3. Functional Dependencies

Stéphane Bressan

January 22, 2015

Functional Dependencies

Closure Keys

Armstrong Axioms

Minimal Cover

This lecture is based on material by Professor Ling Tok Wang.

CS 4221: Database Design

The Relational Model

https://www.comp.nus.edu.sg/

~lingtw/cs4221/rm.pdf

Functional Dependencies Keys Armstrong Axioms Minimal Cover

Content

- Motivation
- Readings
- **Functional Dependencies**
 - Dependencies
 - Functional Dependencies

Closure

Keys

- Full Dependence
- Superkeys, Candidate Keys and Primary keys

Armstrong Axioms

- Armstrong Axioms
- Other Axioms

- Minimal Cover
- Minimal Cover

Introduction •000000	Functional Dependencies	Closure 0000000000	Keys 000000000000	Armstrong Axioms	Minimal Cover
Motivation					

"[...] one can say that the relational model is almost devoid of semantics. [...] One approach to remedy this deficiency is to devise means to specify the missing semantics. These semantic specifications are called semantic or integrity constraints [...]. Of particular interest are the constraints called data dependencies or depencies for short." Fundementals of Dependency Theory [TTC 1987], by Moshe Y. Vardi

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Motivation					

Author				
First_name	Last_name			
Peter	Chen			
Jeffrey	Ullman			
David	Maier			
Serge	Abiteboul			
Albert	Maier			
Edgar	Codd			

 $\{First_name\} \rightarrow \{Last_name\}$

This example is not about semantics!?

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Motivation					

Author				
First_name	Last_name			
Peter	Chen			
Jeffrey	Ullman			
David	Maier			
Serge	Abiteboul			
Albert	Maier			
Peter	Buneman			
Edgar	Codd			

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Motivation					

Author					
Email	First_name	Last_name			
pchen@lsu.edu	Peter	Chen			
ullman@gmail.com	Jeffrey	Ullman			
maier@pdx.edu	David	Maier			
serge.abiteboul@irnria.fr	Serge	Abiteboul			
amaier@de.ibm.com	Albert	Maier			

 $\{\textit{Email}\} \rightarrow \{\textit{Fist_name}, \textit{Last_name}\}$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Motivation					

```
{Email} \rightarrow {Fist\_name, Last\_name}
```

```
CHECK(NOT EXISTS
(SELECT *
FROM Authors A1, Authors A2
WHERE A1.Email=A2.Email
AND (A1.Fisrt_name <> A2. First_name
OR A1.Last name <> A2. Last name)
```

CREATE TABLE Author

```
...
Email ... PRIMARY KEY,
...)
```

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Motivation					

Author					
Email	First_name	Last_name			
pchen@lsu.edu	Peter	Chen			
ullman@gmail.com	Jeffrey	Ullman			
maier@pdx.edu	David	Maier			
serge.abiteboul@irnria.fr	Serge	Abiteboul			
amaier@de.ibm.com	Albert	Maier			
zc@fudan.edu.cn	Zhang	Chen			
zhang.chen@ibm.com	Zhang	Chen			
	Edgar	Codd			

"In dblp, [...] Different authors are assigned a unique key and their names are distinguished in our data stock by a unique numerical suffix to their name." http://www.informatik.uni-trier.de/~ley

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Readings					

Readings

 Abiteboul S., Hull R. and Vianu V. "Foundations of Databases", Chapter 8

(http://webdam.inria.fr/Alice/pdfs/all.pdf).

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	0000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Dependencies					

An instance r of a relation schema R satisfies a dependency σ is noted as follows.

$$r \models \sigma$$

Definition

An instance r of a relation schema R satisfies a set of dependencies Σ if and only if it satisfies all the dependencies in the set.

$$(r \models \Sigma) \Leftrightarrow (\forall \sigma \in \Sigma \ (r \models \sigma))$$

Definition

An instance r of a relation schema R is a valid instance of R with Σ if and only if it satisfies Σ .

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	●●●●●●●●●	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

An instance r of a relation schema R satisfies the functional dependency $\sigma: X \to Y$, X functionally determines Y or Y is functionally dependent on X, with $X \subset R$ and $Y \subset R$, if and only if tuples of r agree on their X-values, then they agree on their Y-values.

$$(r \models \sigma)$$
 \Leftrightarrow
 $(\forall t_1 \in r \ \forall t_2 \in r \ (t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]))$

each X-value in r has associated with exactly one Y-value in r

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	0000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

Author					
First_name	Last_name				
Peter	Chen				
Jeffrey	Ullman				
David	Maier				
Serge	Abiteboul				
Albert	Maier				
Edgar	Codd				

 $\{First_name\} \rightarrow \{Last_name\}$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	0000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

When we talk about R with Σ , we talk about all the valid instances of R with respect to the functional dependencies in R.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	0000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Functional Dep					

A set of attributes Y of a relation schema R is said to be functionally dependent on a set of attributes X of R if at any time any valid instance r of R satisfies the functional dependency σ .

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	00000€000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

What is the meaning of $\emptyset \to \{A\}$?

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	0000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

A functional dependency $X \to Y$ is trivial if and only if $Y \subset X$.

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

$$\begin{array}{l} \{A\} \rightarrow \{A\} \text{ is trivial.} \\ \{A,B\} \rightarrow \{A\} \text{ is trivial.} \\ \{A,B\} \rightarrow \emptyset \text{ is trivial.} \end{array}$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

A functional dependency $X \to Y$ is non-trivial if and only if $Y \not\subset X$.

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

$$\begin{split} & \{A\} \to \{B\} \text{ is non-trivial.} \\ & \{A,C\} \to \{B,C\} \text{ is non-trivial.} \end{split}$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	000000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

A functional dependency $X \to Y$ is completely non-trivial if and only if $Y \cap X = \emptyset$.

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

$$\begin{split} & \{A\} \to \{B\} \text{ is completely non-trivial.} \\ & \{A,C\} \to \{B,C\} \text{ is not completely non-trivial.} \end{split}$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	000000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Functional Dependencies					

Let Σ be a set of functional dependencies of a relation schema R. The closure of Σ , noted Σ^+ , is the set of all functional dependencies logically entailed by the functional dependencies in Σ .

$$\Sigma^{+} = \{ \sigma \mid \forall r \text{ of } R ((\forall \gamma \in \Sigma (r \models \gamma)) \Rightarrow r \models \sigma \}$$

$$\Sigma^+ = \{ \sigma \mid (R \text{ with } \Sigma) \models \sigma \}$$

$$\Sigma^+ = \{X \to Y \mid X \subset R \land Y \subset R \land \Sigma \models X \to Y\}$$

 $\Sigma^+ =$ all the functional dependencies holding on R with $\Sigma!$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

Example

$$R = \{A, B, C, D\}$$

$$\Sigma = \{\{A\} \rightarrow \{B\}, \{C\} \rightarrow \{A\}\}$$

$$\begin{split} \Sigma^+ &= \{\{A\} \to \{B\}, \{C\} \to \{A\}, \{A\} \to \{A\}, \{D\} \to \\ \{D\}, \{A, B\} \to \{A\}, \{A, C\} \to \{B, C\}, \{A, D\} \to \{B\}, \{C\} \to \\ \{B\}, \cdots \} \end{split}$$

Find

- a trival functional dependency in Σ^+ .
- a non-trival but not completely non-trivial functional dependency in $\Sigma^+.$
- a completely non-trivial functional dependency in Σ^+ .

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover	
0000000	000000000●	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Functional Dependencies						

Example

$$R = \{A, B, C, D\}$$

$$\Sigma = \{\{A\} \rightarrow \{B\}, \{C\} \rightarrow \{A\}\}$$

$$\{A, D\} \rightarrow \{B, C\} \in \Sigma^+$$
?

Armed with only the definition of functional dependency, the problems of computing Σ^+ and of testing membership to Σ^+ are daunting tasks.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Let Σ be a set of functional dependencies of a relation schema R. The closure of a set of attributes $S \subset R$, noted S^+ , is the following set of all attributes that are functionally dependent on S.

$$\{a \in R \mid \exists (S \rightarrow \{a\}) \in \Sigma^+\}$$

Example

$$R = \{A, B, C, D\}$$

$$\Sigma = \{\{A\} \rightarrow \{B\}, \{C\} \rightarrow \{A\}\}$$

$$\{C\}^+ = \{A, B, C\} \\ \{A, D\}^+ = \{A, B, D\} \\ \{C, D\}^+ = \{A, B, C, D\}$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

```
input : S, \Sigma
output: S^+
begin
     \Omega := \Sigma; // \Omega stands for 'unused''
     \Gamma := S : // \Gamma stands for 'closure''
     while X \to Y \in \Omega and X \in \Gamma do
       \left| \begin{array}{c} \Omega := \Omega - \{ X \to Y \}; \\ \Gamma := \Gamma \cup Y; \end{array} \right| 
     end
     return \Gamma:
end
```

Algorithm 1: Attribute Closure Algorithm

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Example

$$R = \{A, B, C, D\}$$

$$\Sigma = \{\{A\} \rightarrow \{B\}, \{C\} \rightarrow \{A\}\}$$

Compute $\{C\}^+$ using Algorithm 1.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Example

$$R = \{A, B, C, D\}$$

$$\Sigma = \{\{A\} \rightarrow \{B\}, \{C\} \rightarrow \{A\}\}$$

• return $\Gamma = \{C, A, B\}$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Theorem

Algorithm 1 computes S^+ for R with Σ .

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Proof.

 We prove that Algorithm 1 is sound We will do that formally later when we are equipped with adequate tools, but it is easy to convince oneself that each step of the algorithm is logically sound. Namely, Γ ⊂ S⁺.
 We prove that Algorithm 1 is complete. Namely, we prove that

- $S^+ \subset \Gamma$. Namely, if $A \in R \Gamma$, then (R with Σ) $\not\models \Gamma \to \{A\}$.
 - We construct an instance r of R with two t-uples such that r ⊨ Σ and r ⊭ Γ → {A} for A ∈ R − Γ. This is always possible because by Algorithm 1 if X → Y ∈ Σ, if X ∈ Γ, then Y ∈ Γ.

Q.E.D

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	00000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Example

$$\begin{split} & R = \{A, B, C, D\} \\ & \Sigma = \{\{A\} \rightarrow \{B\}, \{C\} \rightarrow \{A\}\} \end{split}$$

$$\{C\}^+ = \{A, B, C\}$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	000000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Example

$$R = \{A, B, C, D\}$$

$$\Sigma = \{\{A\} \rightarrow \{B\}, \{C\} \rightarrow \{A\}\}$$

The instance satisfies Σ but does not satisfy $\{A, B, C\} \rightarrow \{D\}$. To show that a functional dependency does not hold, it suffices to show a valid instance that does not satisfy the functional dependency.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Let Σ_1 and Σ_2 be sets of functional dependencies on a relation schema R. Σ_1 and Σ_2 are equivalent, $\Sigma_1 \equiv \Sigma_2$, if and only if they have the same closure.

$$\Sigma_1^+ = \Sigma_2^+$$

Example

$$\begin{split} \Sigma_1 &= \{\{A\} \rightarrow \{B,C\},\{B\} \rightarrow \{A\}\}\\ \Sigma_2 &= \{\{A\} \rightarrow \{B\},\{B\} \rightarrow \{A,C\},\{A\} \rightarrow \{A\}\} \end{split}$$

 Σ_1 and Σ_2 are equivalent

$$\Sigma_1\equiv\Sigma_2$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Closure					

Theorem

Let Σ_1 and Σ_2 be sets of functional dependencies on a relation schema R. Σ_1 and Σ_2 are equivalent if and only if each functional dependency in one are logical consequence of those in the other and vice versa.

$$(\forall \sigma \in \Sigma_1(\sigma \in \Sigma_2)) \land (\forall \sigma \in \Sigma_2(\sigma \in \Sigma_1))$$

Example

$$\begin{split} \Sigma_1 &= \{\{A\} \to \{B\}, \{B\} \to \{C\}, \{C\} \to \{A\}\}\\ \Sigma_2 &= \{\{A\} \to \{C\}, \{C\} \to \{B\}, \{B\} \to \{A\}\} \end{split}$$

 Σ_1 and Σ_2 are equivalent

$$\Sigma_1\equiv\Sigma_2$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	0000 00000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Full Dependen	ce				

Let Σ be a set of functional dependencies on a relation schema R. Let $X \to Y \in \Sigma^+$. The functional dependency $X \to Y$ is a full dependency if and only if it is non-trivial and there exists no proper subset X' of X ($X' \subset X$ and $X' \neq X$) such that $X' \to Y \in \Sigma^+$. We say that Y is fully dependent on X.

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

 $\{B\}$ is fully dependent on $\{A\}$. $\{A\} \rightarrow \{B\}$ is a full dependency. $\{B, C\}$ is not fully dependent on $\{A, C\}$. $\{A, C\} \rightarrow \{B, C\}$ is not a full dependency.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Full Dependen	ce				

Let Σ be a set of functional dependencies on a relation schema R. Two sets of attributes $S_1 \subset R$ and $S_2 \subset R$ are functionally equivalent if and only if they are functionally dependent on each other.

$$S_1 o S_2 \in \Sigma^+ \wedge S_2 o S_1 \in \Sigma^+$$

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

 $\{A\}$ and $\{B\}$ are functionally equivalent. $\{A, C\}$ and $\{B, C\}$ are functionally equivalent.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover		
0000000	00000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
Full Dependence							

Let Σ be a set of functional dependencies on a relation schema R. Two sets of attributes $S_1 \subset R$ and $S_2 \subset R$ are properly functionally equivalent if and only if they are functionally equivalent and there exists no proper subset $S'_1 \subset S_1$, $S'_1 \neq S_1$ or $S'_2 \subset S_2$, $S'_2 \neq S_2$, such that:

$$S_1' o S_2 \in \Sigma^+ \lor S_2' o S_1 \in \Sigma^+$$

Example

 $R = \{A, B, C\}$ $\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$

 $\{A\}$ and $\{B\}$ are properly functionally equivalent. $\{A, C\}$ and $\{B, C\}$ are not properly functionally equivalent.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover		
0000000	00000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
Full Dependence							

Let Σ be a set of functional dependencies on a relation schema R. An attribute A is transitively dependent on a set S_1 of attributes if and only if there exists a set of attributes S_2 such that :

$$\{A\} \notin S_1 \land \{A\} \notin S_2 \land S_2 \to S_1 \notin \Sigma^+$$
$$S_1 \to S_2 \in \Sigma^+ \land S_2 \to \{A\} \in \Sigma^+$$

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\}$$

$\{C\}$ is transitively dependent on A.
Summerlinum Cou	didata Kaus and Drimany Iv				
0000000	00000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover

Definition

Let Σ be a set of functional dependencies on a relation schema R. Let $S \to R \in \Sigma^+$. S is a superkey of R with Σ .

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

$$\begin{split} & \{A,B\} \to \{A,B,C\}. \\ & \{A,B\} \text{ is a superkey of } R \text{ with } \Sigma. \end{split}$$

Superkeys, Candidate Keys and Primary keys

Definition

Let Σ be a set of functional dependencies on a relation schema R. Let S be a superkey of R with Σ . S is a candidate key (sometimes called key) of R with Σ if and only if there no proper subset S' of S that is also a superkey.

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

$$\begin{split} & \{A,B\} \to \{A,B,C\}. \\ & \{A,B\} \text{ is not a candidate key of } R \text{ with } \Sigma \\ & \{A\} \to \{A,B,C\}. \\ & \{A\} \text{ is a candidate key of } R \text{ with } \Sigma. \end{split}$$

Definition

Let Σ be a set of functional dependencies on a relation schema R. Let S be a candidate key of R with Σ . S is a primary key if the designer decides so.

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

 $\{A\}$ is a candidate key of R with Σ . $\{B\}$ is a candidate key of R with Σ . The designer decides that $\{A\}$ is a primary key. Functional Dependencies Kevs Armstrong Axioms Minimal Cover 000000000000

Superkeys, Candidate Keys and Primary keys

Definition

Let Σ be a set of functional dependencies on a relation schema R. A prime attribute is an attribute that is appears in some candidate key of R with Σ (otherwise it is called a non-prime attribute).

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

A is a prime attribute of R with Σ . B is a prime attribute of R with Σ . C is a non-prime attribute of R with Σ .

Theorem

Let Σ be a set of functional dependencies on a relation schema R. The number of candidate keys can be factorial in the size of Σ and exponential in the size of R. [S. Osborn, "Normal Forms for Relational Data Bases", PhD thesis of the University of Waterloo, 1977].

Theorem

Let Σ be a set of functional dependencies on a relation schema R. The problem of deciding whether an attribute is prime or not is NP-Complete. [S. Osborn and L. Lucchesi, "Candidate Keys for relations", Journal of Computer and System Sciences 17, 270-279, 1978].

```
Introduction Functional Dependencies Closure Keys Armstrong Axioms Minimal Cover
```

```
 \begin{split} & \{\{\mathsf{STUDENT}\#\} \rightarrow \{\mathsf{S}\text{-}\mathsf{NAME}\}, \\ & \{\mathsf{C}\mathsf{OURSE}\#\} \rightarrow \{\mathsf{C}\text{-}\mathsf{DESCRIPTION}\}, \\ & \{\mathsf{STUDENT}\#, \mathsf{C}\mathsf{OURSE}\#\} \rightarrow \{\mathsf{MARK}\}\} \end{split}
```

Find Σ⁺.

 $\Sigma =$

- Find {STUDENT#, MARK}⁺ with Σ .
- Find the candidate keys of R with Σ .
- Find the prime attributes of R with Σ .

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Superkeys, Car	ndidate Keys and Primary ke	ys			

Σ^+

```
 \begin{split} & \{\{\texttt{STUDENT\#},\texttt{COURSE\#}\} \rightarrow \{\texttt{S-NAME}\}, \\ & \{\texttt{STUDENT\#},\texttt{COURSE\#}\} \rightarrow \{\texttt{C-DESCRIPTION}\}, \\ & \{\texttt{STUDENT\#},\texttt{S-NAME},\texttt{COURSE\#}\} \rightarrow \{\texttt{MARK}\}, \\ & \cdots \} \end{split}
```

{STUDENT#, MARK}⁺

{STUDENT#, S-NAME, MARK}

Candidate Keys

Only one: {STUDENT#, COURSE#}

Prime Attributes

 $\mathsf{STUDENT}\#, \mathsf{COURSE}\#$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000 000000000000000000000000000000	000000000000000000000000000000000000000
Armstrong Axi	oms				

Definition

Let R be a set of attributes. The following inference rules are the Armstrong Axioms.

- Reflexivity (Inclusion, *Projectivity*) $\forall X \subset R \ \forall Y \subset R$ $((Y \subset X) \Rightarrow (X \to Y)).$
- Augmentation $\forall X \subset R \ \forall Y \subset R \ \forall Z \subset R$ $((X \to Y) \Rightarrow (X \cup Z \to Y \cup Z)).$
- Transitivity

 $\forall X \subset R \ \forall Y \subset R \ \forall Z \subset R \\ ((X \to Y \land Y \to Z) \Rightarrow (X \to Z)).$

Technically, the Armstrong Axioms are not axioms but inference rules.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Armstrong Axi	oms				

The Reflexivity inference rule is sound (correct, valid).

Theorem

The Augmentation inference rule is sound.

Theorem

The Transitivity inference rule is sound.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover			
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000			
Armstrong Axioms								

Proof of Soundness for Transitivity.

- Let Σ be a set of functional dependencies on a relation schema R. Let X → Y and Y → Z be in Σ.
- **2** We know that for all valid instance r of R with Σ $(\forall t_1 \in r \ \forall t_2 \in r \ (t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]))$ by definition of a functional dependency.
- We know that for all valid instance r of R with Σ $(\forall t_1 \in r \ \forall t_2 \in r \ (t_1[Y] = t_2[Y] \Rightarrow t_1[Z] = t_2[Z]))$ by definition of a functional dependency.
- Therefore for all valid instance r of R with Σ (∀t₁ ∈ r ∀t₂ ∈ r (t₁[X] = t₂[X] ⇒ t₁[Z] = t₂[Z])) by definition of a functional dependency.
- **()** Therefore $X \to Z \in \Sigma^+$.
- 0 Q.E.D.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover			
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000			
Armstrong Axioms								

The Armstrong Axioms are complete.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover			
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000			
Armstrong Axioms								

Proof Sketch

- We prove that for any set of attribute S ∈ R, then S → S⁺ can be derived from the Armstrong Axioms.
 - This is recursively true because every step of the attribute closure algorithm is of the form: S → Sⁱ and X → Y with X ⊂ Sⁱ.
 - **2** Therefore $S^i \to X$ by Reflexivity.
 - Therefore $S^i \to X \cup S^i$ by Augmentation of (2) with S^i .
 - Therefore $S \to S^{i+1}$, where $S^{i+1} = S_i \cup Y$, by Transitivity of (1) and (3).
 - Q.E.D

0000000	000000000000	0000000000	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Armstrong Ax	ioms				

Proof Sketch

- We prove that if $X \to Y \in \Sigma^+$, then it can be derived from $X \to X^+$.
 - We know that $Y \subset X^+$ by property of the attribute closure.
 - **2** Therefore $X^+ \to Y$ by Reflexivity.
 - O Therefore X → Y by Transitivity of X → X⁺ and X⁺ → Y.
 O Q.E.D
- 2 Q.E.D.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Armstrong Axi	oms				

Let Σ be a set of functional dependencies on a relation schema R. Σ^+ can be computed by the iterative fixpoint application of the Armstrong Axioms.

Example

$$R = \{A, B, C\}$$

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{A\}\}$$

to be done ...

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Other Axioms					

The Weak Reflexivity axiom is sound. $\forall X \subset R$ $(X \to \emptyset).$

This one is an axiom.

Proof.

- Let R be a relation schema.
- 2 Let $X \subset R$.
- **③** We know that $\emptyset \subset X$.
- Therefore $X \to \emptyset$ by Reflexivity.
- Q.E.D

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	00000000000000000	000000000000000000000000000000000000000
Other Axioms					

The Weak Augmentation inference rule is sound. $\forall X \subset R \ \forall Y \subset R \ \forall Z \subset R$ $((X \to Y) \Rightarrow (X \cup Z \to Y)).$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	0000000000000000	000000000000000000000000000000000000000
Other Axioms					

- Let R be a relation schema.
- 2 Let $X \subset R$.
- **3** Let $Y \subset R$.
- Let $Z \subset R$.
- $Iet X \to Y$
- We know that $X \subset X \cup Z$.
- Therefore $X \cup Z \rightarrow X$ by Reflexivity.
- **③** Therefore $X \cup Z \rightarrow Y$ by Transitivity of (7) and (5).
- Q.E.D

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Other Axioms					

The Strict Reflexivity (Reflexivity) axiom is sound. $\forall X \subset R$ $(X \to X)$.

Theorem

The Pseudo-Transitivity inference rule is sound. $\forall X \subset R \ \forall Y \subset R \ \forall Z \subset R \ \forall W \subset R$ $((X \to Y \land W \to Z \land W \subset Y) \Rightarrow (X \to Z)).$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Other Axioms					

The Union inference rule is sound. $\forall X \subset R \ \forall Y \subset R \ \forall Z \subset R$ $((X \to Y \land X \to Z) \Rightarrow (X \to Y \cup Z)).$

Theorem

The Decomposition (Projectivity) inference rule is sound. $\forall X \subset R \ \forall Y \subset R \ \forall Z \subset R$ $((X \to Y \cup Z) \Rightarrow (X \to Y)).$

Theorem

The Composition inference rule is sound. $\forall X \subset R \ \forall Y \subset R \ \forall Z \subset R \ \forall W \subset R$ $((X \to Y \land Z \to W) \Rightarrow (X \cup Z \to Y \cup W)).$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Other Axioms					

Reflexivity, Union and Transitivity form a complete set of inference rules for functional dependencies.

Theorem

Weak Reflexivity, Weak Augmentation and Pseudo-Transitivity form a complete set of inference rules for functional dependencies.

How to prove it?

How to prove it?

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Other Axioms					

Example

```
\begin{split} & \mathcal{R} = \\ \{ \mathsf{STUDENT}\#, \mathsf{COURSE}\#, \mathsf{S}\text{-}\mathsf{NAME}, \mathsf{C}\text{-}\mathsf{DESCRIPTION}, \mathsf{MARK} \}. \\ & \boldsymbol{\Sigma} = \\ \{ \{ \mathsf{STUDENT}\# \} \rightarrow \{ \mathsf{S}\text{-}\mathsf{NAME} \}, \\ \{ \mathsf{COURSE}\# \} \rightarrow \{ \mathsf{C}\text{-}\mathsf{DESCRIPTION} \}, \\ \{ \mathsf{STUDENT}\#, \mathsf{COURSE}\# \} \rightarrow \{ \mathsf{MARK} \} \} \end{split}
```

Prove that $\{STUDENT\#, MARK\} \rightarrow \{STUDENT\#, S-NAME, MARK\}, using the Armstrong Axioms.$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000	000000000000000000000000000000000000000
Other Axioms					

- We know that $\{STUDENT\#\} \rightarrow \{S-NAME\}.$
- ② Therefore {STUDENT#, MARK} → {STUDENT#, S-NAME, MARK} by Augmentation of (1) with {STUDENT#, MARK}.
- Q.E.D.

Introduction 0000000	Functional Dependencies	Closure 0000000000	Keys 00000000000	Armstrong Axioms	Minimal Cover ●೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦
Minimal Cover	•				
Minim	al Cover				

Example

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{C, D\},\$$

$$\{D\} \to \{B\}, \{A, B, E\} \to \{F\}\}$$

 Σ contains redundancies: some functional dependencies have redundant attributes (extraneous attributes), some functional dependencies are redundant.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

Example

$$\Sigma = \{\{A\} \rightarrow \{B, C\}, \{B\} \rightarrow \{C, D\},\$$

$$\{D\} \to \{B\}, \{A, B, E\} \to \{F\}\}$$

We begin by simplifying the right-hand-sides of the functional dependencies to singletons.

$$\Sigma_1 = \{\{A\} \rightarrow \{B\}, \{A\} \rightarrow \{C\}, \{B\} \rightarrow \{C\},$$

 $\{B\} \to \{D\}, \{D\} \to \{B\}, \{A, B, E\} \to \{F\}\}$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

The two sets are equivalent.

$$\Sigma\equiv\Sigma_1$$

Proof.

We can transform one into the other using Union and Decomposition.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover	•				

Example

$$\Sigma_1=\{\{A\}\rightarrow\{B\},\{A\}\rightarrow\{C\},\{B\}\rightarrow\{C\},$$

$$\{B\} \to \{D\}, \{D\} \to \{B\}, \{A, B, E\} \to \{F\}\}$$

 Σ_1 contains a functional dependency with a redundant attribute: $\{A, B, E\} \rightarrow \{B\}$ can be replaced by $\{A, E\} \rightarrow \{B\}$.

$$\Sigma_2 = \Sigma - \{\{A, B, E\} \rightarrow \{F\}\} \cup \{\{A, E\} \rightarrow \{F\}\}$$

$$\Sigma_2 = \{\{A\} \to \{B\}, \{A\} \to \{C\}, \{B\} \to \{C\}, \\$$

 $\{B\} \to \{D\}, \{D\} \to \{B\}, \{A, E\} \to \{F\}\}$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

The two sets are equivalent.

$$\Sigma_1\equiv\Sigma_2$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

We prove that both sets of functional dependencies are equivalent by proving that functional dependencies from one can be derived from those of the other and vice versa.

- We prove that $\Sigma_1 \models \{A, E\} \rightarrow \{F\}.$
- We prove that $\Sigma_2 \models \{A, B, E\} \rightarrow \{F\}.$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

We prove that $\Sigma_1 \models \{A, E\} \rightarrow \{F\}$.

- We know that $\{A, B, E\} \rightarrow \{F\}$.
- We know that $\{A\} \rightarrow \{B\}$.
- Therefore $\{A, E\} \rightarrow \{A, B, E\}$ by Augmentation of (2) with $\{A, E\}$.
- Therefore {A, E} → {F} By transitivity of (3) and (1).
 Q.E.D.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

We prove that $\Sigma_2 \models \{A, B, E\} \rightarrow \{F\}$.

- We know that $\{A, E\} \rightarrow \{F\}$.
- We know that $\{A, E\} \subset \{A, B, E\}$.
- Therefore $\{A, B, E\} \rightarrow \{A, E\}$ by Reflexivity with (2).
- Therefore $\{A, B, E\} \rightarrow \{F\}$ by Transitivity of (3) and (1). Q.E.D.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover	•				

Example

$$\Sigma_2 = \{\{A\} \rightarrow \{B\}, \{A\} \rightarrow \{C\}, \{B\} \rightarrow \{C\},$$

$$\{B\} \to \{D\}, \{D\} \to \{B\}, \{A, E\} \to \{F\}\}$$

 Σ_2 contains a redundant functional dependency: $\{A\} \rightarrow \{C\}$ is not needed. We can remove it.

$$\Sigma_3 = \Sigma_2 - \{\{A\} \to \{C\}\}$$

$$\Sigma_3 = \{\{A\} \to \{B\}, \{B\} \to \{C\}, \\$$

 $\{B\} \to \{D\}, \{D\} \to \{B\}, \{A, E\} \to \{F\}\}$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

The two sets are equivalent.

$$\Sigma_2\equiv\Sigma_3$$

Proof.

We prove that both sets of functional dependencies are equivalent by proving that functional dependencies from one can be derived from those of the other and vice versa.

 $\{A\} \to \{C\}$ can be obtained by Transitivity of $\{A\} \to \{B\}$ and $\{B\} \to \{C\}$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover	•				

Example

$$\Sigma_3 = \{\{A\} \to \{B\}, \{B\} \to \{C\}, \}$$

$$\{B\} \rightarrow \{D\}, \{D\} \rightarrow \{B\}, \{A, E\} \rightarrow \{F\}\}$$

We can regroup functional dependencies with the same left-hand-sides.

$$\Sigma_4 = \{\{A\} \to \{B\}, \{B\} \to \{C, D\},\$$

 $\{D\} \rightarrow \{B\}, \{A, E\} \rightarrow \{F\}\}$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

The two sets are equivalent.

$$\Sigma_3\equiv\Sigma_4$$

Proof.

We can transform one into the other using Union and Decomposition.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover	·				

Definition

A minimal cover (or covering) of a set of functional dependencies Σ is an equivalent set Σ 3 of functional depencies such that:

- The right-hand-sides of the functional dependencies in Σ3 are singletons.
- The left-hand-sides of the functional dependencies in Σ3 are minimal, namely, there are no redundant (extraneous) attributes.
- Σ3 is minimal, namely, there are no redundant functional dependency.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	0000000000000000	000000000000000000000000000000000000000
Minimal Cover					

The minimal cover of a set of functional dependencies Σ always exists but is not unique.
Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover	·				

Theorem

A minimal cover of a set of functional dependencies Σ can be computed by the following steps in this order:

- Normalize the right-hand-sides of the functional dependencies to singletons.
- Simplify the left-hand-sides of the functional dependencies by eliminating redundant (extraneous) attributes.
- Semove the redundant functional dependencies.

Proof.

It is quite obvious that the minimal cover is equivalent to Σ (see the example for outline of the proofs) and minimal (by definition) except for the fact that the three simplification steps must be done in the given sequence. This is to avoid interference.

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

Theorem

The above algorithm is non deterministic.

Theorem

Some minimal covers of a set of functional dependencies Σ cannot be found by the above algorithm.

Theorem

All minimal cover can be found by the algorithm applied on Σ^+ .

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Minimal Cover					

Example

$$\begin{split} \Sigma_1 &= \{\{A\} \to \{B\}, \{B\} \to \{C\}, \{C\} \to \{A\}\}\\ \Sigma_2 &= \{\{A\} \to \{C\}, \{C\} \to \{B\}, \{B\} \to \{A\}\} \end{split}$$

Introduction	Functional Dependencies	Closure	Keys	Armstrong Axioms	Minimal Cover
0000000	00000000000	0000000000	00000000000	000000000000000000000000000000000000000	0000000000000000000
Minimal Cover					

Definition

An extended minimal cover (or partitioned covering) of a set of functional dependencies Σ is an equivalent set Σ 4 obtained by regrouping the functional dependencies in a minimal cover that have the same right-hand-side.