Some other normal forms

- Fifth Normal Form (5NF) or called Project-Join Normal Form (PJNF).
- Domain-Key Normal Form (DKNF)
- For your reading pleasure. They will not be covered/examined.

Fifth Normal Form (Project-Join Normal Form)

(5NF, PJNF)

(will not be covered/examined)
There exist relation that cannot be non-loss decomposed into two relations, but can be non-loss decomposed into three or more relations.

Example Let us consider the relation
STOCK (Agent, Company, Product)
We assume that:

1. Agents represent companies.
2. Companies make products.
3. Agents sell products
4. If an agent sells a product and he represents the company making that product, then he sells that product for that company.

Note: It is an all key relation. There is no FD or MVD in the relation.

Relation instances:

STOCK (Agent,	Company,	Product)
a_{1}	c_{1}	p_{1}
a_{1}	c_{2}	p_{1}
a_{1}	c_{1}	p_{3}
a_{1}	c_{2}	p_{4}
a_{2}	c_{1}	p_{1}
a_{2}	c_{1}	p_{2}
a_{3}	c_{2}	p_{4}

REP (Agent, Company)

a_{1}	c_{1}
a_{1}	c_{2}
a_{2}	c_{1}
a_{3}	c_{2}

MAKE (Company, Product)

c_{1}	p_{1}
c_{1}	p_{2}
c_{1}	p_{3}
c_{2}	p_{1}
c_{2}	p_{4}

SELL (Agent, Product)

a_{1}	p_{1}
a_{1}	p_{3}
a_{1}	p_{4}
a_{2}	p_{1}
a_{2}	p_{2}
a_{3}	p_{4}

Notes: (1) There is no FD or MVD in the relation STOCK
(2) The relation is in 4NF.
(3) There are redundant data in the relation.
(4) However, the relation can be non-loss decomposed into 3 relations, namely

REP (Agent, Company)
MAKE (Company, Product)
SELL (Agent, Product)
Q: How do you know this?
(5) REP \bowtie MAKE \bowtie SELL = STOCK

Defn: Let R be a relation and $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}$ be a decomposition of R. We say that R satisfies the join dependency $*\left\{R_{1}\right.$, $\left.R_{2}, \ldots, R_{n}\right\}$ iff

$$
\begin{aligned}
& \stackrel{\curvearrowleft i=1}{n} \mathrm{R}_{\mathrm{i}}=\mathrm{R} \\
& \left(\begin{array}{c}
\text { or } \\
\mathrm{R}_{1} \bowtie \mathrm{R}_{2} \bowtie \ldots \bowtie \mathrm{R}_{\mathrm{n}}=\mathrm{R} \\
\text { or } \\
\mathrm{R}_{1} * \mathrm{R}_{2} * \ldots * \mathrm{R}_{\mathrm{n}}=\mathrm{R} \text {) }
\end{array}\right.
\end{aligned}
$$

Defn: A join dependency (JD) is trivial if one of the R_{i} is R itself.

Note: When $\mathrm{n}=2$, the join dependency of the form $*\left\{\mathrm{R}_{1}, \mathrm{R}_{2}\right\}$ is equivalent to a multivalued dependency.

Example. The relation STOCK(Agent, Company, product) satisfies the join dependency:
$*\left\{\mathrm{R}_{1}\right.$ (Agent, Company), R_{2} (Agent, Product), R_{3} (Company, Product) $\}$
However, there is no MVD in the relation.

Defn: A relation R is in fifth normal form (5NF) or called Project-Join normal form (PJNF) iff every non-trivial join dependency in R is implied by the candidate keys of R . i.e. whenever a non-trivial join dependency $*\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ holds in R, implies every R_{i} (all the attributes of R_{i}) is a superkey for R.

Example: The relation STOCK(Agent, Company, Product) is not in 5NF.
Results: (1) A 5NF relation is in 4NF.
(2) Any relation can be non-loss decomposed into an equivalent collect of 5 NF relations, if covering criteria (of FDs) is not required.

Example: The relation Stock can be non-loss decomposed into 3 relations:
REP (Agent, Company)
SELL (Agent, Product)
MAKE (Company, Product)
All are in 5NF.

Domain-Key Normal Form (DKNF)

(will not be covered/examined)
Note that FDs, MVDs and JDs are some sorts of integrity constraints. There are other types of constraints:
(1) Domain constraint - which specifies the possible values of some attribute.
E.g. The only colors of cars are blue, white, red, grey.
E.g. The age of a person is between 0 and 150 .
(2) Key constraint - which specifies keys of some relation. Note: All key declarations are FDs but not reverse.
(3) General constraints - any other constraints which can be expressed by the first order logic.
E.g. If the first digit of a bank account is 9, then the balance of the account is greater than 2500.

Defn: Let D, K, G be the set of domain constraints, the set of key constraints, and the set of general constraints of a relation R.
R is said to be in domain-key normal form (DKNF) if
$\mathrm{D} \cup \mathrm{K}$ logically implies G .
i.e. all constraints can be expressed by only domain constraints and key constraints.

Example. Let Acct(acct\#, balance) with acct\# \rightarrow balance and a general constraint:
" if the first digit of an account is 9, then the balance of the account is ≥ 2500."

- Relation Acct is not in DKNF.
- To create a DKNF design, we split the relation horizontally into 2 relations:

Regular_Acct (acct\#, balance)
Key = \{acct\#\}
Domain constraint: the first digit of acct\# is not 9 .
Special_Acct (acct\#, balance)
Key $=\{$ acct\# $\}$
Domain constraints:
(1) t he first digit of acct\# is 9 , and.
(2) balance ≥ 2500.

Both relations are in DKNF. why?
All constraints can now be enforced as domain constraints and key constraints.
Q: How to enforce them?

Note: We can rewrite the definitions of PJNF, 4NF, and BCNF in a manner which shows them to be special case of DKNF.
E.g. Let $R=\left(A_{1}, \ldots, A_{n}\right)$ be a relation.

Let $\operatorname{dom}\left(\mathrm{A}_{\mathrm{i}}\right)$ denote the domain of attribute A_{i} and let all these domains be infinite.
Then all domain constraints D are of the from

$$
\mathrm{A}_{\mathrm{i}} \subseteq \operatorname{dom}\left(\mathrm{~A}_{\mathrm{i}}\right) .
$$

Let the general constraints be a set G of FDs and MVDs .
Let K be the set of key constraints.
R is in 4NF iff it is in DKNF with respect to D, K, G.
(i.e. every FD and MVD is implied by the domain constraints and key constraints.)

Note: PJNF and BCNF can be rewritten similarly. Q: How about 3NF?

Theorem

Let R be a relation in which $\operatorname{dom}(A)$ is infinite for each attribute A.

If R is in DKNF then it is in PJNF.

Thus if all domains are infinite, then

$$
\mathrm{DKNF} \Rightarrow \mathrm{PJNF} \Rightarrow 4 \mathrm{NF} \Rightarrow \mathrm{BCNF} \Rightarrow 3 \mathrm{NF}
$$

