database

Fig 20.2 Record structure of the bird database

Fig 20.3 Area and BIRD POBS.

SURVEY LDB

Fig 20.4 The SURVEY LDB

Fig 20.5 Sample PDBS (AREA and BIRD)

Fig 20.6 Corresponding LDB (SURVEY)

Physical pairing / virtual pairing

Fig 20.11 AREA and BIRD PDBS (with physical pairing)

Fig 20.14 AREA and BIRD PDBs (with virtual pairing)

Recursive Relationships

EDUC PDB

Fig 20.20 The EDUC (with virtual paring) conventional representation

EDUC PDB

Fig 20.21 The EDUC PDB (with virtual pairing)

EDCP LDB

		PRE	REQ					,
		COURSE# TI		ITLE D		SCRIPTION		
COURSE								
	COURS	SE#	COURSE#		TITLE		DESCRIPTION	
_			A					

Fig 20.22 The EDCP and EDPC LDBs.

Converting an ER diagram to a hierarchical database mdoel

<u>Rule 1.</u> For each regular entity type A.

- All single attribute of A form a segment, all 1:1 attributes are unique in the segment, the identifier of A becomes the unique sequential field of the segment.
- Each multivalued attribute becomes a dependent segment of the segment A
- 1: m attributes have extra constraints which can't be specified in hierarchical model, e.g., A3 is unique.

<u>Rule 2</u> EX or ID

Note: if A1 and B# form the identifier of the weak entity type B, then A1 is the unique sequential field of segments.

- **<u>Rule 3</u>** Only segments which represent regular entity types of the ER diagram can become the root segment of a hierarchical database.
- **<u>Rule 4</u>** For each 1: m binary relationship type.

Note: B# is the unique sequential field in B. r_1 is also unique in the segment B. In fact, B# and r_1 are unique in the database, these are constraints.

<u>Rule 5</u> For each n : m binary relationship type, there are few ways to translate it.

<u>Rule 6</u> For each n-ary (n > 2) relationship type, there are many ways to translate it.

Question: How about EMPLOYEE and MANAGER relationship?

CP

<u>Rule 8</u> Other special relationships, e.g., ISA, UNION, INTERSECT, etc ?