Some other normal forms

- Fifth Normal Form (5NF) or called Project-Join Normal Form (PJNF).
- Domain-Key Normal Form (DKNF)
- For your reading pleasure. They will not be covered/examined.

Fifth Normal Form (Project-Join Normal Form)(5NF, PJNF)(will not be covered/examined)

There exist relation that cannot be non-loss decomposed into two relations, but can be non-loss decomposed into three or more relations.

Example Let us consider the relation

STOCK(Agent, Company, Product)

We assume that:

- 1. Agents represent companies.
- 2. Companies make products.
- 3. Agents sell products
- 4. If an agent sells a product and he represents the company making that product, then he sells that product for that company.

Note: It is an all key relation. There is no FD or MVD in the relation.

Relation instances:

	STOC	CK (Agen	t, Company,	Pr	oduct)	
		a_1	c_1		p ₁	
		a ₁	c ₂		p ₁	
		a ₁	c ₁		p ₃	
		a_1	c_2		p ₄	
		a ₂	c ₁		p ₁	
		a ₂	c ₁		p ₂	
		a ₃	c ₂		p ₄	
REP (Agent, C	Company)	MAKE (Company,	Product)	SELL (Age	ent, Product)
	a ₁	c ₁	c_1	p ₁	a ₁	1 p ₁
	a ₁	c ₂	c_1	p ₂	a ₁	1 p ₃
	a ₂	c ₁	c_1	p ₃	a ₁	1 p ₄
	a ₃	c ₂	c ₂	\mathbf{p}_1	a ₂	₂ p ₁
			c ₂	p_4	a ₂	₂ p ₂
					a ₃	³ P ₄

- **Notes:** (1) There is no FD or MVD in the relation STOCK
 - (2) The relation is in 4NF.
 - (3) There are redundant data in the relation.
 - (4) However, the relation can be non-loss decomposed into3 relations, namely

REP (<u>Agent, Company</u>)MAKE (<u>Company, Product</u>)SELL (<u>Agent, Product</u>)

Q: How do you know this?

(5) REP \bowtie MAKE \bowtie SELL = STOCK

- **Defn:** Let R be a relation and $R_1, ..., R_n$ be a decomposition of R. We say that R satisfies the **join dependency** *{ R_1 , $R_2, ..., R_n$ } iff $\bigcap_{i=1}^n R_i = R$ (or $R_1 \bowtie R_2 \bowtie ... \bowtie R_n = R$ or $R_1 * R_2 * ... * R_n = R$)
- **Defn:** A join dependency (JD) is **trivial** if one of the R_i is R itself.
- Note: When n = 2, the join dependency of the form $*\{R_1, R_2\}$ is equivalent to a multivalued dependency.
- **Example.** The relation STOCK(<u>Agent, Company, product</u>) satisfies the join dependency:

*{ $R_1(Agent, Company)$, $R_2(Agent, Product)$, $R_3(Company, Product)$ } However, there is **no MVD** in the relation. 70 CS4221: The Relational Model

- Defn: A relation R is in fifth normal form (5NF) or called
 Project-Join normal form (PJNF) iff every non-trivial join dependency in R is implied by the candidate keys of R.
 - i.e. whenever a non-trivial join dependency $\{R_1, R_2, ..., R_n\}$ holds in R, implies every R_i (all the attributes of R_i) is a superkey for R.
- Example: The relation STOCK(Agent, Company, Product) is not in 5NF.
- **Results**: (1) A 5NF relation is in 4NF.
 - (2) Any relation can be non-loss decomposed into an equivalent collect of 5NF relations, if covering criteria (of FDs) is not required.
- Example: The relation Stock can be non-loss decomposed into 3 relations: REP (Agent, Company) SELL (Agent, Product) MAKE (Company, Product)
 - All are in 5NF.

Domain-Key Normal Form (DKNF)

(will not be covered/examined)

Note that FDs, MVDs and JDs are some sorts of **integrity constraints**. There are other types of constraints:

- (1) **Domain constraint** which specifies the possible values of some attribute.
 - E.g. The only colors of cars are blue, white, red, grey.
 - E.g. The age of a person is between 0 and 150.
- (2) Key constraint which specifies keys of some relation.
 Note: All key declarations are FDs but not reverse.
- (3) General constraints any other constraints which can be expressed by the first order logic.
 - **E.g.** If the first digit of a bank account is 9, then the balance of the account is greater than 2500.

- **Defn:** Let D, K, G be the set of domain constraints, the set of key constraints, and the set of general constraints of a relation R.
 - R is said to be in **domain-key normal form** (DKNF) if $D \cup K$ logically implies G.

i.e. all constraints can be expressed by only domain constraints and key constraints.

Example. Let Acct(acct#, balance) with $acct# \rightarrow balance$ and a general constraint:

"if the first digit of an account is 9, then the balance of the account is ≥ 2500 ."

- Relation Acct is not in DKNF.
- To create a DKNF design, we split the relation horizontally into 2 relations:

```
Regular_Acct (acct#, balance)
```

Key = {acct#} Domain constraint: the first digit of acct# is not 9.

```
Special_Acct (acct#, balance)
```

```
Key = \{acct\#\}

Domain constraints:

(1) t he first digit of acct\# is 9, and.

(2) balance \geq 2500.
```

Both relations are in DKNF. Why?

All constraints can now be enforced as domain constraints and key constraints. **Q:** How to enforce them?

- **Note:** We can rewrite the definitions of PJNF, 4NF, and BCNF in a manner which shows them to be special case of DKNF.
- **E.g.** Let $R=(A_1, ..., A_n)$ be a relation. Let $dom(A_i)$ denote the domain of attribute A_i and let all these domains be infinite.

Then all domain constraints **D** are of the from

 $A_i \subseteq dom(A_i)$.

Let the general constraints be a set G of FDs and MVDs.

Let **K** be the set of key constraints.

R is in 4NF iff it is in DKNF with respect to D, K, G.

(i.e. every FD and MVD is implied by the domain constraints and key constraints.)

Note: PJNF and BCNF can be rewritten similarly. **Q:** How about 3NF?

Theorem

- Let R be a relation in which dom(A) is infinite for each attribute A.
- If R is in DKNF then it is in PJNF.

Thus if all domains are infinite, then

 $\text{DKNF} \Rightarrow \text{PJNF} \Rightarrow 4\text{NF} \Rightarrow \text{BCNF} \Rightarrow 3\text{NF}$