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Finding all the occurrences of a tree pattern in an XML database is a core operation for efficient
evaluation of XML queries. The Dewey labeling scheme is commonly used to label an XML
document to facilitate XML query processing by recording information on the path of an
element. In order to improve the efficiency of XML tree pattern matching, we introduce a novel
labeling scheme, called extended Dewey, which effectively extends the existing Dewey labeling
scheme to combine the types and identifiers of elements in a label, and to avoid the scan of
labels for internal query nodes to accelerate query processing (in I/O cost). Based on extended
Dewey, we propose a series of holistic XML tree pattern matching algorithms. We first present
TJFast to answer an XML twig pattern query. To efficiently answer a generalized XML tree
pattern, we then propose GTJFast, an optimization that exploits the non-output nodes. In
addition, we propose TJFastTL and GTJFastTL based on the tag+ level data partition scheme to
further reduce I/O costs by level pruning. Finally, we report our comprehensive experimental
results to show that our set of XML tree pattern matching algorithms are superior to existing
approaches in terms of the number of elements scanned, the size of intermediate results and query
performance.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

With the rapidly increasing popularity of XML for data representation, there is a lot of interest in query processing over data
that conforms to a tree-structured data model. Since the data objects in a variety of languages (e.g. XPath [3,30], XQuery [4]) are
typically trees, tree pattern matching is the central issue. For example, the following query

“Q=//book[author=“Chen”]//chapter/title”

can be represented as a twig (small tree) pattern. Intuitively, it returns the title of chapter for a book that has an author
named by “Chen”.

In practice, XML data may be very large, complex and have deep nested elements. Thus, efficiently finding all twig patterns in
an XML database is a major concern of XML query processing. In the past few years, many algorithms [1,7,12,14,16,17,19,31,43]
have been proposed to match such twig patterns. These approaches (i) first develop a labeling scheme to capture the structural
information of XML documents, and then (ii) perform tree pattern matching based on labels alone without traversing the original
XML documents. For solving the first sub-problem of designing a proper labeling scheme, the previousmethods use a tree-traversal
order (e.g. extended pre-order [15,24]) or textual positions of start and end tags (e.g. region encoding [5]) or path expressions(e.g.
Dewey ID [20,21,37]) or prime numbers (e.g. [44]). By applying these labeling schemes, one can determine the relationship (e.g.
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ancestor–descendant) between two elements in XML documents from their labels alone. Although existing labeling schemes
preserve the positional information within the hierarchy of an XML document, we observe that the information contained by
a single label is very limited. As an illustration, let us consider the most popular region encoding, where each label consists of a
3-tuple (start, end, and level). Element a is an ancestor of element b if and only if a. startbb. start and a.endNb.end. Given the
labels of two elements, one can identify the ancestor–descendant, parent–child relationship and their document order, but no
other useful information is provided.

In this article, motivated by the existing Dewey ID [37], we propose a new powerful labeling scheme, called extended Dewey ID
(for short, extended Dewey). The unique feature of this scheme is that, from the label of an element alone, we can derive the names
of all elements in the path from the root to this element. For example, Fig. 1. shows an XML document with extended Dewey labels.
Given the label “0.5.1.1” of element text alone, we can derive that the path from the root to text is “/bib /book /chapter /section /
text”. An immediate benefit of this feature is that, to evaluate a twig pattern, we only need to access the labels of elements that satisfy
the leaf node predicates in the query. Further, this feature enables us to easily match a path pattern by string matching. Take element
“0.5.1.1” as an example again. Since we see that its path is “/bib /book /chapter /section / text”, it is quite straightforward to
determine whether this path matches a path query (e.g. “/ /section / text”). As a result, the extended Dewey labeling scheme
provides us an extraordinary chance to develop a new efficient algorithm to match an XML tree pattern.

To perform structural joins efficiently, several algorithms have been developed to process twig queries. In particular, Bruno
et al. [5] proposed the holistic twig matching algorithms PathStack/TwigStack. For evaluating queries with only ancestor–
descendant edges, TwigStack guarantees that each intermediate path solution contributes to final answers. However, when queries
contain any parent–child relationship, TwigStack is non-optimal since it may output a large size of intermediate matches to the
individual path expressions which do not contribute to final answers. Algorithm TwigStackList [26] guarantees the optimality for
queries in which parent–child relationships only occur under the non-branching query nodes and thus slightly enlarge the optimal
query class. In addition, the recent algorithms Twig2Stack [8] and TwigList [33] share the same procedure with TwigStack and
TwigStackList: they label document with region encoding scheme and add any element in the corresponding structure if it satisfies
the sub-query rooted at the matching query node. Although there are a rich set of literatures on efficient XML tree pattern
matching, unfortunately, most of them only consider region encoding labeling scheme and they do not exploit the opportunity to
develop more powerful labeling schemes to speed up the efficiency of XML tree pattern matching.

In this article, we present four tree pattern matching algorithms based extended Dewey labeling scheme. Fig. 2 summarizes the
four algorithms and their properties.

• TJFast To match a twig pattern, TJFast only scans elements for query leaf nodes. This feature brings us two immediate benefits:(i)
TJFast typically access much less elements than algorithms based on region encoding; and (ii) TJFast can efficiently process
queries with wildcards in internal nodes.

• GTJFast Since XQuery may contain multiple path expressions in the FOR, LET,WHERE and RETURN clauses, all with different
semantics, XQuery statements cannot be modeled as simple tree patterns. We treat XQuery statements as generalized tree
patterns (GTP [5,9]). In order to efficiently answer GTP, we propose GTJFast to efficiently exploit the non-output nodes to reduce
the I/O cost.

• TJFastTL and GTJFastTLWe propose TJFastTL and GTJFastTL by extending TJFast and GTJFast based on tag+level data partitioning
([11]). In the tag+level partition scheme, two elements appear in the same list if and only if they have the same tag and level
number. Before reading input data, according to the level information, we can prune away some streams in which elements do
not participate in answers. Thus, we skip elements and reduce the cost of disk access. In addition, we prove that TJFastTL and
GTJFastTL algorithms guarantee the optimality for queries with only parent–child relationships.

We implemented eight XML tree patternmatching algorithms: TJFast,TJFastTL, GTJFast, GTJFastTL, TwigStack [5], TwigStackList
[26], iTwigJoin [10] and Twig2Stack [8], where TJFast, TJFastTL, GTJFast and GTJFastTL are novel algorithms proposed in this article,
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Fig. 1. An XML tree with extended Dewey labels.
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Fig. 2. Properties of algorithms proposed in this article (Class α: queries with only A–D relationship in branching nodes; class β: queries with only A–D
relationships in branching nodes or queries only P–C relationships; d: the length of the longest path in the document; |B|: the number of branching nodes; |L|: the
number of leaf nodes).
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and the other four are existing approaches. Experimental results on a variety of queries and data sets demonstrate the significant
superiority of our algorithms over the previous algorithms in terms of the number of elements scanned, the size of intermediate
results and query performance.

1.1. Organization

The rest of this article is organized as follows. Some preliminaries, including a brief description of Dewey ID labeling scheme are
covered in Section 2. In Section 3, we give introduce the new labeling scheme, named extended Dewey. Section 4 presents a holistic
twig pattern matching algorithm TJFast and Section 5 extends it to process a generalized tree pattern. Section 6 develops
algorithms TJFastTL and GTJFastTL based on tag+ level. Section 7 presents thorough experimental studies about the performance
comparison between the novel algorithms and the prior methods. Finally, Section 8 shows the related work and Section 9
concludes the paper.

2. Preliminaries

2.1. Data model and XML twig pattern

We model XML documents as rooted, ordered and tagged trees. Queries in XML query languages make use of twig patterns to
match relevant portions of data in an XML database. The twig pattern node may be an element tag, a text value or a wildcard “*”.
The query twig pattern edges are either parent–child or ancestor–descendant edges. For convenience, we distinguish between
query and data nodes by using the term “node” to refer to a query node and the term “element” to refer to a data element in a
document.

Given a query twig pattern Q and an XML document D, a match of Q in D is identified by a mapping from the nodes in Q to the
elements in D, such that: (i) the query node predicates are satisfied by the corresponding database elements, wherein wildcard “*”
canmatch any single tag; and (ii) the parent–child and ancestor–descendant relationships between query nodes are satisfied by the
corresponding database elements. The answer to query Q with n nodes can be represented as a list of n-ary tuples, where each
tuple (q1,⋯,qn) consists of the database elements that identify a distinct match of Q in D.

2.2. Dewey ID labeling scheme

Tatarinov et al. [37] proposeDewey ID labeling scheme to present the position of an element occurrence in an XML document. In
Dewey ID, each element is presented by a vector: (i) the root is labeled by a empty string ε; (ii) for a non-root element u, label(u)=
label(s).x, where u is the x-th child of s. Dewey ID supports efficient evaluation of structural relationships between elements. That
is, element u is an ancestor of element s if and only if label(u) is a prefix of label(s).

Dewey ID has a nice property: one can derive the ancestors of an element from its label alone. For example, suppose element u is
labeled “1.2.3.4”, then the parent of u is “1.2.3” and the grandparent is “1.2” and so on. With the knowledge of this property, we
further consider that if the names of all ancestors of u can be derived from label(u) alone, then XML path pattern matching can be
directly reduced to string matching. For example, if we know that the label “1.2.3.4” presents the path “a/b/c/d”, then it is quite
straightforward to identify whether the element matches a path pattern (e.g. “//c/d”). Inspired by this observation, we develop an
extended Dewey ID labeling scheme which provides an extraordinary chance for us to design a new algorithm to match XML path
(and twig) pattern.

3. Extended Dewey and FST

In this section, we aim at extendingDewey ID labeling scheme to incorporate the element-name information. A straightforward
way is to use some bits to present the element-name sequence with number presentation, followed by the original Dewey label.
The advantage of this approach is simple and easy to implement. However, as shown in our experiments in Section 7, this method
faces the problem of a large label size. In the following, we will propose a more concise scheme to solve this problem. In particular,
Please cite this article as: J. Lu, et al., Indexing and querying XML using extended Dewey labeling scheme, Data Knowl. Eng.
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we first encode the names of elements along a path into a single Dewey label. Then we present a Finite State Transducer (FST) to
decode element names from this label. For simplicity, we focus the discussion on a single document. The labeling scheme can be
easily extended to multiple documents by introducing document ID information.

3.1. Extended Dewey

The intuition of our method is to usemodulo function to create a mapping from an integer to an element name, such that given a
sequence of integers, we can convert it into the sequence of element names.

In the extended Dewey, we need to know a little additional schema information, which we call a child names clue. In
particular, given any tag t in a document, the child names clue is the set of all (distinct) names of children of t. This clue is easily
derived fromDTD, XML schema or other schema constraints. For example, consider the DTD in Fig. 3; the tag of all children of bib
is only book and the tags of all children of book are author, title and chapter. Note that even in the case when DTD and XML
schema are unavailable, our method is still effective, because we can scan the document once to get the necessary child names
clue before labeling the XML document. In addition, in the case that specifications like “ANY” in DTD or “xsd:any” in XML
Schema are used to allow appearance of any tag names defined the DTD or XML Schema, we cannot only read DTD or XML
schema to understand the child names clue. The whole XML document has to be scanned to find the concert element types
hidden in “ANY” specification.

Let us use CT(t)={t0, t1,⋯, tn−1} to denote the child names clue of tag t. Suppose there is an ordering for tags in CT(t), where the
particular ordering is not important. For example, in Fig 3, CT(book)={author, title,chapter}. Using child names clues, we may
easily create a mapping from an integer to an element name. Suppose CT(t)={t0, t1,⋯, tn−1}, for any element ei with name ti, we
assign an integer xi to ei such that xi mod n= i. Thus, according to the value of xi, it is easy to derive its element name. For example,
CT(book)={author, title,chapter}. Suppose ei is a child element of book and xi=8, then we see that the name of ei is chapter,
because xi mod 3=2. In the following, we extend this intuition and describe the construction of extended Dewey labels.

The extended Dewey label of each element can be efficiently generated by a depth-first traversal of the XML tree. Each extended
Dewey label is presented as a vector of integers. Intuitively, an ideal labeling scheme (i) should record the order of sibling elements,
and (ii) we can derive the element name from its label according to CT(t). But the existing Dewey labeling scheme cannot fulfill
both requirements. Motivated by this, we next show a new labeling method to use modulo function to enable name-awareness
with order maintainability. More precisely, we use label(u) to denote the extended Dewey label of element u. For each u, label(u) is
defined as label(s).x, where s is the parent of u. The computation method of integer x in extended Dewey is that, for any element u
with parent s in an XML tree, “(1)” if u is a text value, then x=−1; “(2)” otherwise, assume that the element name of u is the k-th
tag in CT(ts) (k∈{0,1,...,n−1}), where ts denotes the tag of element s.

(2.1) if u is the first child of s, then x=k;
(2.2) otherwise assume that the last component of the label of the left sibling of u is y (at this point, the left sibling of u has been

labeled), then
Plea
(201
x =
⌊
y
n⌋ ⋅ n + k if ymod nð Þ b k;

⌊
y
n⌋ ⋅ n + k otherwise:

where n denotes the size of CT tsð Þ:

8>><
>>:
Example 3.1. Fig. 1 shows an XML document tree that conforms to the DTD in Fig. 3. We assign the labels according to the pre-
order traversal of the tree. For instance, the label of chapter under book(“0”) is computed as follows. Here k=2 (for chapter is the
third tag in its child names clue, starting from 0), y=4 (for the last component of “0.4” is 4), and n=3, so y mod 3=1bk. Then
<!ELEMENT emph (#PCDATA | bold | keyword | emph) *>

<!ELEMENT bib (book*)>

<!ELEMENT book ( author+, title, chapter* ) >

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT chapter (title, section*)>

<!ELEMENT section (title, (text | section)*)>

<!ELEMENT text (#PCDATA | bold | keyword | emph) *>

<!ELEMENT bold (#PCDATA | bold | keyword | emph )*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph )*>

Fig. 3. DTD for XML document in Fig 1.
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x = 4 = 3 3 + 2 = 5. So chapter is assigned the label “0.5”. Note that extended Dewey labels maintain the order of children under
the book. Our function for label generation explicitly considers the order of sibling nodes.

We show space complexity of extended Dewey using the following theorem.

Theorem 3.2. The extended Dewey does not alter the asymptotic space complexity of the original Dewey labeling scheme.

Proof. According to the formula in (2.2), it is not hard to prove that given any element s, the gap between the last components of
the labels for every two neighboring elements under s is no more than |CT(ts)|. Hence, with the binary representation of integers,
the length of each component i of extended Dewey label is at most log 2|CT(tsi)| more than that of the original Dewey. Therefore,
the length difference between an extended Dewey label with m components and an original one is at most ∑ i=1

m log 2|CT(tsi)|.
Sincem and |CT(tsi)| are small, it is reasonable to consider this difference is a small constant. As a result, the extended Dewey does
not alter asymptotic space complexity of the original Dewey. □

3.2. Finite state transducer

Given the extended Dewey label of any element, we can use a finite state transducer (FST) to convert this label into the sequence
of element names which reveals the whole path from the root to this element. We begin this section by presenting a function F(t,x)
which will be used to define FST.

Definition 3.3. (Function F(t,x)) Let Z denotes the non-negative integer set and Σ denotes the alphabet of all distinct tags in an
XML document T. Given an tag t in T, suppose CT(t)={t0, t1,⋯, tn−1}, a function F(t,x):Σ×Z→Σ can be defined by F(t,x)= tk, where
k=x mod n.

Definition 3.4. (Finite State Transducer) Given child names clues and an extended Dewey label, we can use a deterministic finite
state transducer (FST) to translate the label into a sequence of element names. FST is a 5-tuple (I, S, i, δ, and o), where (i) the input
set I=Z ∪ {−1}; (ii) the set of states S=Σ∪{PCDATA}, where PCDATA is a state to denote text value of an element; (iii) the initial
state i is the tag of the root in the document; (iv) the state transition function δ is defined as follows. For ∀ t∈Σ, if x=−1, δ(t,x)=
PCDATA, otherwise δ(t,x)=F(t,x). No other transition is accepted. (v) The output value o is the current state name.

Example 3.5. Fig. 4 shows the FST for DTD in Fig 3. For clarity, we do not explicitly show the state for PCDATA here. An input of−1
from any state will transit to the terminating state PCDATA. This FST can convert any extended Dewey label to an element path. For
instance, given an extended Dewey label “0.5.1.1”, using the above FST, we derive that its path is “bib/book/chapter/section/text”.

It is worth noting three points about FST:(i) thememory size of the above FST is quadratic in the number of distinct tags in XML
documents, as the number of transition in FST is quadratic in the worst case; and (ii) we allow recursive element names in a
document path, which is demonstrated as a loop in FST; and (iii) the time complexity of FST is linear in the length of an extended
Dewey label, but independent of the complexity of schema definition.

3.3. Dynamic XML labeling

We next discuss how to support updates in XML documents based on extended Dewey labeling scheme. One way is to use
ORDPATH [32], where odd numbers are used to represent the order coding and even numbers are reserved for delimiters.
Assuming a DTD is a→(b|c) , for instance, considering an XML document with the root a1 that has three children b1, c1 and c2, their
respective extended Dewey labels are assigned 1, 2 and 4 (a1 is labeled ε), and dynamic extended Dewey labels should be assigned
1, 3 and 7 instead. If a new element b2 is inserted between c1 and c2, then it could be elegantly assigned 3.4.1 without updating any
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existing label. The value 4 (or any even value in any nonterminal component) represents a caret only, that is, it doesn't count as a
component that increases the depth of the node in the tree.

More precisely, we use label(u) to denote the dynamic extended Dewey label of element u. For each u, label(u) is defined as
label(s).x, where s is the parent of u. For any element u with parent s in an XML tree, “(1)” if u is a text value, then x=λ (we do
not use −1 as it may be used for internal nodes); “(2)” otherwise, assume that the element name of u is the k-th tag in CT(ts)
(k∈{0,1,...,n−1}), where ts denotes the tag of element s.

(2.1.) if u is the first child of s, then x=2k+1;
(2.2.) otherwise assume that the last component of the label of the left sibling of u is y (at this point, the left sibling of u has been

labeled), then
Plea
(201
x =
⌊
y
n⌋ ⋅ n + 2k + 1 if ymod nð Þ b k;

⌊
y
n⌋ ⋅ n + 2k + 1 otherwise:

where n denotes the size of CT tsð Þ:

8>><
>>:
In order to insert a new node n between any two siblings of a parent node X (known as creating in), we can create a component
with an even ordinal falling between the final (odd) ordinals of the two siblings, then following this with a new odd component,
usually 1. To insert new nodes to the left of all existing children of any node, we can use the nearest smaller even ordinal than the
first odd component. In interpreting a dynamic extended Dewey label, the even components (carets) simply do not count for
ancestry: 3.5.6.2.1 is a child of 3.5, and a grandchild of 3.

To derive the path sequence from dynamic extended Dewey labels, all even components are not counted. Given a tag t in T,
suppose CT(t)={t0, t1,⋯, tn−1}, a dynamic function DF(t,x): Σ×Z→Σ can be defined by DF(t,x)= t(k+1) /2, where k=x mod 2n.
Given a dynamic extended Dewey label, we can use a dynamic FST to translate the label into a sequence of element names. Let I
denote the integer set. DFST is a 5-tuple (N, S, i, δ, and o), where (i) the input set N= I ∪ {λ}; (ii) the set of states S=Σ∪{PCDATA},
where PCDATA is a state to denote text value of an element; (iii) the initial state i is the tag of the root in the document; (iv) the
state transition function δ is defined as follows. For ∀ t∈Σ, if x=λ, δ(t,x)=PCDATA, otherwise δ(t,x)=DF(t,x). No other transition
is accepted. (v) The output value o is the current state name. Follow-up of the above example, assuming a DTD is a→(b|c)* and the
root is a, given a label 3, k=3 mod (2*2)=3, then t(3+1) /2= t2=c. Therefore the path is a /b.

The fact that insertions require no relabelings of old nodes is extremely important to insert performance and possible
concurrency of operations [15,32]. With dynamic extended Dewey labels, all path information can be derived from labels and all
existing labels remain the same with any insertion of sequence.

4. Twig pattern matching

4.1. Path matching algorithm

It is quite straightforward to evaluate a query path pattern in our approach. Note that we only need to scan the elements whose
tags appear in leaf node of query. For each visited element, we first use FST to reveal the element names along the whole path, and
then perform string matching against it. As a result, we evaluate the path pattern efficiently by scanning the input list once and
ensure that each output solution is our desired final answer.

When path queries contain only parent–child relationships within the path, the string matching can be processed very
efficiently by simply comparing element names.When path queries contain ancestor–descendant relationships orwildcards “*”, the
queries can be processed by string matching with don't care symbols. Much research has been done on this topic and there are a
rich set of algorithms on efficient string processing with don't care symbols, e.g. see [2,22].

It is worth noting that the I/O cost of our approach is typically much smaller than that of previous algorithms for path pattern
matching (e.g. PathStack [5]), for we only scan labels for the query leaf node, while they need to scan elements for all query nodes.

4.2. Twig matching algorithm

This section presents a holistic twig pattern join algorithm, called TJFast, which accesses only labels of leaf query nodes. The
basic idea in TJFast is to first output the root-leaf path solutions and then merge those intermediate solutions to get the final
results. We will first introduce some data structures and notations.

4.2.1. Data structures and notations
Let Q denote a twig pattern and pn denote a path pattern from the root to the node n∈Q. In our algorithms, we make use

of the following query node operations: isleaf: Node → Bool; isBranching: Node → Bool; leafNodes: Node → {Node};
directBranchingOrLeafNodes: Node → {Node}. leafNodes(n) returns the set of leaf nodes in the twig rooted with n.
directBranchingOrLeafNodes(n)(for short, dbl(n)) returns the set of all branching nodes b and leaf nodes f in the twig rooted
with n such that in the path from n to b or f(excluding n,b or f) there is no branching nodes. For example, in the query of Fig. 5,
dbl(a)={b,c} and dbl(c)={f,g}. In addition, topBranchingNode denotes the highest branching nodes in the query Q.
se cite this article as: J. Lu, et al., Indexing and querying XML using extended Dewey labeling scheme, Data Knowl. Eng.
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Associated with each leaf node f in a query twig pattern there is a stream Tf. The stream contains extended Dewey labels of
elements that match the node type f. The elements in the stream are sorted by the ascending lexicographical order. For example,
“1.2” precedes “1.3” and “1.3” precedes “1.3.1”. The operations over a stream Tf include current(Tf), advance(Tf) and eof(Tf). The
function current(Tf) returns the extended Dewey label of the current element in the stream Tf. The function advance(Tf) updates the
current element of the stream Tf to be its next element. The function eof(Tf) tests whether we are in the end of the stream Tf. We
make use of two self-explanatory operations over elements in the document: ancestors(e) and descendants(e), which return the
ancestors and descendants of e, respectively (both including e).

Algorithm TJFast keeps a data structure during execution: a set Sb for each branching node b. Each two elements in set Sb have
an ancestor–descendant or parent–child relationship. So the maximal size of Sb is no more than the length of the longest path in the
document. Each element cached in sets likely participates in query answers. Set Sb is initially empty.

Algorithm 1 TJFast.

1: for each f ∈ leafNodes(root) do locateMatchedLabel(f)
2: while (¬end(root)) do
3: fact=getNext(topBranchingNode)
4: outputSolutions(fact)
5: advance(Tfact)
6: locateMatchedLabel(fact)
7: end while
8: mergeAllPathSolutions()

Procedure locateMatchedLabel(f)
/* Assume that the path from the root to element get(Tf) is n1/n2/· · ·/nk and pf denotes the path pattern from the root to leaf
node f*/

1: while ¬((n1/n2/⋯/nk matches pattern pf) ∧ (nk matches f)) do
2: advance(Tf)
3: end while

Function end(n)

1: Return ∀f ∈ leafNodes(n)→eof(Tf)

Procedure outputSolutions(f)

1: Output path solutions of current(Tf) to pattern pf such that in each solution s, ∀e ∈ s:(element e matches a branching node
b→e ∈ Sb)

4.2.2. TJFast
Algorithm TJFast, which computes answers to a query twig pattern Q, is presented in Algorithm 1. TJFast operates in two

phases. In the first phase (lines 1–9), some solutions to individual root-leaf path patterns are computed. In the second phase
(line 10), these solutions are merge-joined to compute the answers to the query twig pattern.
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It is not difficult to understand the main procedure of TJFast (see Algorithm 5). In lines 1–3, for each stream, we use Procedure
locateMatchedLabel to locate the first element whose path matches the individual root-leaf path pattern. In line 5, we identify the
next stream Tfact to be processed by using getNext(topBranchingNode) algorithm, where topBranchingNode is defined as the
branching node that is the highest branching node. In line 6, we output some path matching solutions in which each element that
matches any branching node b can be found in the corresponding set Sb. We advance Tfact in line 7 and locate the next matching
element in line 8.1

Algorithm 2 getNext(n).
1: if (isLeaf(n)) then return n
2: else for each ni ∈ dbl(n) do
3: fi=getNext(ni)
4: if (isBranching(ni) ∧ empty(Sni)) then return fi
5: ei=max{p|p ∈ MB(ni, n)}
6: max=maxargi{ei}
7: min=minargi{ei}
8: for each ni ∈ dbl(n) do
9: if (∀e ∈ MB(ni, n): e∉ ancestors(emax)) then return fi
10: for each e ∈ MB(nmin, n) do
11: if (e∈ ancestors(emax)) then updateSet(Sn, e)
12: return fmin

Function MB(n, b)
1: if (isBranching(n)) then Let e be the maximal element in set Sn
2: else Let e=current(Tn)
3: Return a set of element a that is an ancestor of e such that a can match node b in the path solution of e to path pattern pn

Procedure clearSet(S, e)
1: Delete any element a in the set S such that a ∉ ancestors(e) and a ∉ descendants(e)

Procedure updateSet(S, e)
1: clearSet(S, e)
2: Add e to set S

Algorithm getNext(see Algorithm 2) is the core function called in TJFast, in which we accomplish two tasks. The first is to
identify the next stream to process; and the second is to update the sets Sb associatedwith branching nodes b, discussed as follows.

For the first task to identify the next processed stream, Algorithm getNext(n) returns a query leaf node f according to the
following recursive criteria (i) if n is a leaf node, return n (line 2); else (ii) n is a branching node, then for each node ni∈ dbl(n), (1) if
the current elements cannot formamatch for the subtree rootedwith ni, we immediately return fi(line 7); (2) if the current element
from stream Tfi does not participate in the solution involving in the future elements in other streams, we return fi (line 14); (3)
otherwise we return fmin such that the current element emin has the minimal label in all ei by lexicographical order(line 20).

For the second task, we update set eb. This operation is important, since the elements in eb decide the path solutions that can be
output in Procedure outputSolutions. In line 18 of Algorithm 2, before an element eb is inserted to the set Sb, we ensure that eb is an
ancestor of (or equals) each other element ebi to match node b in the corresponding path solutions.

Example 4.1. Consider the query and Doc1 in Fig 7. A subscript is added to each element in the order of pre-order traversal for
easy reference. There are three input streams Tb, Tf and Tg. Initially, getNext(a) recursively calls getNext(b) and getNext(c) (for b,
c∈dbl(a) in the query). Since b is a leaf node in Q1, getNext(b)=b. Observe that MB(f,c)={c1} and MB(g,c)={c1,c2}, So emax=g
and emin=f in line 10 and 11 of Algorithm 2. In line 18, c1 is inserted to set Sc. Then, getNext(c)=f. Subsequently, a1 is inserted to Sa
and getNext(a)=b. Finally path solutions (a1,b1),(a1,c1,d1, f1) and (a1,c1,e1,g1) are output and merged. Note that although (a1,c2,
e1,g1) matches the individual path pattern a / /c / /e /g, it is not output for c2∉Sc.

4.3. Analysis of TJFast

Next, we first show the correctness of TJFast and then analyze its complexity.

Lemma 4.2. In Procedure clearSet of Algorithm TJFast, any element e that is deleted from set Sb does not participate in any new solution.
1 Note that the second condition “nk matches f” in line 1 of locateMatchedLabel is necessary, which avoids outputting duplicate solutions. For example,
consider the element ewith the path “a1/b1/c1/b2” and the path query “a/b”. “a1/b1/c1/b2” can match the query “a/b”, but this solution has been output by another
element ending with b1.
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Proof. Suppose that on the contrary, there is a new solution using element e. Since e has not ancestor–descendant relationship
with the new inserted element enew, according to the Order Property, label(e)blabel(enew) by lexicographical order. Note that if abb
and a is not a prefix of b, then whatever postfix c, d is attached to a and b respectively, a.cbb.d holds. Therefore, label(e) will not be
a prefix of subsequent elements in any stream,which contradicts that e participates in a new solution. □

Lemma 4.3. In line 18 of Function getNext, if element e ∉ ancestors(emax) and e ∉ Sn, then e is guaranteed not to involve in any final
solution.

Proof. (Induction on the number of calls to getNext): Consider the first call to getNext for branching node n. Observe that set Sn is
empty before this call. Since element e is not a prefix of emax, e cannot become a prefix of any element in stream Tfmax

. Therefore e
does not participate in any final solution. For subsequent calls to getNext, we proceed as follows. Since element e is not a prefix of
emax, e cannot involve in the solutions of the future elements in stream Tfmax

. So the only possible case is that e participates in the
solution for the previous elements. But now e does not appear in set Sb. Then either e is never added into set Sb or it has been
wrongly deleted from set Sb. In the first case, according to the inductive hypothesis, element e does not participate in any final
solution. The second case is impossible, since by Lemma 4.1, each deletion operation is safe. Therefore, the lemma is proved. □

Lemma 4.2 shows that any element deleted from sets does not participate in new solutions, so the deletion is safe. Lemma 4.3
shows that for any element e that matches a branching node, if e participates in any final answer, then e occurs in the
corresponding set. Thus the insertion is complete. The two lemmas are important to establish the correctness of the following
theorem.

Theorem 4.4. Given a twig query Q and an XML database D, Algorithm TJFast correctly returns all the answers for q on D.

While the correctness holds for any given query, the I/O optimality holds only for the case where there are only ancestor–
descendant relationships between branching nodes and their children.

Theorem 4.5. Consider an XML database D and a twig query Q with only ancestor–descendant relationships between branching nodes
and their children. The worst case I/O complexity of TJFast is linear in the sum of the sizes of input and output lists. The worst case space
complexity is O(d2* |B|+d* |L|), where |L| is the number of leaf nodes in Q, |B| is the number of branching nodes in Q and d is the length of
the longest label in the input lists.

Proof. We first prove the I/O optimality. The following observation is important to prove the optimality of TJFast: if all branching
edges are only ancestor–descendant relationships, then in line 18 of getNext, since e ∈ ancestors(emax), e∈ MB(ni,n) for each
ni∈dbl(n). That is, e is guaranteed to be a common element in each current path solution. Note that we only output path solutions,
in which elements that match branching nodes occur in the corresponding set (line 6 of Algorithm 1). Therefore, each
intermediate path solution output in TJFast is guaranteed to contribute to final results when the query contains only ancestor–
descendant relationships in branching edges. □

As for space complexity, our result is based on the observation that in the worst case, the number of elements in branching
node set Sb is at most d, where d is the length of the longest label in the input lists. Considering each extended Dewey label repeats
its prefix, the total space complexity of Sb is O(d2).

Theorem 4.5 holds only for query with ancestor–descendant relationships to connect branching nodes. Unfortunately, in the
case where the query contains parent–child relationships between branching nodes and their children, Algorithm TJFast is no
longer guaranteed to be I/O optimal. For example, consider a query “a[b]/c” and a data tree consisting of a1, with children(in order)
b1, a2, c2, such that a2 has children b2, c1. There are two streams Tb, Tc in TJFast and their first elements are b1 and c1 respectively. In
this case, b1 and c1 are “locked” simultaneously, because we cannot advance any stream before knowing if it participates in a
solution. Thus, optimality can no longer be guaranteed.
5. Generalized tree pattern matching

5.1. Generalized tree pattern

While XQuery expression evaluation includes the matching of tree patterns, and hence can include tree pattern evaluation as a
component, there is muchmore to XQuery than simply tree pattern [9]. In particular, the possibility of quantification in conditions
(e.g., EVERY), the possibility of optional elements in a return clause, and many different forms of return results, all involve much
more thanmerely obtaining a tree pattern evaluation. Therefore, in this section, we study generalized tree pattern (GTP)matching
[9]. Intuitively, a GTP additionally defines optional axis and optional return nodes to represent more semantics than a simple tree
pattern. Fig. 6 depicts two sample XQuery statements and their respective GTPs.

In GTP1, node c is a return node, i.e., only its result is of interest. In GTP2, node e is optional (in general, any expression in the
LET or RETURN clauses is optional) in the sense that a c element can be a match even without any descendant e elements. Any
matching e elements, however, must be grouped together under their common c ancestor elements.
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Existing works on holistic twig query processing focus only on returning the entire twig results [26,28,33]. In a GTP evaluation,
returning the entire twig results is seldomnecessary andmay consequently cause duplicate elimination and/or ordering problems.
Next we propose a new holistic algorithm, called GTJFast, to efficiently process GTPs without those expensive post-processing.

5.2. GTJFast algorithm

In the following, we first present the intuition in the optimization to process the non-return nodes and optional return nodes in
GTP, and then formally show our algorithm GTJFast followed by theoretical analysis.

5.2.1. Optimization on non-return nodes
Non-return nodes do not appear in the final results, so all elements of such nodes are not required to be buffered during the

processing. But we are still interested in their existences to determine the output nodes. Therefore, it is important to judiciously
and compactly record the existences of non-return elements.

Intuitively, see the example in GTP1 again in Fig. 6. We classify all nodes in queries to four categories according into their
properties.

(1) Non-branching and non-return nodes An example is node b in GTP1. For this type of nodes, we can easily derive the whole
path by extended Dewey labeling scheme and easily determine whether they contribute to one path solution or not.
Therefore, it is not necessary to buffer the elements of this type in the main memory.

(2) Non-branching and return nodes An example is node e in GTP2. This type of nodes should be stored in the main memory.
However, as they are not branching nodes, we do not remember their children information.

(3) Branching and non-return nodes An examples is node h in GTP1. Those elements are not required to buffer in the main
memory, but as they are branching nodes, we need to maintain the information of their descendants and children, which
can achieved by “BitArray” in our algorithm.

(4) Branching and return nodes An examples is node c in GTP1. Those elements have to be buffered in themainmemory and the
corresponding descendants/children relationship should be recorded (by “BitArray”).
5.2.2. Optimization on optional return nodes
The existence of optional return nodes in the final answer is not mandatory. Take GTP2 as an example, node e is an optional

return node. That is, a c element can be a match even without any descendant e elements. Any matching e elements, however,
must be grouped together under their common c ancestor elements. To process optional return nodes, the main approach is the
same and the only additional job is to mark the optional branch, and check its existence when outputting the results.

5.2.3. Algorithm
Next we give the description of our algorithm, starting with the introduction of some data structures.
Data structure GTJFast keeps a set Sb for branching node b during execution, and each two elements in set Sb have an ancestor–

descendantor parent–child relationship. Different fromTJFast, each element ewith type b in the set is associatedwith a “BitArray(e)”
and “outputList(e)”. The length of a BitArray equals the number of children of b in the query. Given a child c of b, BitArray(e,c)=1 if
the corresponding relationship (P–C or A–D relationship) between c and b is satisfied in the data. In addition, each element e′ in
outputList(e) is a potentialfinal result related to e, where b′ is a child/descendant node of b in query if the type of e′ is b′, as illustrated
in the following example.
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Example 5.1. See thequery and exampledocument in Fig. 7, theBitArrayof a1 is “11”, which shows that a1 has the corresponding two
children b1 and c2. Since c is the return node, a1 is associated with c2. Similarly, the BitArray of a2 is “11”, and is associated with c1.

Algorithm The main idea in GTJFast (see Algorithms 3 and 4) is the same as that in TJFast. That is, only the labels of leaf query
nodes are accessed, and the partial matching results are maintained in sets, and finally the results are output and merged.
However, the differences between GTJFast and TJFast are summarized as follows.

(1) In the procedure updateSet(S,e), GTJFast additionally bottom-up update the BitArray's of e and its ancestor branching nodes
as well.

(2) In the newprocedure emptyAllSets(q)which does not exist in TJFast, GTJFast clears the set Sq and recursively clears all sets Sq′,
q′∈ children(q). For each element e to delete in Sq, in the casewhere all bits in BitArray(e) are true, showing that the subtree
rooted with q is satisfied. If q is an output nodes, GTJFast adds e to the corresponding outputList, and if q is the top branching
nodes, GTJFast outputs elements in the corresponding outputList.

(3) In the procedure mergeAllPathSolutions(), unlike TJFast where the output elements may be useless to the final results, all
elements output in GTJFast are guaranteed to contribute to the final results. The merge algorithm is implemented by the
traditional sorted multiple-way merge join.

Algorithm 3 GTJFast.
1: for each f ∈ leafNodes(root)
2: locateMatchedLabel(f)
3: endfor
4: while (¬end(root)) do
5: fact=getNext(topBranchingNode)
6: advance(Tfact)
7: locateMatchedLabel(fact)
8: end while
9: emptyAllSets(root);
10: mergeAllPathSolutions();

Procedure emptyAllSets(q)
1: if (q is not a leaf node) then
2: for each child c of q do
3: emptyAllSets(c);
4: end for
5: end if
6: for Each element e in Sq do
7: emptySet(q, e);
8: end for

Procedure emptySet(q, e)
1: if (all bits in BitArray(e) are “1”) then
2: if (q is an output node) then
3: Add e to the output list of the nearest ancestor branching node of q;
4: end if
5: if (q is the top branching node) then
6: output the outputList(e);
7: end if
8: end if
Document Query and Set enconding

Fig. 7. Example of set encoding in GTJFast.
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Example 5.2. Consider the query and document in Fig. 8. g is the only return node. A set is associated with each branching node.
Table 1 shows the states of the sets when the getNext() repeatedly returns the current elements. In the first iteration, c1,d1,f1 and g1
are scanned, and c1 is return from getNext. As b1 has two children, its bitArray is “11”. After d1 is returned, b1 is deleted from Sb and
its existence is recorded in a1 (10), which shows that the subtree rooted with b1 satisfy the query. Consequently, f1, f2, g1 and g2 are
returned from getNext. When g1 is returned, it is an output node andwe add it to the result lists of e1 and e2. When g1 is returned, it
is transferred to Sa. As the BitArray of a1 is “11”. g1 is a final result. Note that we do not explicitly process g2, as it does not satisfy the
query path pattern.

Algorithm 4. updateSet(S, e).
Procedure updateSet(S, e)
1: clearSet(S, e);
2: add e to set S;
3: Assume that the query node type of S is q;
4: for ∀q′, s.t. q′ is a child of q do
5: if (∃e′ with type q′ s.t. e′ satisfy the relationship between q and q′)
6: BitArray(e, q′)=1;
7: else BitArray(e, q′)=0;
8: end for
9: if (all bits in BitArray(e) are “1”) then
10: if (q is not the top branching node) then
11: updateAncestorSet(q, e);
12: else
13: output the outputList(e);
14: end if
15: end if

Procedure updateAncestorSet (q, e)
1: Assume the nearest ancestor branching node of q is q′ in the query;
2: for any element e′ in Sq′ do
3: if (BitArray(e′, q) == “0”) then
4: Set BitArray(q′, q) be “1”;
5: Add all elements in outputList(e) to outputList(e′);
6: if ((all bits in BitArray(b) are “1”) ∧ (q is not the top branching node)) then
7: updateAncestorSet (q′, e);
8: end if
9: end if
10: end for

5.3. Analysis of GTJFast

In this section, we first show the correctness of GTJFast and then analyze its complexity. Before proceeding, we need a
preliminary lemma.

Lemma 5.3. In Algorithm GTJFast, suppose any element e is removed from set Sq, then e matches the subtree rooted with q if and only if
all bits in BitArray(e) are “1”.

Proof. In Procedure updateSet of Algorithm GTJFast, when any new element e is inserted to Sq, BitArray(e,q′)=1, where q′ is one
of children of q, if and only if there is an element e′ with the type q′ such that e′ and e satisfy the relationship between q and q′
Query Document

Fig. 8. An example to illustrate GTJFast.
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Table 1
Set encoding (g2 does not satisfy the query path pattern, so is excluded).

Returned node from getNext Set(a) Set(b) Set(e)

c1 {a1 (1 0)} {b1 (1 1)} NULL
d1 {a1 (1 0)} {b1 (1 1)} NULL
f1 {a1 (1 1)} {b1 (1 1)} {e1 (1 1)}
f2 {a1 (1 1)} {b1 (1 1)} {e2 (1 1), e1 (1 1)}
g1 {a1 (1 1)→g1} {b1 (1 1)} {e2 (1 1), e1 (1 1)}
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(lines 4–10). Therefore, when all bits of BitArray(e) are “1”, there exist elements to satisfy all P–C and A–D relationships for
element e. Furthermore, in Procedure updateAncestorSet, the matching relationships are recursively updated bottom-up to the
root in lines 2 to 10. Therefore, e matches the subtree rooted with q if and only if all bits in BitArray(e) are “1”. □

Using the lemma above, we can see that whether or not an element is a query answer is exactly reflected by the values of the
corresponding BitArray. Further, by lines 5–7, in Procedure emptySet, all correct solutions are output. Therefore, we have the
following result.

Theorem 5.4. Given a generalized tree pattern Q and an XML database D, AlgorithmGTJFast correctly returns all the answers for Q on D.

Proof. In Procedure clearSet of Algorithm GTJFast, any element e that is deleted from set Sb does not participate in any new
solution. Function getNext guarantees that any element e that matches a branching node and participates in any final answer
occurs in the set Sb. Thus the insertion is complete. In Algorithm GTJFast, suppose any element e is removed from set Sq, where q is
the top branching node in Procedure updateSet(q), then e matches the whole query if and only if all elements in outputList(e)
belong to final query answers by Lemma 5.3, as all bits in BitArray(e) are “1” in this case. So, we get the correctness of the
algorithm. □

While the correctness holds for any given GTP, the I/O optimality holds for a subset of queries. In these cases, GTJFast
guarantees that each output path solutions belong to final answers.

Theorem 5.5. Consider an XML database D and a generalized tree query Q with only ancestor–descendant relationships between
branching nodes and their children. The worst case I/O complexity of GTJFast is linear in the sum of the sizes of input and output lists. The
worst case space complexity is O(d2* |B|+d* |L|), where |L| is the number of leaf nodes in Q, |B| is the number of branching nodes in Q
and d is the length of the longest label in the input lists.

Proof. The proof is similar to that in Theorem 4.5. GTJFast makes an optimization for non-output nodes and optional axis, and its
space and I/O cost is no greater than GTJFast in the worst case. □

The above theorem holds only for query with ancestor–descendant relationships connecting branching nodes. When the query
contains parent–child relationships between branching nodes and their children, the worst case I/O complexity of GTJFast is still
linear in the sum of the sizes of input and output lists. As for memory space complexity, however, Algorithm GTJFast may contain
the whole document in the main memory and thus its space cost is O(m* |D|), wherem=max(d2,|L|), where d is the length of the
longest label in the input lists, and |L| is the number of leaf nodes in Q.

However, we claim that the worst case will not practically happen unlike the traditional main memory XML database that
always stores the entire DOM tree in the memory before processing [3,8,41]. GTJFast only stores document elements that satisfy
some part of GTP at runtime. More specifically, there are the following constraints on the data to be stored. First, the elements that
have labels matching with the query need to be stored. Second, when the selectivity of GTP is high, only small portion of elements
will be pushed in the set. Third, only elements for output nodes which satisfy the query subtree are stored. The elements which
satisfy the smaller subtree, but not the whole query tree, would be removed from the main memory when during the runtime.
Hence, it is unlikely to keep the entire document in the memory in practice. In addition, as shown in the next subsection, the space
cost of GTJFast is often smaller than state-of-the-art algorithm Twig2Stack [8] which also requires to buffer the whole document in
the worst case.
5.4. Comparison between GTJFast and Twig2Stack

To compare GTJFastwith Twig2Stack, two algorithms may contain the whole document in the main memory in the worst case.
But as illustrated in Example 6 and our experimental results, GTJFast takes much smaller space cost than Twig2Stack in most cases
due to the compact BitArray encoding. Furthermore, GTJFast reads labels of only leaf query nodes and significantly reduces I/O cost.
Finally, in the case when the main memory is limited and cannot load the whole document, GTJFast guarantees high quality of
intermediate results for a large class of queries as shown in Theorem 5.5. But Twig2Stack fails to provide such guarantee in theory
and practice with respective to the case of small memory.
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Example 5.6. Consider the query and data tree in Fig. 9. The output node is node a and note there is no answer in this example. But
Twig2Stack needs to buffer all b1 to bn and c1 to cm in themainmemory by postorder traversal. However, GTJFast only adds a1 and a2
to the set Sa and use BitArray to elegantly record the matching relationships of b and c, avoiding the storage of useless elements.
Therefore, although the worst case of both GTJFast and Twig2Stack requires to store the whole document in the main memory,
GTJFast may store less elements than Twig2Stack by the set encoding of BitArray to avoid the storage of useless nodes.

6. Tree pattern matching on tag+ level

Algorithms TJFast and GTJFast need to process each node in the input lists to check whether or not it is part of an answer to
the query (tree or GTP) pattern.When the input lists are very long, this may take a lot of time. In this section, we propose the use of
tag+ level data partition scheme on the input lists to prune data by levels and thus speed up this processing. We begin this section
by introducing our motivation.

6.1. Motivation

To understand themotivation of tag+ level partition, see the query and data tree in Fig. 10. There are two input streams Tc, Td in
the example XML data and their first elements are c1 and d1 respectively. In this case, TJFast cannot say c1 or d1 involves in a
solution without advancing other stream. Thus, optimality can no longer be guaranteed. To overcome this sub-optimality, our idea
is to separate c1,c2,d1, and d2 into four different streams so that the algorithm can “see” c1,c2,d1, and d2 simultaneously. That is, the
current cursors point to all four elements c1,c2,d1, and d2 simultaneously. Tag+ level partition is a refinement of data partition for
the previous tag partition. In tag+ level, two elements belong to the same stream if and only if they have the same element names
and level numbers.

6.2. Level pruning

To answer a twig query, before structural join, we explore the advantage of tag+ level partition and prune away those streams
in which all elements do not involve in the solutions. Given the knowledge of the level number, we safely skip streams that cannot
findmatching streams. For example, consider the query and data in Fig. 10 again. Based on tag+ level partition, there are five input
streams: (c,2),(c,3),(c,4), (d,2),(d,3), where the first field of each tuple denotes stream tag and the second denotes level number.
Observe that both (b,c) and (b,d) are parent–child relationships. Therefore, we may safely skip all elements (i.e. c3, c4) in stream
(c,4), since there is no (d,4) stream at all. Algorithm 5 formalizes this pruning process. This is a two-way pruning algorithm. In
method pruneParent, we use bottom-upway to prune the levels of parent nodes in queries according to their child levels. Then,
in method pruneChildren, we use top-down way to prune the levels of child nodes according to their parent levels.

It turns out that when the twig query contains more parent–child edges, the effect of level pruning is more significant. This is
because parent–child edges strictly specify the level difference between parent and child nodes. But with ancestor–descendant
edges, we only require the level number of descendant node to be greater than that of ancestor node, which dampens the effect of
level pruning.
Query Document

Fig. 10. Illustration to the necessary of tag+ level data partition. When TJFast scan c1 and d1, it cannot immediately determine whether any of them contributes to
final answers.
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6.3. Holistic algorithms TJFastTL and GTJFastTL based on tag+level

We next show how to extend TJFast and GTJFast algorithms based on tag+ level partition. In particular, when queries contain
only parent–child relationships in all edges, we may develop an algorithm to guarantee the I/O cost optimality. But when queries
include any ancestor–descendant edges, we cannotmake such good claim. Therefore, we describe two algorithms as follows based
on the query structure to achieve the respective best-effort fashion without compromising the optimality of holistic matching
results.

6.3.1. Query with only parent–child edges
Before evaluating the query, we first cluster streams to several matching groups so that only elements in the same group

potentially match the tree query. For example, consider the XML data in Fig. 10 again. There are two groups which likely match the
query. One is (c,2),(d,2) streams, and the other is (c,3), (d,3). But, for example, the combination of (c,2),(d,3) unlikely provides
any query solution.

Algorithm 5 Level pruning.
/* Assume that at the beginning of program, levels(n) is a set to contain all level numbers of tag n. At the end, levels(n) contains only
level numbers that likely participate in query answers.*/

1: pruneParent(root)
2: pruneChildren(root)

Procedure pruneParent(n)
1:if isLeaf(n) then return
2:for ni ∈ childNodes(n) do
3: pruneParent(ni)
4: if (ni, n) is a parent–child edge then
5: delete elements in levels(n) that cannot find child level in levels(ni)
6: else
7: delete elements in levels(n) that cannot find descendant level in levels(ni)
8: end if
9: end for

Procedure pruneChildren(n)
1: if isLeaf(n) then return
2: for ni ∈ childNodes(n) do
3: if (ni, n) is a parent–child edge then
4: delete elements in levels(ni) that cannot find parent level in levels(n)
5: else
6: delete elements in levels(ni) that cannot find ancestor level in levels(n)
7: end if
8: pruneChildren(ni)
9: end for

The only changes of algorithms are in line 8 and line 17 of getNext function. In line 8, since there is only one element to match
branching node n, we do not use max function and directly let ei=MB(ni,n). In line 17, emin=emax means all ei are the same
element. Recall that Algorithm TJFast (and GTJFast) can only ensure that all ei have ancestor–descendant relationships, which
possibly causes its sub-optimality for some queries. But in the current scenario, since all ei are identical, emin matches branching
node n in the path solutions of current element of each stream Tfi. Therefore, when query contains only parent–child edges, TJFastTL
(and GTJFastTL) guarantees that each intermediate path solution contributes to final query answers.

Algorithm 6 getNext of TJFastTL and GTJFastTL.
/* This following algorithm is used to evaluate query with only parent–child edge. */
Function getNext(n)

1: if (isLeaf(n)) then
2: return n
3: else
4: for each ni ∈ dbl(n) do
5: fi=getNext(ni)
6: if (isBranching(ni) ∧ empty(Sni

))
7: return fi
8: ei=MB(ni, n)
9: end for
Please cite this article as: J. Lu, et al., Indexing and querying XML using extended Dewey labeling scheme, Data Knowl. Eng.
(2010), doi:10.1016/j.datak.2010.08.001

http://dx.doi.org/10.1016/j.datak.2010.08.001


16 J. Lu et al. / Data & Knowledge Engineering xxx (2010) xxx–xxx
10: max=maxargi{ei}
11: min=minargi{ei}
12: for each ni ∈ dbl(n) do
13: if (∀e ∈ MB(ni, n) : e∉ ancestors(emax))
14: return fi
15: endif
16: end for
17: if (emin==emax) updateSet(Sn, emin)
18: return fmin

19: end if

6.3.2. Query with parent–child and ancestor–descendant edges
To evaluate a query with both parent–child and ancestor–descendant edges based on tag+ level partition, we simulatemultiple

streams with the same tag to one sorted stream to reuse TJFast (and GTJFast) algorithm. In particular, our idea is that during query
pattern matching, we always retrieve the minimal element in all streams with the same tag name so that multiple streams work
like a single sorted stream. This can be done by storing the head element of each stream in the main memory and maintaining a
min-heap data structure to efficiently retrieve their minimal one. Therefore, TJFast (and GTJFast) can be reused to evaluate query in
this new scenario.
6.4. Analysis of TJFastTL and GTJFastTL

In the section, we show the correctness of TJFastTL and GTJFastTL to analyze the efficiency.

Theorem 6.1. Given an XML tree query Q and an XML database D, Algorithm TJFastTL and GTJFastTL correctly returns all answers for
Q on D.

Proof. There are two cases. (1) When queries contain only parent–child edges, we use Algorithm 6 to evaluate it. Here the key
difference between TJFastTL (GTJFastTL) and TJFast (GTJFast) is in line 17 of getNext, where TJFastTL (GTJFastTL) pushes emin to set
Sn only if emin=emax. We now show the correctness of this step. Based on tag+level partition, elements with the same tag name
but different level numbers have been separated to different streams. Thus, it is impossible that there exists an element e0 such
that e0 is an ancestor of emax and e0 involves in query answers. (2) The second case is that when query contains both parent–child
and ancestor–descendant edges, we reuse TJFast (GTJFast) by simulatingmultiple streams with the same tag to one sorted stream.
The correctness is obvious if the original algorithms are correct. □

While the correctness holds for any kind of query, the I/O optimality of TJFastTL holds for two cases: (i) only parent–child
relationships in all edges; and (ii) only ancestor–descendant relationships in branching edges. That is, TJFastTL broadens the
optimal class of TJFast by including queries with only parent–child edges.

Theorem 6.2. Consider an XML database D and a tree query Qwith (i) only parent–child relationships in all edges or (ii) only ancestor–
descendant relationships between branching nodes and their children. The worst case I/O complexity of TJFastTL (and GTJFastTL) is linear
in the sum of the sizes of input and output lists.

It is worthy to note two advantages of algorithms based on tag+level over ones based on the traditional scheme: (1) TJFastTL
and GTJFastTL typically scan less elements than TJFast and GTJFast by using level pruning; and (2) TJFastTL (GTJFast) shows a larger
query class to guarantee the I/O optimality than TJFast (GTJFastTL).
7. Experimental evaluation

7.1. Experimental setup

7.1.1. Testbed and data set
We implemented eight XML tree patternmatching algorithms: TJFast, TJFastTL, GTJFast, GTJFastTL, TwigStack [5], TwigStackList

[26], iTwigJoin [10] and Twig2Stack [8] in JDK 1.4 using the file system as a simple storage engine. TJFast, TJFastTL, GTJFast and
GTJFastTL, which are novel algorithms proposed in this article, are based on extended Dewey labeling scheme, and the other four
use region encoding labeling scheme.

The reason that we choose these four existing algorithms for comparisons is that TwigStack, TwigStackList, iTwigJoin and
Twig2Stack are efficient for different applications. TwigStack [5] is very efficient when query contains only ancestor–descendant
relationships. TwigStackList [26] is efficient on answering queries with parent–child relationships. Unlike the above two
algorithms, which partition elements to one stream according to their tags alone, iTwigJoin [10] is a general twig join algorithm,
which can be used on different data partition approaches. Ref. [10] used two data partitions: tag+ level and prefix path streaming
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Table 2
XML data sets.

XMark Random DBLP TreeBank

Data-size(MB) 582 90 130 82
Nodes(million) 8 5.1 3.3 2.4
Max/avg depth 12/5 10/5.1 6/2.9 36/7.8
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(PPS). Such refined data partition strategies enable iTwigJoin to reduce I/O cost by pruning irrelevant data streams. Finally,
Twig2Stack [8] is proposed to process generalized XML tree pattern queries.

All experiments were run on a 1.7G Pentium IV processor with 768 MB of main memory and 2 GB quota of disk space, running
windows XP system. We use four different datasets including two synthetic and two real datasets [40]. These datasets differ from
each other in terms of structure-complexity, data-size and data-distribution. Our goal in choosing these diverse sources is to
understand the effectiveness and efficiency of our algorithms in different real world environments. Table 2 summarizes the
characteristics of each data set.

XMark The first synthetic data is the well-known XMark benchmark data [42] (with factor 5), which describes information for

an Internet auction website. The data set has about 8 million nodes and the average depth is 5.

TreeBank We obtained the TreeBank data set from the University of Washington XML repository [16], which annotates
naturally-occurring text for linguistic structure. Tags in Treebank are recursive and highly nested. The data set has the
maximal depth 36 and more than 2.4 million nodes.

Random We generated random data trees using two parameters: fan-out, depth. The fan-out of nodes in data trees uniformly
vary in the range of 2–100. The depths of data trees vary from 10 to 100. We use ten different labels, namely: A1,A2,...,A10 to
generate the data sets. The node labels in the trees are uniformly distributed. The random data has the average depth 5.1
and contains more than 5.1 million nodes.

DBLP DBLP data is a well-known public data set, which contains bibliographical data and has relatively flat structure. The
average depth is only 2.9.

7.1.2. UTF-8 encoding
In our experiments, extended Dewey labels are not stored by the dotted-decimal strings displayed (e.g. “1.2.3.4”), but rather a

compressed binary representation. In particular, we used UTF-8 encoding as an efficient way to present the integer value, which
was proposed by Tatarinov et al. [37]. In UTF-8, a variable number of bytes are used to encode different integer values. Smaller
values use a smaller number of bytes. For example, if the value is smaller than 1,111,111 (by decimal 27=128), it is encodedwith a
single byte 0xxxxxxx where x represents a bit used for value encoding. The value between 1,111,111 (27) and 11,111,111,111
(211) are encoded with two bytes 110xxxxx 10xxxxxx, and so on. To represent an entire label with UTF-8, each component of the
label is encoded in UTF-8 and then concatenated. This enables each label to be stored and compared as a variable length label,
without incurring a large space-overhead. Our experimental results show that compared to the naive implementation, where each
integer value is presented as a fixed number of bytes, the UTF-8 encoding can save about 50% space cost.

7.1.3. Labels size
We compare the labels size of four labeling schemes in Table 3. From this table, our first conclusion is that the size of the naive

extension, which directly presents the element-name sequence in number presentation ahead of the original Dewey labels, is
generally larger than that of our extended Dewey labeling scheme. Our second conclusion is that when the document tree is
shallow and wide (i.e. DBLP), the size of extended Dewey is smaller than that of region encoding. But while the document tree is
deep (i.e. TreeBank), the size of region encoding is smaller. This is because extended Dewey is a variation of prefix labeling scheme,
whose size is closely related to the average depth of documents. Our third conclusion is that the size of extended Dewey is about
10%–30% more than that of original Dewey. As we will show in our experiments, it is worth using this additional space-overhead,
since it helps to improve the performance of XML twig pattern matching.

7.2. Performance analysis

7.2.1. Path queries
In the first experiment, we compare our algorithm TJFast with the previous work PathStack to match path pattern without

branching nodes. For this purpose we first use XMark benchmark data and four path queries2 shown in Table 4. Fig. 11(c) shows
the execution time for two algorithms. We also show the number of elements scanned and the size of disk files read by two
algorithms in Fig. 11(a, b).

An immediate observation from the figures is that TJFast is more efficient than PathStack. In particular, PathStack could perform
400% more disk I/Os than those required by TJFast (e.g. PQ2).
2 We choose these queries according to XMark benchmark queries in [42].
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Table 3
Labels size.

XMark Random DBLP TreeBank

Original Dewey(MB) 56.2 36.1 18.1 22.8
Region coding(MB) 71.9 45.2 21.6 23.3
Naive extension(MB) 92.9 55.8 27.7 41.9
Extended Dewey(MB) 72.6 43.3 19.5 28.7

Table 4
Path queries on XMark data.

Path Query

PQ1 /site/closed_auctions/closed_auction/price
PQ2 /site/regions//item/location
PQ3 /site/people/person/gender
PQ4 /site/open_auctions/open_auction/reserve
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In order to research the effect of query path length on TJFast and PathStack, we then use the random data set consisting of ten
different labels A1,A2,...,A10, and issue path queries of different lengths such as A1/A2/.../A10. Figure 11(d–f) shows the execution
times of both techniques, as well as the number of elements read and the size of disk files. Clearly, TJFast achieves considerably
better performance than PathStack. The performance of PathStack degrades significantly with the increase of the path length, but
that of TJFast is almost not affected at all.

7.2.2. Twig query pattern
We now focus on twig queries, and compare six holistic twig join algorithms TwigStack, TwigStackList, iTwigJoin, Twig2Stack

and TJFast, TJFastTL. We tested several XML queries on DBLP and TreeBank data (see Table 5). We chose these two data sets,
because they are two extremes of the spectrum in terms of the structural complexity, that is, DBLP is a highly regular and shallow
data, but Treebank is a highly irregular and deep data. The tested queries have different twig structures and combinations of
parent–child and ancestor–descendant relationships. In particular, queries TQ1,TQ2 contain only ancestor–descendant relationships,
while TQ4 contains only parent–child relationships. TQ3 contains only ancestor–descendant relationships between the branching
node and its children, but TQ5 contains both parent–child and ancestor–descendant relationships to connect the branching node.
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Fig. 11. PathStack versus TJFast using (a–c) XMark data and (d–f) random data.
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Table 5
Twig queries on DBLP and TreeBank.

Twig Data Query

TQ1 DBLP //article[.//sup]//title//sub
TQ2 DBLP //inproceedings//title[.//i]//sup
TQ3 TreeBank /S[.//VP/IN]//NP
TQ4 TreeBank /S/VP/PP[IN]/NP/VBN
TQ5 TreeBank //VP[DT]//PRP_DOLLAR_
TQ6 XMark //text[bold]/text//emph
TQ7 XMark //listitem[.//bold]/text[.//emph]/keyword
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7.2.2.1. TJFast vs. TwigStack. We first compare the performance between TJFast and TwigStack. From Fig. 12, we see that TJFast
outperforms TwigStack for all queries. We now analyze the query performance under two scenarios namely the cost of disk access
and the size of intermediate results.

7.2.2.1.1. Cost of disk access. Fig. 12(a) shows that TJFast read far fewer elements than TwigStack. For example, in TQ1,
TwigStack read 442,167 elements, but TJFast read only 2380 elements (over two orders of magnitude). This huge gap results from
the fact that TwigStack scans the elements for all nodes in the query, but TJFast scans only elements for leaf nodes.

7.2.2.1.2. Size of intermediate results. Table 6 shows the number of intermediate path solutions. The last column is the number of
intermediate solutions that contribute to final answers. An immediate observation is that TwigStack outputs many “useless” path
solutions when query contains parent–child edges. For example, in TQ3, TwigStack produced 702,391 intermediate paths, while
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Fig. 12. TwigStack,TwigStackList vs. TJFast.
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Table 6
Number of intermediate path solutions.

Query TwigStack TwigStackList TJFast TJFastTL Useful

TQ3 702,391 22,565 22,565 22,565 22,565
TQ4 2237 388 316 302 302
TQ5 10,663 9 9 9 5
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only 22,565 are useful. More than 95% intermediate solutions output by TwigStack are “useless” to the final answers. Note that,
unlike TwigStack, TJFast is optimal for queries TQ3, since the number of paths produced by TJFast is 22,565, which equals the
number of useful solutions.

7.2.2.2. TJFast vs. TwigStackList. For all queries, TJFast outperforms TwigStackList again (see Fig. 12). This can be explained by the
fact that TJFast reduces the I/O cost of TwigStackList by reading labels of only leaf nodes.

When queries contain parent–child relationships between the branching node and its children (i.e. queries TQ4,TQ5), both
TwigStackList and TJFast are sub-optimal. Their sub-optimality is evident from the observation that the number of intermediate
path solutions by TwigStackList and TJFast is slightly larger than the number of useful solutions.

7.2.2.3. TJFast vs. iTwigJoin. We now compare the performance between TJFast and iTwigJoin. iTwigJoin is also based on region
encoding labeling scheme, but it can be applied on different data partition strategies. Since [10] used two data partition strategies:
tag+ level and PPS, we compare both with TJFast (labeled as iTwigJoin-TL and iTwigJoin-PPS, respectively).

Performance results and the number of elements read for iTwigJoin-TL, iTwigJoin-PPS and TJFast on DBLP and TreeBank data
are shown in Fig. 13. As shown in this figure, we can see that for all queries, TJFast is again more efficient than iTwigJoin-TL
and iTwigJoin-PPS. Although iTwigJoin uses the refined data partition strategies and scan less elements than TwigStack and
TwigStackList, the number of elements processed by iTwigJoin is still more than that by TJFast.

Interestingly, the performance of iTwigJoin-PPS is fairly bad for all queries in TreeBank data (i.e. TQ3, TQ4 and TQ5). This can
be explained that TreeBank is a deep and irregular data, which leads to a great number of streams and thus significantly increases
the CPU cost. This result shows that PPS partition is not suitable for deep data set. This also explains the reason why we do not
combine PPS data partition with our extended Dewey labeling scheme in this paper.

7.2.2.4. TJFast vs. TJFastTL. We now compare the performance between TJFast and TJFastTL. TJFastTL is based on extended Dewey
labeling scheme and it uses tag+ level data partition strategy. Fig. 14(a) shows that TJFastTL always read fewer elements than
TJFast for seven twig queries. This is because TJFastTL uses level information to prune some useless streams. For example, in TQ4,
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Fig. 13. iTwigJoin vs. TJFast.
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TJFastTL accesses only 736 elements, but TJFast needs to access 115,864 elements. This also explains the better performance of
TJFastTL than that of TJFast in Fig. 14(b).

As mentioned in Theorem 6.2, unlike TJFast, TJFastTL is optimal for queries with only parent–child edges. This result can be
confirmed by TQ4 in Table 6, which contains only parent–child relationships in all edges. For this query, TJFast outputs 316
intermediate path solutions, but TJFastTL outputs only 302. Notice that, for TQ4, the number of final useful path solutions is also
302. This observation shows that unlike TJFast, TJFastTL is an I/O optimal algorithm for TQ4.

7.2.2.5. TJFast, TJFastTL and Twig2Stack. As the final experiment in this section, we compare the performance among TJFast,
TJFastTL and Twig2Stack. Twig2Stack generalizes TwigStack algorithm to handle queries by using a novel hierarchical stack
encoding to represent the twig results in main memory. Fig. 14(a) shows that TJFast and TJFastTL always read fewer
elements than Twig2Stack for seven twig queries, which is easily to understand, as Twig2Stack use the same labeling scheme
as TwigStack. Fig. 14(b) shows the evaluation results of three algorithms with respect to the execution time. Interestingly,
we find that the performances between TJFast and Twig2Stack are close (which is consistent with the results in [8]), but
TJFastTL is always the winner in this competition. Twig2Stack reduces the path merging cost using the compact hierarchal
encoding, but suffers from the large input cost, TJFast saves input cost since it only needs to access the elements
corresponding to the leaf query nodes. But TJFastTL is always the best one as it prunes away many irrelevant elements to
significantly reduce I/O cost.

Note that TJFast and TJFastTL algorithms developed in this article are dedicated for reducing I/O cost of query processing. It is
possible to extend both algorithms to further explore the available main memory to buffer more intermediate results for
optimization. An optimized set encoding to compactly contain intermediate results is certainly a promising future direction to
explore.

7.2.3. Generalized XML Tree queries
We now make experiments on generalized XML tree pattern queries, and compare three holistic join algorithms GTJFast,

GTJFastTL and Twig2Stack [8]. We tested six XML queries on XMark and TreeBank data (see Fig. 15). The tested queries have
different generalized XML tree structures and combinations of return nodes, optional return nodes, mandatory axis and optional
axis.

7.2.3.1. GTJFast vs. GTJFastTL. We now compare the performance between GTJFast and GTJFastTL. GTJFastTL is based on extended
Dewey labeling scheme and it uses tag+ level data partition strategy. Fig. 16(a) shows that GTJFastTL always reads fewer elements
than GTJFast for six twig queries. This is because TJFastTL uses level information to prune some useless streams.

7.2.3.2. GTJFastTL vs. Twig2Stack. Finally, we compare GTJFastTL with Twig2Stack, which is a recent proposed algorithm for
generalized tree pattern. As shown in Fig. 16, GTJFastTL achieves better performance than Twig2Stack. GTJFastTL maintains the
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BitArray in themain memory and avoids the output of useless results. In addition, the level pruning in GTJFastTL avoids the scan of
many useless elements.

7.2.4. Summary
According to the experimental results, we draw the following three conclusions.

1. TJFast significantly outperforms TwigStack, TwigStackList and iTwigJoin under all settings (including shallow and deep
documents, path and twig queries, branching and non-branching wildcards queries). The improvement is due to the facts that
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TJFast only scans labels for query leaf nodes. Algorithms on region encoding are comparable to TJFast only when the number of
elements for all internal query nodes is very small.

2. Partitioning data by tag+ level is a new source of speedup for holistic twig join, since it can further decrease the number of
elements scanned and the size of intermediate results, especially when the query twig contains only parent–child relationships.

3. Generalized tree pattern matching algorithms, GTJFast and GTJFastTL, exploit the property of non-return nodes and use the
BitArray to maintain the intermediate matching results to significantly reduce the output of useless path solutions.

8. Related work

Labeling schemes Dewey ID labeling scheme comes from the work of Tatarinov et al. [37] to represent XML order in the relational
datamodel, and to showhow this labeling scheme can be used to preserve document order during XML query processing. O'Neil et al.
[32] introduced a variation of prefix labeling scheme called ORDPATH. Unlike our extended Dewey, the main goal of ORDPATH is to
gracefully handle insertion of XML nodes in the database. The main idea of ORDPATH is to use only positive, odd integers to label
elements in an initial load and even and negative integers component values are reserved for later insertions into an existing tree.

The region encoding is considered as the work of Consens and Milo [13], who discussed a fragment of PAT text searching
operators for indexing text database. Then Zhang et al. [47] introduced it to XML query processing using inverted list. Recently,
many researchers [6,23,36,44,46,49] have begun to design a dynamic XML labeling scheme on the context of frequent inserting
and deleting data.

Query processing algorithms Holistic XMLmatching algorithms are prevalent for matching pattern queries over stored XML data.
They demonstrate goodperformance due to their ability tominimize unnecessary intermediate results. In particular, N. Bruno et al. [5]
proposed a holistic twig join algorithm, namely TwigStack. Lu et al. [27] researched how to answer an ordered twig pattern based on
region encoding. Chen et al. [10] proposed an algorithm iTwigJoin,which is still based on region encoding. But unlike the previouswork,
iTwigJoin can be applied on different data partition strategies (e.g. Tag+Level and Prefix Path Streaming). Jiang et al. [17] proposed a
general holistic algorithmcalled TSGeneric+basedon indexes built on element labels. Theirmethod can “jump” elements andachieve
sub-linear performance for selective queries. But for evaluating queries with parent–child relationships, TSGeneric+still may output
many “useless” intermediate results. Jiang et al. [16] also studied the problem of processing queries with OR predicates. BLAS by Chen
et al. [11] proposed a bi-labeling scheme: D-Label and P-Label for accelerating parent–child relationship processing. Their method
decomposes a twig pattern into several parent–child path queries and then merges the results.

Yang et al. [45] proposed the idea of the combination of path index table and Dewey labels. Similar to our TJFast, to answer a
twig query, their method also can reduce I/O cost by accessing only the labels of leaf query nodes. But unlike TJFast, their algorithm
did not fully explore the nice property of Dewey labels and only modified one procedure in TSGeneric+. So similar to TSGeneric+,
their algorithm is still not efficient for processing queries with parent–child relationships. Additionally, the recent works of Zhang
et al. [48] and Koloniari et al. [18] begin to research the distributed XQuery and XPath processing.

The preliminary idea of extended Dewey labeling scheme and the TJFast algorithm appeared in [29]. We make the new
contributions in this article by proposing three novel algorithms TJFastTL, GTJFast and GTJFastTL to handle generalized tree pattern
queries with optimization, and providing comprehensive analysis and experiments to compare those proposed algorithms.

To analyze the space complexity of processing XML twig queries, Shalem et al. [35] showed that the upper bound of full-fledge
queries (i.e. queries which only require to return output nodes) with P–C and A–D edges is O(D), where D is the document size.
Those results are consistent with our research, but our research in TJFast and GTJFast algorithms show a large sub-query class with
A–D and P–C relationships to guarantee the small space cost which is quadratic to document depth.

Finally, ViST and PRIX [39,34] transform both XML data and queries into sequences and answer XML queries through
subsequence matching. While their methods avoid join operations in query processing, to eliminate false alarm and false dismissal,
they resort to post-processing(for false alarm) andmultiple isomorphism queries processing[38](for false dismissal), both of which
are time consuming.

9. Conclusions and future work

XML tree pattern matching is an important issue in XML query processing. In this article, we have proposed TJFast as an efficient
algorithmto address this problemusing anovel labeling scheme: extendedDewey. Although the ideaofDewey labeling scheme is notnew,
extending it to efficientlyprocessXML twigpatternmatching is nontrivial. This is becausebasedon theDewey labeling scheme,wecannot
know the element names along a path. To answer a tree query, we need to access the labels of all query nodes. Considering the fact that
prefix comparison is less efficient than integer comparison, the performance of algorithmwith the original Dewey is usuallyworse than that
with region encoding. However, owing to our extension, TJFast only needs to access labels of leafnodes to answer queries and significantly
reduce I/O cost. Furthermore, to efficiently evaluate generalized XML tree patterns, we propose GTJFast to compactly represent the
intermediatematching results and avoid the output of non-returnnodes. In addition, this article alsomakes the contributionbyproposing
thealgorithmTJFastTLandGTJFastTLbasedon tag+ leveldatapartition strategy toavoid the scanofuseless elements. Finally,wemade the
comprehensive experimental results to show that our set of XML tree patternmatching algorithms are superior to existing approaches in
terms of the number of elements scanned, the size of intermediate results and query performance.

Exciting follow-up research can be centered around improving efficiency of querying algorithms and labeling scheme.One interesting
and intriguing problem is to handle the large size of labels after frequent skewed insertions for dynamic XML documents. A promising
approach for solving the problemwould be to encode each label using compact dynamic binary string (CDBS) in [25], which use binary
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strings to compactly represent the order and handle updates. Another topic of interest is to investigate how to use some index structures
(e.g. a variant of B+tree) to further speedup the query processing based on extended Dewey labeling scheme. Themain advantage of our
algorithms proposed in this article is to access elements for only leaf query nodes and thus reduce I/O cost. We can leverage index
structures to further reduce I/O cost by accessing only part of elements for leaf query nodes. But we should respect the trade-off that
indexing data introducesmore cost on index storage and internal nodes traversal. Our flexibility in this balance comes from our ability to
create a smaller B+tree. The current preliminary idea is tomine twig query log to find the pathswhich are queried intensively and index
those elements from frequent paths by B+tree. We treat the detailed pattern mining and index construction algorithms as our future
work.
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