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We propose a new approach to the design of relational database schemes. The main features of the 
approach are the following: 

(a) A combination of the traditional decomposition and synthesis approaches, thus allowing the use 
of both functional and multivalued dependencies. 

lb) Separation of structural dependencies relevant for the design process from integrity constraints, 
that is, constraints that do not bear any structural information about the data and which should 
therefore be discarded at the design stage. This separation is supported hy a simple syntactic test 
filtering out nonstructural dependencies. 

(cl Automatic correction of schemes which lack certain desirable properties. 

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design-normal forms, 
sehmo and subschema 

General Terms: Design, Theory 
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1. INTRODUCTION 

We use the general framework and the concepts as developed by the classic 
design theory during the last decade [4, 11, 15, 16, 19, 22, 25, 271. A universal 
database scheme is a collection of attributes (a uniuerse) and a collection of data 
dependencies. The problem addressed by the theory is how one can derive a 
database scheme with certain desirable properties from a given universal scheme. 
A database scheme is a collection of subschemes of the universe that contains all 
the attributes. Among the properties considered in the literature are those of 
preservation of dependencies; normal forms such as 3NF, BCNF, and 4NF (261; 
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schema independence [22]; acyclicity [16], and so on. Unfortunately, of this variety 
of goals 3NF is the only goal always achievable within the classic framework 
[ll, 15, 23, 241. 

The common characteristic of all the classical approaches to database design 
is that the initially given attributes and dependencies are left intact during the 
design process. Further, all the specified dependencies are assumed to have equal 
rights to guide the design procedure. Such an approach suffers from several 
drawbacks. The first concerns the method for deriving the database scheme. For 
that purpose two different methods have been proposed. One of them is scheme 
synthesis 1111; the other, known as scheme decomposition, was proposed by Codd 
and generalized by Fagin [15]. Scheme synthesis works well in the context of 
functional dependencies (FDs), while scheme decomposition is suited for multi- 
valued dependencies (MVDs). So far, the two approaches are considered to be 
incompatible. 

The success of a design theory depends on its ability to supply satisfactory 
answers to the situations that inherently need different types of dependencies. 
Different researchers tried to cope with the case where MVDs and FDs are 
brought together. Lien (191 adheres to the decomposition approach, considering 
the FDs as MVDs, and neglects the different semantics of FDs and MVDs. 
Melkanoff and Zaniolo 1271 also tried to cope with the problem, giving first 
priority to the notion of faithful representation of dependencies. However, both 
methods are unsatisfactory. First, they fail when the MVD-set is not conflict-free 
[19]. Second, neither approach explains the roles of different types of depend- 
encies and how they influence the design process. 

The second drawback is the assumption of a fixed environment; that is, the 
assumption that the set of attributes and the set of dependencies are fixed. 
Typically, in practical database design, the initial specifications are not preserved, 
and new attributes and dependencies are added or deleted by the designer in the 
course of the design process. Such an activity can be viewed as tuning the initially 
obtained specifications to better reflect the designer’s intention. The tuning is 
necessary because it is common that the initial specifications may miss some 
important information; also, they may contain some details irrelevant to the 
structuring of data. The third issue is that the classical theory neglects to 
distinguish between dependencies that reflect structural properties of the data 
and those that are merely integrity constraints. 

In this paper we restrict the class of data dependencies to FDs and MVDs. It 
is widely understood that this is far from being enough to specify a reasonably 
sophisticated database. Nevertheless, the design problem turned out to be difficult 
even for such a restricted class of dependencies. In the past ten years this problem 
has been attacked many times [4, 15, 19, 271, yet no solution agreeable to a 
majority of researchers has been found. We believe that the method described in 
this paper provides such a solution. Our approach takes into consideration the 
different roles of FDs and MVDs, and works well if both types are given. It 
incorporates both the synthesis and decomposition approaches and employs ideas 
about scheme corrections [7, 171. 

Although we consider only a restricted class of dependencies, our belief is that 
the general ideas of the approach are pertinent to the design problem as a whole, 
and can serve as a framework for future research in this area. 
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The paper is organized as follows. In Section 2 we introduce some basic notions 
and notation used in the paper. In Section 3 we discuss the semantic role of 
dependencies in the design process. Section 4 presents the ideas behind our 
approach and the design algorithm. In Section 5 we compare our method with 
other methods and give the examples. Section 6 concludes the paper. 

2. PRELIMINARIES 

We assume that the reader is familiar with the theory of FDs, MVDs, and join 
dependencies (JDs), and with the notions of third (3NF) and fourth (4NF) 
normal forms on the level of [26]. We also assume that the reader is familiar 
with acyclic database schemes [6, 161. 

For the MVD-set (X - Vi)i = 1, . . . . n) we shall often write X +-+ S, 
where S = ] VT) i = 1, , n}. Alternatively, we write X - V,)...)V,instead 
of X -u S. As usual, DEPn(X) denotes the dependency basis of X with respect 
to (abbr. w.r.t.) the dependency set D, and X5 denotes the closure of X w.r.t. the 
FDs implied by D. We omit the dependency set if it is obvious or immaterial. For 
future reference we bring Beeri’s algorithm [2] for computing DEPD(X) and X5 
when D = M U F consists of MVDs of M and of FDs of F. 

DEPM&X) is computed by refining P, a candidate partition for DE&‘(X), as 
follows: Start with P = (U - X). Then apply the following rule until no more 
changes to P are possible: If Y is in the partition, S - RisinMUF(anyFD 
5 -A E F is treated as an MVD S -A), and S Al Y = 0, then replace Y by 
Y rl R and Y - R. If P is known to be a candidate partition and S-R changes 
P in this way, then we say that S - R refines P. The algorithm terminates 
when P cannot be refined any more. This final partition is DEP,&X), [2]. To 
get X&w, first compute DEPM~F (Xl and then pick up those singleton elements 
(A} E DEP.L,JX) such that (s.t.) S + A is in F. X&or consists of X and all 
such singletons [2]. 

An MVD of the form X ++ DEP(X) is called fuR [6], and a set of MVDs 
containing only full MVDs is called a set of full MVDs. If D is a set of FDs or 
MVDs, we denote by LHS(D) the set of left-hand sides (LHS) of the members 
of D. Without loss of generality (w.1.o.g.) we assume throughout the paper that 
all the FDs are of the form X -+ A, where A is an attribute. 

If I (resp. t) is a relation (resp. tuple) over a set of attributes U and X C U, 
then I[X] (resp. t[X]) will denote the projection (resp. restriction) of I (resp. t) 
on X. Finally, we note that it is the usual practice in database theory to write 
XY for X U Y, where X and Y are sets of attributes. 

3. THE ROLE OF DEPENDENCIES IN DATABASE DESIGN 

Consider the MVD X-H V ) W. Intuitively, it denotes the fact that there is no 
close relationship between the attributes in V and Wand, possibly, there is some 
relationship between X and V and between X and W. For instance, the MVD 
PtTSOll tf Child ) pro&et states that persons and their children are related and 
that persons and the projects they work on are related. It also states, though, 
that there is no relationship between a child and a project except for the indirect 
connection via a person that may be the father of the child and is currently 
working for the project. 

This explains the drawback to the approaches that consider FDs as just MVDs. 
ACM Transactions on Database Systems, Vol. 11, No. 2, June 1986. 
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In fact, an FD is not a “pure” MVD, for it is not intended to represent the second 
aspect (the indirect relationship) of the semantics of an MVD. Let us extend the 
above example as follows. Assume the attributes are P(erson), C(hild), 
(home)A(ddress), Z(ip), and (pro)J(ect) with the obvious relationships between 
them. Let the dependencies be P - C 1 J, P---f A and A + Z. This implies the 
MVD P +-+ A 12 1 C (J. This MVD (by itself) seems to state that children, 
addresses, and zip-codes are only indirectly related. However, it is obviously not 
the case here. On the other hand, we can still be justified in inferring that children 
are not directly related to the projects. 

Another problem in scheme design is that the dependencies may represent not 
the presence or absence of relationships between attributes, but rather constraints 
which have little influence on the way the data should be structured. This 
distinction is due to [16], from which the following example is taken, slightly 
modified. 

Example 1. Suppose our attributes are C(ourse), T(eacher), R(oom), H(our), 
S(tudent), and G(ro&) with FDs C +T,TH+R,HS+R,HR+C,andCS 
+ G and MVD CT - HR ) GS. This MVD expresses the fact that a course 
may meet more than once a week and that any student attends all the meetings 
of the course he takes. Here HS + R expresses the physical fact that students 
cannot be in two places at once. From this and HR + Cone can derive HS --) C, 
which means that students’ time tables must be feasible, that is, no student is 
permitted to take courses whose meeting times clash. However, these restrictions 
on what students are permitted to do have nothing to do with the way the data 
is structured, they do not represent any new basic relationship between the 
attributes, only restrictions on the way the students attend the courses. 

The phenomenon illustrated by the above example is explained by the fact 
that an FD (as used in the classical design theory) is intended to express both a 
basic relationship and an integrity constraint. The “anomalous” FD of Example 
1 expresses only the second aspect. So it is better to say that it is a constraint 
which syntactically (but not semantically) appears as an FD. In summary, a 
dependency may express the following facts: 

(i) an integrity constraint, 
(ii) a basic relationship, 

(iii) an indirect relationship. 

Clearly, only (ii) and (iii) are significant in scheme design. We have seen that 
FDs always express (i) and sometimes (ii). Hence, an FD that does not express 
(ii) must be disregarded in the design process. Similarly, MVDs always express 
(i) and sometimes (iii) and (ii). Our contention is that the major semantic 
intention of MVDs is to express (iii). That is, in our view, the intention of an 
MVD X +-+ V 1 W (used as a means of data structuring) should be a represen- 
tation of the fact that there is no close relationship between attributes of V and 
W. However, there still may be some connection between X and V and between 
X and W. In this case, V and W would be indirectly related through X. 

The discussion above shows that syntactic specifications such as data depend- 
encies are not quite suitable as a description of structural information about 
data. The design process deals with database schemes (i.e., with the intentional 

ACM Transae‘ions on Database Systems. Vol. 11, No. 2, June 19.9s. 
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aspect of databases). It normally exploits information about the internal structure 
of schemes such as close relationships among the attributes, separation of 
attributes (i.e., indirect relationship). Though data dependencies were extensively 
used in design theory, their role in structural descriptions was not quite clear. 
Usually it was (implicitly) assumed that the role of the data dependencies as 
structural descriptors is implied hy their role as integrity constraints. Apparently, 
this is not so. 

The following observation supports this claim. Data dependencies, in their role 
as integrity constraints, are monotonic in the sense that the addition of new 
dependencies does not contradict the old ones (i.e., the extended set has a 
satisfying database). However, if we look at the structural role of the dependen- 
cies, they are no longer monotonic. For instance, the MVD C -A 1 B specifies 
a separation of A from B. However, when the FD A + B is added, it specifies the 
fact that A and B are closely related, which changes the structure suggested by 
the MVD. 

In summary, some of the dependencies are both structural descriptors and 
integrity constraints. We call them structural dependencks. Other dependencies 
are devoid of the structural aspect, and we call them nonstructural dependencies 
(or integrity constraints). Integrity constraints should be checked routinely during 
the database lifetime, but are irrelevant at the design stage. 

To avoid possible confusion we emphasize that in this paper our concern is the 
logical database design. There is a related activity, called physical database design, 
which deals with the indexing structure, clustering of records and parts thereof 
on disk pages, and so on. Dependencies ignored at the logical design level appear 
as input specifications to the physical design stage. Thus it is the latter stage 
where integrity constraints should be taken care of in order to facilitate their 
checking. 

In talking about the structural role of data dependencies we should keep in 
mind that some of the specified dependencies may be implied by others. As soon 
as one learns that a dependency d is an implied one, the feeling is that it is not 
as relevant to the design as the dependencies from which d was derived. There is 
a wide consensus in the database community that, for the logical design, one only 
needs dependencies from some minimal cover. Unfortunately, different covers 
may exist for the same dependency set. All classical methods are dependent on a 
choice of a particular minimal cover, which is another drawback, since different 
covers give rise to different designs. In the next section we provide a partial 
solution to this problem. 

4. HOW TO DESIGN 

4.1 The Decompositional Approach and the Splitting Graph 

We start with analysis of the decomposition approach, assuming that only MVDs 
are given. The basis of this approach is the separation principle of [4], and its 
declared goal is 4NF. We shall see that attaining 4NF does not solve the problems 
it is supposed to solve. After showing the drawbacks of 4NF we argue in favor of 
a better design goal based on the concept of splitting, introduced in [IS]. 

Let (U, Ml be a universal scheme with MVD-set M. From now on assume that 
M is a set of full MVDs. An MVD X --Y DEP(X) splits a set of attributes 
ACM Tmm8Etio”S on Database Systems, “0,. II, No. 2, June ,986. 
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Y c U if for some distinct V, W E DEP(X) both V n Y # 0 and W Cl Y # 0 
hold. Y is split by M if it is split by some MVD of M. 

Let X - V) W be an MVD. The idea underlying 4NF is that the set XVW 
should not be in one relational scheme, because this introduces redundancies and 
potential consistency problems [15]. Thus, in the decomposition approach, this 
MVD is used to decompose XVW into XV and XW. It can be used to decompose 
any scheme Y, provided that Y contains X. Hence, MVDs can be used to 
decompose schemes until 4NF is achieved. However, we note that once another 
MVD that splits X is used, then X - V 1 W may not be used in the decompo- 
sition process [19]. In such a case X - VI W imposes an interrelational 
constraint which may cause consistency problems. 

Another problem with the decomposition approach is that it may yield schemes 
whose attribute sets are split. Assuming M consists only of structural MVDs (in 
the sense of the previous section), then, if a pair of attributes A, B is split, we 
can conclude that A and B are not closely related. Putting them into one scheme 
violates the separation principle of [4]. Example 2 below shows that this may 
cause the same redundancy problems as in the case of the non-4NF schemes. 
Hence, in this case, 4NF does not achieve its goal. 

Example 2. ([23]) Let U = ATL, where a tuple atl means that A(uthor) a 
publishes T(itle) t in L(ocation) 1. Suppose there are the following MVDs: 
m,:A - TI Land m,:T -A ( L. The first MVD states that authors do not 
discriminate among locations, and stick to all of them (i.e. any author publishes 
all his papers in all the locations he uses to publish papers). The second MVD 
simply says that if a paper is written by more than one author, then the authors 
publish that paper in the same locations. 

Fagin’s decomposition algorithm may be applied in two ways, resulting in 
two different decompositions. If m, is applied first, then we obtain R, = AT, 
R2 = AL, and m2 is now inapplicable. If m2 is applied first, then the resulting 
schemes are R; = AT and R; = TL, and m, cannot he further applied. In both 
cases, R2 and Ricontain a pair of split attributes. Consider the following relation: 

!I 

A TL 

a, t, 1, 
01 t2 12 
a, t1 12 
01 tz 1, 

It satisfies hoth dependencies. If we choose the decomposition (AT, TL), then we 
have 

TL 

1 1 

A T 

r, = r* = t1 h 
01 t, t2 12 
a, t2 t1 12 

12 11 

ACM Transactions on Database Systems, “0,. 11, No. 2, June ,s*s. 
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We see that r2 is a Cartesian product of its projections on T and L. If we had 
more than one A-value in the original relation, then, for each A-value in the 
ATL-relation, the corresponding fragment of the 7%relation would be a Carte- 
sian product. Therefore, we have the same sort of redundancy that was supposed 
to be prevented by 4NF. Of course, the decomposition [AT, AL] has the same 
drawback. 

The assumption that attribute sets of schemes should not he split leads directly 
to the following concept. Let R = (RI, , R,) be a database scheme over the 
universal scheme (U, M). We say that R is in the split-free normal form (SFNF) 
if no Ri is split by M. 

It is shown in [6] that this property does not depend on the choice of cover for 
M, that is, if Mo+ = M+, then R is a SFNF scheme over (U, M) iff it is a SFNF 
scheme over (U, MO). From that observation it now easily follows that SFNF 
implies 4NF. Indeed, if R is in the SFNF then no MVD implied by M can 
decompose any of Ri, or else Ri is split by M. 

To obtain a SFNF database scheme we propose to use the splitting graph of 
[6] as the guide of the design process. The splitting graph SG(M, U) has U as a 
node set. Two nodes of SG(M, U) are connected by an edge iff the corresponding 
pair of attributes is not split by M. It is easily seen that the coarsest SFNF 
database scheme over (U, Ml is the scheme consisting of the maximal cliques of 
SG(M, U). (A set of nodes K of graph G is a clique if any pair of nodes of K is 
connected by an edge.) Thus, one might be tempted to use this scheme as an 
SFNF database scheme. 

Unfortunately, maximal cliques cannot always be used without loss of rep- 
resentation power of the scheme. In Example 2 the maximal cliques are 
R = {AT, L]. But the relation 

q A TL 

t 1 
,4 t’ 1’ 

cannot he stored into R without disconnecting the L-values from the values of 
the other attributes. Stated a little differently, this relation does not satisfy the 
JD associated with R, hence it is not equal to the join of its projections on the 
schemes of R. Such a loss of information does not occur if M is equivalent to a 
single join dependency [6]. If this is the case, then this JD is acyclic 16, 161, and 
the maximal cliques of SG(M, U) are precisely the constituents of this JD. 

Having shown the disadvantages of 4NF, we have introduced a stronger normal 
form and shown that it can be achieved when the given universal scheme has a 
conflict-free set of MVDs. However, schemes are not always acyclic, so we may 
have once more introduced a nicer normal form that is not always achievable. 
One of our goals in this paper is to provide evidence to support the claim that 
this normal form can be achieved in the databases that occur in practice. 

Let us then consider the situation when M is not equivalent to an acyclic JD. 
We say that M has a split-lhs anomaly [19] if at least one X E LHS(M1 is split 
by M. Otherwise, M is called a split-free set of (full) MVDs. M has an intersection 
ACM Transactions on Database systems. “0,. 11, No. 2, June ,986. 
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anomaly [7] if there are X, YE LHS(M) s.t. (X n Y) +-+ (DEP(X) fl DEP( Y)) 
B: M’ (DEP (. ,)) is a set of subsets of U, so the intersection on the right-hand 
side is the set of common elements of DEE’(X) and DEP(Y). 

It turns out [19] that M is equivalent to a single JD iff it has neither split- 
LHS nor intersection anomalies. After Lien 1191, we call such schemes conflict- 
free. 

In Section 3 we argued that only structural dependencies should be used in 
database design. The question is, however, how structural dependencies can be 
recognized syntactically. In the rest of this section we give a partial answer to 
this question (which is sufficient for our further considerations). 

We conjecture that in real-world situations LHSs of structural MVDs are not 
split (i.e., the split-LHS anomaly does not occur). A similar assumption was 
advanced in [23]. Of course, we refer only to the MVDs in a minimal cover. As a 
motivation, consider some structural MVD X -t) VI W. It expresses the fact 
that V and Ware indirectly related via X. It is unlikely that the intermediary X 
itself contains indirectly related attributes, for such a fact does not seem to be 
basic. 

This conjecture deserves further attention and study. As we show later, a 
scheme that satisfies this assumption can be converted to a conflict-free scheme, 
which supports our claim that SFNF can be achieved in practice. However, it is 
not a trivial observation about reality. Let us consider the following example 
where this does not seem to be the case. 

Example 3. Let the attributes be B(uyer), V(endor), P(roduct), and 
C(wrency). Assume the following MVDs: 

BV+-bPIC 
PC-B1 V 

The first MVD expresses the fact that buyers and vendors have agreements 
on sets of products and currencies s.t. a buyer can pay to vendor in any currency 
agreeable to themselves. The second MVD says that no one boycotts anyone. 
That is, if a buyer has an agreement about a product and a currency with some 
vendor and another vendor sells that product in that currency (to anybody else), 
then the buyer must have an agreement with the latter vendor also (and vice 
versa). We see that the LHSs of both MVDs are split. 

One possible explanation is that in the example the second MVD is a restriction 
on the trading policy of that community of buyers and vendors and is not 
structural. On the other hand, the first dependency seems more basic, as it 
represents such fundamental things as contracts between buyers and vendors on 
products and currencies. Thus, only the first MVD should be considered during 
database design. To a certain extent the choice to treat the second dependency 
as a constraint is mostly a matter of taste. However, our point is not the particular 
choice we made, but the fact that splitting of LHSs indicates that the given 
schema specifications are semantically problematic. 

Another way to look at the situation of this example was proposed by Sciore 
[23], who argues that very likely the designer’s specifications did not match his 
probable intention. A designer’s plausible intention might be that buyers are 

ACM Tlanseetions on Database Systems, “cd. 11, No. 2, June ,sss. 
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interested in certain products and can pay in several currencies. Symmetrically, 
vendors hold lists of products they sell and accept several currencies. Therefore, 
the following JD must hold: BP * PV* VC * CB. It is this JD that is the structural 
dependency that needs to be used for the design. Both of the above MVDs are 
implied by this JD, hence they are not basic facts and need not be used in the 
design process. Thus, assuming the second explanation, FDs and MVDs do not 
constitute an adequate set of schema specifications for that particular database, 
which puts this scheme beyond the scope of our method. 

Summing up, we postulate the following assumption: 

Assumption 1. If an MVD X --Y DEP(X) is structural, then X is not split 
by other structural MVDs. 

This assumption is not a syntactic definition of structuralness. A rough 
approximation of that concept should involve the notion of objects [16,25], and 
is beyond the scope of this paper. One cannot even use this assumption to find 
out whether a dependency is structural or not, since LHSs of such dependencies 
may be split by nonstructural ones. Nevertheless, this assumption can be used 
to detect a semantic problem with the dependency set as a whole. The correct 
set of structural dependencies can then be extracted using heuristics and a 
designer’s assistance. Detailed treatment of these questions is beyond the scope 
of this paper. 

4.2 Incorporating Functional Dependencies 

In this section we extend our model to support FDs as well. Let (U, M U F) be a 
scheme where F is an FD-set and M is a set of full MVDs. The previous discussion 
of the role of FDs and MVDs in the structuring of data shows that it is natural 
to use MVDs to separate clusters of attributes from each other. Unlike MVDs, 
the role of FDs is to express close relationships between the attributes. How does 
the incorporation of FDs affect the clusters? Suppose that A, V E DEP(X) and 
X + A hold, but X + V does not. In this case we cannot rule out a possible 
relationship between A and V. Indeed, if X + A denotes a close relationship, 
then the indirect relationship of A and V via X may be actually rather close (as 
in the example about persons, children, addresses, etc. of Section 3). Moreover, 
we cannot rule out a relationship between A and V even if, say, A transitively 
depends on X (again as in the example of Section 3, where Zip transitively 
depends on Person). From this discussion, the need for a separation of the use 
of FDs and MVDs in the design process becomes evident. Indeed, as we pointed 
out in the introduction, FDs are customarily associated with synthesis while 
MVDs are associated with decomposition. How to combine the methods is the 
subject of this section. 

Let us consider another problem that has not been treated satisfactorily in the 
literature. It is widely acknowledged that the design process begins by finding a 
minimal cover of a dependency set. When only FDs are given, there is, in a sense, 
a unique miminal cover [ll]. This is intuitively pleasing, since it implies the 
existence of a unique minimal set of basic facts. Unfortunately, MVDs do not 
enjoy this uniqueness property. It is interesting to note that if the set of MVDs 
satisfies Assumption 1, then uniqueness of a minimal cover is guaranteed [6]. 
ACM Transactions on Database Systems, Vol. 11, No. 2, June ,986. 
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This is yet another hint of the significance of this assumption. The lack of 
uniqueness of minimal covers for sets of MVDs is aggravated by the presence of 
FDs. We show below that a proper separation of FDs and MVDs eliminates this 
problem, again, when the MVDs satisfy Assumption 1. 

The solution we propose can be briefly described as follows. Since FDs 
represent close relationships, we should try to put attributes that are closely 
related to each other together. MVDs should be used to separate attributes that 
are only indirectly related. Thus the MVDs should he used to create clusters of 
attributes such that FDs are embedded in these clusters. This implies that we 
should use MVD-based decomposition to first create these clusters. At the second 
stage the FDs will be used to refine the clusters. Of course, to implement this 
approach, we have to show how to make sure that the FDs are indeed embedded 
in the clusters. This is dealt with in this section. In the next section we consider 
collections of clusters and their properties. 

To achieve the goal described above, we propose the following procedure [7]: 
For each X - DEP(X) E A4, replace X by X& and add the FD X + X,& 
to F. The resulting MVD-set will thus consist of all the MVDs X- DEP(x), 
where X = X& X E LHS(M). This transformation yields an equivalent 
scheme whose MVD-set has closed LHSs. We call such schemes LHS-closed. In 
the following, we state and prove properties of such schemes. In particular, we 
show that under suitable assumptions the FD and MVD sets in such schemes 
are separated from each other, so each can be used in a design method appropriate 
to it, without fear of side effects caused by the existence of the other set. 

The next proposition assures that nonsplitting is preserved by the above 
transformation: 

PROPOSITION 1. (171) If the LHSs ofM are not split, then the mrne holds for 
their closures. 

LEMMA 1. Let X be (M U F)-closed and V E DEP(X). Then, for TUJ A E V, 
X+Ai.simpliedbyMUF. 

PROOF. Trivial. 0 

So if a structural MVD X - VI IV holds and X is closed, then for any 
AO E V and B. E W, neither X + A0 nor X + BO holds. The situation here is 
different from that of the MVD P --t-) A 1 C of the example in Section 3. We 
could not rule out the relationship between A-values and C-values there because 
of the FD P + A. On the other hand, the situation here is similar to that of the 
MVD P - C I J (in the same example), where C and J are not directly related. 
Thus, for the MVD X --H VI W above, we can conjecture that no direct 
relationship exists between attributes of V and W. 

THEOREM 1. ([7]1 Let (U, M U F) be LHS-closed and X 5 U be (M u F)- 
closed. Then, LJEPmF(X) = DEP&X), that iz, the dependency basis of X w.r.t. 
MU F can be computed using M alone. 

THEOREM 2. Under the ammptions of Theorem 1, the maximal cliqm of 
SG(M, U) are (MU F)-closed. 
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PROOF. Let K be a maximal clique and f:K --f A be implied by M U F. 
IfA4K,thensomeMVDsplitsKA,LetitbeX-++V]WEMandVnK+ 
0, A E W. Since K is not split, K E VX. But then K ---t A implies X + A 
by an FD-MVD derivation rule.’ Since A 4 X, this contradicts the closedness 
OfX. 0 

Let X + A be a structural FD. It expresses a close relationship between the 
attributes of XA. According to the structural role ascribed to FDs and MVDs, 
XA should not be split by M. By Theorem 2, this is equivalent to the nosplitting 
of X. We thus argue the following assumption: 

Assumption 2. If X -+ A is structural, then X is not split. 

Our next theorem shows that if the LHSs of the FDs of Fare not split by M 
(which, by the assumption, holds if they are structural), then we achieve an even 
stronger separation of FDs and MVDs. 

THEOREM 3. Let (U, M u F) be LHS-closed and suppose the elements of 
LHS(F) are not split by M. Then, X + A E (M U F)+ iff X -f A E F+. Thus 
MVDs are not needed to establish FDs. 

PROOF. The “if” direction is trivial. For the “only if” part assume w.1.o.g. that 
X ---f A E (M U F)+ and A B X. The proof is by induction on the number of 
attributes in U - X. Let U - X = (A ]. By Beeri’s algorithm, since X ++ A E 
(M U F)+, there should be an FD Z +AEFs.t.AEZ.SinceX=U-]A}by 
assumption, it follows that Z & X. Hence X + A is implied by F alone. For the 
inductive step, suppose that for any X s.t. #(U - X) 5 R, X -* A E (M U F)+ 
implies X + A E F+. 

Suppose that #(lJ - X) = n + 1. To derive X + A, we must first compute 
DEPM&X) by refining the candidate partition for DEPDI&X) by FDs and 
MVDs of M U F. Since the order of applications of dependencies is immaterial, 
we apply M first, after which the candidate partition will become DEPDI(X). At 
that time only the FDs of F can possibly be applied to refine the partition.* 
Suppose Y-f B E F refines some V E DEPM(X). Then, by Beeri’s algorithm, 
B E V and Y n V = 0. Since Y is not split by M, it is inside some maximal 
clique K. By Theorem 2, B E K also. By [S], SG(M, U) = SG(M+, U), hence 
YB must not be split by M+, particularly by X ++ DEPM(X). Thus YB G XV. 
Since we have assumed that Y n V = 0, it follows that Y c X. If B = A, then 
we are done. Otherwise, consider X’ = XB. Clearly, X’ + A E (M U F)+ and 
#(U - X’) = n. By the inductive assumption, X’ + A E F+. It remains to note 
that, since Y c X c XB = X’, the pair of FDs Y q B and X’ + A (both of 
which are in F+) imply X -+ A E F+. 0 

Let FO be such that (M U FO)+ = (A4 U F)+. We call FO an M-couer of F. 

‘This rule says (cf. [S, rule FD-MVD2; 21, rule CZ]): from X - W, K - A, A E W, and 
Kn W=OinferX+A. 
‘When the first FD refines the candidate partition, the MVDs may again he activated to refine the 
partition even further. So we do not claim that DEPm,(X) can he computed by first applying MVDs 
alone and then FDs alone. 
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THEOREM 4. Let (U, M U F) be LHS-closed. An M-cover FO (of F) is embedded 
into the maximnl cliques of SG(M, U) ifj the elements of LHS(F,) are not split 
(by M). 

PROOF. The “only if” part is trivial. For the “if” part, let X + A E FO. Since 
X is not split, it is inside some maximal clique K. By Theorem 2, maximal cliques 
are closed, hence A E K. Cl 

In summary, assume that the LHSs of all given dependencies are not split. We 
have shown that the MVDs and FDs can be separated so that the FDs are 
essentially useless for deriving new MVDs, and vice versa. This was done by 
closing the LHSs of the initially given MVDs. The LHSs of the new dependency 
set also are not split. Hence there exists a cmique minimal cover, MO, consisting 
of full MVDs IS]. By Theorem 4, F is an embedded MO-cover. We propose to 
view the dependency set MO U F as a natural candidate cover to start with. Thus 
the problem of the nonuniqueness of minimal covers for MVDs and FDs is 
reduced to the similar problem for the FDs only. 

After this preliminary step we still have the problem of possible inadequacy of 
the decomposition into the maximal cliques of SG(Mo, V). This issue is addressed 
in the next section. 

4.3 How to Cope with Cyclic Schemes 
From now on, we posit Assumptions 1 and 2. Thus, we remove from the given 
scheme the dependencies whose LHSs are split, on the grounds that they are not 
structural dependencies. This still does not guarantee that decomposition will 
produce the maximal cliques of the splitting graph. Indeed, we have seen that 
nonsplitting is but one of two properties needed for that guarantee. We present 
here results to the effect that it is possible to wend the given scheme by adding 
new attributes and dependencies, so that the extended scheme satisfies both 
properties. Extension is used here in a strong sense-the projection of specifi- 
cations of the new scheme on the attributes of the old scheme is precisely the set 
of old scheme specifications. Thus, intuitively, we can interpret this as meaning 
that some of the relevant specifications may be missing from the old scheme. 
Fortunately, however, the scheme contains implicit information about what is 
missing, so we can make it explicit automatically. 

Let (Lr, M U F) be LHS-closed and let M contain only structural MVDs. By 
Assumption 1, the LHSs of M are not split. Thus, by Lien’s result [1.9], M fails 
to be equivalent to a single JD only if it has intersection anomalies. The problem 
of removing intersection anomalies was studied in 17, 81 and [17]. In the rest of 
this section we present an informal description of the method and its properties. 
The basic idea and the motivation for the method first appeared in [23]. 

Consider an intersection anomaly between a pair of MVDs mx:X +-+ 
V,l ] V.lX,l . . . ]X,andmy: Y~V,I...IV,IY,(...IYa.Toremoveit, 
we would like to add something like X fl Y - V, ] ] V, to our MVD-set. 
Unfortunately, a straightforward addition of this MVD will change the initial 
semantics of the scheme too drastically. A safer way is to assume that all the 
dependencies for the given set ofattributes were specified correctly, but that some 
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other specifications were missing. The formal notion corresponding to this 
approach is called schema extension. First, we need the following definition 
from [I]. 

The projection of an FD X + V or an MVD X -u V on a set of attributes S 
is defined to be X + (V n S) or X - (V rl S) if X C S; it is undefined if 
X g S (w.l.o.g., we can take projection in the latter case to be any trivial 
dependency, e.g., S---f S or S - S). For a dependency d, its projection on S is 
denoted by d[S]. For a set D of FDs and MVDs, the projection of D on S, denoted 
D[S], is {d[S] 1 d E D]. 

It was proved in [l] that projection of FDs and MVDs according to the 
definition above is a sound and complete inference rule. That is, if I is a relation 
over U, then Z[S] satisfies all and only the FDs and MVDs that are projections 
of dependencies that hold in I. It follows that for a scheme (U, M U F), an FD 
or MVD d is satisfied in the projection on S C U of all relations over U that 
satisfy M U F iff d is obtained by projection from a dependency in (M u F)+. 

A scheme (U, D) is called an extension of another scheme (U, D) if U C 0, - - 
D’ [U] = D+ and SAT((U, D))[U] = SAT((U, D)), where SAT((U, D)) is the 
set of all relation instances over U satisfying D and SAT((U, D))[U] stands for 
{r[U] I f~ SAT((U, D))]. Thus, by extending a scheme, we do not change the 
original semantics since the new scheme being restricted to the old set of 
attributes represents exactly the same information as that represented by the old 
scheme. However, (u, D) extends the scope of (U, D), and may introduce new 
relationships between the old attributes and the added ones. 

With this intention in mind and following Sciore’s original proposal, we enrich 
the scheme with a new attribute P J,,~ and replace the problematic MVDs above 
by the following three dependencies: 

mi: XPX,Y - v,I~~~Iv”Ix1I~~~Ix”, 
Ill;: ~~X.Y~~,l~~~lV”IY~I”~IY”, 

mP,,,: x f-l YPX,Y - V~I”.lV”. 
In this way the anomaly caused by mx and my will be removed. To ensure that 
the resulting scheme extends the original one, we add a pair of FDs, X --f Px,u 
and Y + Px,u. It is now obvious that, within the old set of attributes, all and 
only the old dependencies will hold, namely, mx and my. Nevertheless, several 
problems still exist. First, it has to be shown how PX,Y can be incorporated into 
the rest of the dependencies when nx and my are not the only dependencies 
specified in the scheme. Second, if there are intersection anomalies caused by 
other MVDs, it has to be shown that iterative use of the above basic step will 
eventually terminate and remove all the anomalies. The third problem concerns 
the semantic meaning of the new added attributes. The last issue is the uniqueness 
of the scheme resulting from the above process. All of these problems are resolved 
in [7, 8, 171. 

Before we describe the basic step of the transformation, we propose one more 
preliminary step-the removal of redundant MVDs from M (m E M is redundant 
if m E CM - ]m])+; M is nonredundant if it has no redundant MVDs). It is 
known that if a set of full MVDs M is split-free, then it has a unique minimal 
couer (see [7]). A scheme whose MVD-set is LHS-closed and nonredundant is 
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called P-reduced. We can now explain how an anomaly formed by a pair of 
MVDs can he removed. 

Transformation P 

Input: A P-reduced scheme (I,‘, MU F) and a pair of LHSs X, YE LHS(M). 
Output: A scheme (U’, M’ U F’) extending (U, MU F) in which Xjb.ur and Y&F. do 

not form intersection anomalies. 
1. Construct the new universe: U’ + U U (Px,,.J, where P,,, is a new attribute. 
2. Start with empty MVD-set M’ for the new scheme. Add an MVD which is supposed 

to remwe the anomaly between XP,,, and YP X,Y to the new scheme (as suggested in 
the above discussion): 

M’ + (m,,,:P,,(X il Y) --tt DEP(X) I-I DEP(Y)J. 

3. Introduce another FD expressing the fact that Px.,. “represents” X n Y: 
F’tFU (Px.y-txn Y). 

4. Incorporate Px,v into the rest of the MVDs. 
for each full MVD Z - V,I...IV.EMdcY 

(i) If either Z 1 X or Z a Y or there are distinct V, and V, in DEP(Z) et. X n V, 
#OandYnVj#O,thenput 

M’+M’UIZP~~VVV.I...IV.I 
F’ +F’U(Z+Px,y). 

(ii) Otherwise, there exists V; E DEP(Z) s.t. K n Xf 0 and V, n Y # 0. Then, 
M’+M’U(Z- v, I ” I V,Px,,l “’ I V.I. 

end 
5. make the MVDs in M’ full. 
6. make M’ nonredundant, 
7. output((U’, M’ U F’)). 

Let (U, M U F) be a P-reduced scheme and X, Y he a pair of LHSs that 
form an intersection anomaly. We denote the result of applying P to this pair by 
P((U, MU F); X, Y). 

We see that each application of P adds a new attribute Px.Y, a new MVD 
m,,,,, and some FDs. In addition, the old MVDs are transformed into the MVDs 
of the resulting scheme as described in step 4 of the algorithm. We say that these 
transformed MVDs are inherited from the original scheme (U, M U F). The new 
MVD, wx,a may make some of the inherited MVDs redundant. Redundant 
MVDs are removed in step 6. The importance of P stems from the following 
facts proved in [7]: 

(1) P((U, M U F); X, Y) is an extension of (U, M U F). 
(2) If Z E LHS(M), then if Z is as in (i) of step 4 of the algorithm above, then 

Z,&V = ZP,Y and DEPw~F(ZP~,~) = DEPM,~(Z); if Z is as in (ii) of 
step 4, then Z&QF. = Z and DEPwuF.(Z) is as described in (ii) of step 4. 

From the second fact it follows that DEP .MW (X&T) n DE&W W%,U) is 
a subset of DEP~w+npx,r ), hence XP,, and YP,,, do not form an intersection 
anomaly. 

'Note that the MVDs m.G and m+, mentioned earlier, will he added at that step (in (i)) when 2 = X 
or Y. 
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Example 4. Let U = ABDFG and let the MVDs be 

m,:A+-+FIGIBD 
m2:B-t-tFIGIAD 
ms:D++FIABG 

For future references, denote this scheme by %. Application of P to the first 
two MVDs introduces a new attribute P, adds the FDs A -S P and B --f P, and 
transforms the original MVD-set to the following: 

m::AP++FJGIBD 
m;: BP-U FIGlAD 
m;: D + FIABGP 
mp: P *FlGIABD 

Now the first pair of MVDs does not form an intersection anomaly (moreover, 
m; and m; are redundant, and hence will be removed in step 6). However, the 
last pair of MVDs still forms an anomaly. 

This example shows that a single application of P may not suffice. In order to 
remove all the anomalies, we have to apply P as long as there remain pairs of 
(nonredundant) LHSs which form intersection anomalies. We denote such an 
iterative application of P by P*. Of course, P* depends on the choice of particular 
pairs of LHSs used in each application of P. We omit these particular pairs of 
LHSs from our denotations because they will always be either clear from the 
context or unimportant. 

Example 4. (Continued) Further applying P to m; and mP, we end up with 
the MVD-set: 

m,:Qe F 1 ABDGP 
m;: PQ ---tf FlGlABD 

and the FD-set A + P, B ---f P, D + Q, P + Q. The MVD inherited from mj is 
redundant and therefore removed. Let us denote this scheme by R, 

It can easily be verified that RI is conflict-free and that it extends &. An 
astute reader may have already noticed that P can be applied to the scheme of 
Example 4 in different ways. We show this in the next example. 

Example 4. (Continued) If instead of applying P to ml and m2 in R,,, we used 
m2 and m3, the resulting scheme would have the following MVDs: 

m:: A -FIGIBDQI 
m;: BQ, -FIGlAD 

mQ,: QI - FIABDG 

and the FD-set would be B + Q1, D - Q1. 

The last application of P was not as efficient as before when we applied P to 
ml and m2. We are still left with two anomalies (between m; and rn; and between 
m; and m,,), compared to only one anomaly in Example 4. Thus, not all possible 
ways of applying P to a scheme advance us equally well towards the goal of 
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removing all intersection anomalies. In fact, applying P to certain schemes may 
cause even more anomalies than it had originally [7]. All this gives rise to a 
question about the termination of the process affecting I’*. It is proved in [7] 
that 

P’ terminates regardless of the choice of pairs of LHSs used for the intermediate 
P-transformations. Furthermore, for any scheme R (with nonsplit LHSs), P*(R) is a 
conflict-free extension of R. 

Example 4. (Continued) Now let P be applied to m; and rni in the last 
example. This results in introduction of another new attribute P’ and of the FDs 
A + P’, BQ, + P’. The MVD-set now looks as follows: 

my: P’ ++FlGlABDQl 
mg,: Q, --t-f FIABDGP’ 

The remaining intersection anomaly can be removed by successive applications 
of P. We then end up with a pair of MVDs: 

m&: P’Q’ --Y FlGfABDQ, 
ma: Q’ --Y F 1 ABDGP’Q, 

and with FDs A + P’, BQ, + P’, B + Q,, D + Q1, P’ + Q’, and Q1 -t Q’. 
Note that mBI is now implied by rnw, and therefore removed from the MVD-set. 
For future reference, we denote the resulting scheme by R2. 

We demonstrated that different orders of applications of P may result in 
different schemes. Thus the scheme R2 of the last example has one more attribute 
then the scheme R1 obtained earlier in the example. The FDs are also slightly 
different. 

Though such a nonuniqueness is an unpleasant property, we can show that 
schemes obtained from the same original scheme by different series of P- 
transformations can be naturally reduced to a single canonical scheme. This 
canonical scheme is also a conflict-free extension of the initial scheme. To see 
how it can be done, let us have another look at schemes R, and R2 obtained 
above. 

Observe that both schemes have the same number of (nonredundant) MVDs. 
If we rename Q’ to Q and P’ to P in R2, then the MVDs of RP will differ from 
those of R1 in one new attribute (namely, Q1) that was introduced into Rx by an 
intermediate P-transformation. This attribute is somewhat different than Q’ 
and P’, since its associated MVD rn,~~ is redundant in R2. If we drop Q1 from the 
MVDs of RP, then they will look exactly like the MVDs of R, Furthermore, let 
F2 and US denote, respectively, the FD-set and the set of attributes of R2. It is 
straightforward to verify that FI[U2 - {Q, I] is equivalent to the FD-set of R1 
(provided that Q’ and P’ are renamed to Q and P as assumed above). It is now 
obvious that R2 is a conflict-free extension of R, which in its turn is a conflict- 
free extension of the initial scheme of Example 4. In summary, we reduced RZ to 
a canonical scheme R, essentially by dropping attribute Q, and renaming the 
rest of the new attributes of RB. This situation is an instance of the general 
paradigm described next. 
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Recall that each application of P introduces a new attribute Px,r along with 
an associated MVD mP,,. At the moment it is introduced, mPx,Y is nonredundant 
171. However, it may become redundant at later stages, after additional new 
MVDs (and attributes) are added. Thus, in Example 4, mB1 becomes redundant 
in R2. 

LetR=(U,MUF)anddenoteP*(R)byR’=(U’,M’UF’).Wesaythata 
newly added attribute Q (i.e., s.t. Q E II’ - U) is weak if its associated MVD mg 
becomes redundant at scnne stage. Weak attributes can be removed from R’ as 
described above. More formally, the result of removing all weak attributes is the 
scheme l? = (u, &f U F), where u is U’ with all the weak attributes removed; i@ 
is obtained from M’ by dropping all the weak attributes from wherever they 
appear in the MVDs of M’. Finally, F is taken to be a set of FDs equivalent to 
(F’)+[U]. 

Let @ be the transformation that results from applying P* first (using some 
series of pairs of LHSs) and then deleting all the weak attributes. It is shown in 
[8] that * is independent of the choice of a particular series of LHSs used in P*. 
Of course, this independence should be understood mod& renaming of the 
(nonweak) new attributes. For instance, in Example 4 we had to rename P’ and 
Q’ to P and Q, respectively, in order to make schemes equivalent. 

An efficient algorithm for * can be found in (81. This alogrithm requires a 
deep knowledge of the structure of intersection anomalies and will not be 
presented here. It is also shown in [S] that, for any R, -S(R) is a conflict-free 
extension of R. Furthermore, it is, in a well-defined sense, the most natural 
solution to the problem of elimination of intersection anomalies from R [17]. 

In short, we can define a structure of algebraic category [ZO] on the collection 
of all schemes with nonsplit LHSs in which @ is an algebraic functor to a 
subcategory of conflict-free schemes. It is argued that any natural solution to our 
problem should have certain functorial properties (which b has too). It turns out 
then that any functor with these properties is equivalent to a. The interested 
reader is referred to [ 1’71 for details. 

While the above argues for the naturalness of the proposed transformation, 
the next remarkable property from [‘I] shows that + fits well into our design 
philosophy: 

for any X C U, X is split by M iff it is split by iii. Thus SG(M, U) = SG(M u) n CJ 
and * preserves both close and indirect relationships among the attributes. 

Since &f is conflict-free, it is equivalent to a single JD J whose constituents 
are the maximal cliques of SG(M, 0) (and therefore are in the split-free normal 
form). Thus, SFNF is achievable. 

The only problem may be with the FDs. If no i&over for F is embedded into 
the maximal cliques of SC(i@, o), then the FDs impose interclique constraints. 
However, since in scheme design we are dealing with structural FDs only, it 
follows from Assumption 2 and Theorem 4 that there is an embedded M-cover 
for F. In such case Q assures that F also has an embedded M-cover 171. We 
summarize the discussion in the following theorem: 

THEOREM 5. ([7]) Suppose that the elements ofLHS(M U F) are not split, and 
let (U, Al u F) = +((LI, M u F)). Then the elements of LHS(&? u F) are not 
split. Particularly, F is embedded into the maximal cliques of SG(M, U). 
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4.4 The Design Algorithm 

Theorems 4 and 5 ensure that the following design procedure works well: First, 
find an FD-cover embedded in the maximal cliques of SG(M, U). Then extend 
the scheme to an acyclic one. Decompose the scheme using only MVDs (or, 
equivalently, using the single JD). At the last stage, locally refine the resulting 
schemes using, say, the synthesis algorithm of [12]. 

Note that we still have to ensure that if V and Wars two clusters obtained at 
the decomposition phase, the results of the synthesis inside V and W agree on V 
n W. To illustrate this point, consider the following example: 

Example 5. Consider the following dependencies: 

m:AECDEF++KIL 
f,: K-+A 
fz: L+A 
fa: CA u AF 
fd: BA c-) AE 
fb: AEF -+ D 
fs: ABC + D 

Note that the FD-sets, F, = 1 f3, f,, f6) and F2 = { f3, 14, f6), are equivalent. 
Decomposition by m yields the following two clusters: ABCDEFK and 

ABCDEFL. If we use G, = F, U [ fi) in Bernstein’s synthesis process for the first 
cluster and G2 = F2 U ( fz) for the second one, then their common part ABCDEF 
will be represented by different sets of schemes. 

This problem is readily rectified by first finding some global embedded 
M-cover F and then synthesizing inside each cluster using only the FDs of F 
embedded in that cluster. 

Before presenting our design algorithm we have to decide on a policy in the 
case when (nonstructural) integrity constraints and structural dependencies are 
intermingled in the original specifications (i.e., when a split-LHS anomaly is 
detected). In such case, we, at least, are able to point to the semantic problems 
with scheme specifications supplied by the designer. Depending upon the policy 
pursued, the design process either stops signaling the detected problem or 
proceeds trying to eliminate the dependencies with split LHSs. Regardless of the 
chosen policy, the designer must be informed by the algorithm about the semantic 
inconsistency in his specifications. 

The Design Algorithm 

Input: (U, M U F) 
Preliminary Stage 
1. Make the MVDs full and close their LHSs. 
The Nonmnuenttinal Stage 
1. Filter out nonstructural dependencies. This stage results in a scheme (U’, M’ U F’), 

where the elements of LHS(M’ U F’) are not split by M’. 
2. Apply @. Let (0, il;r U F) denote 9((U’, M’ U F’)) and let J he the JD equivalent 

to Iv. 
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The Conuentiod Stage 
1. Find an ~-cover embedded in J. Note that by Theorems 4 and 5, and since the LHSs 

in LHS(M’ U F’) are not split, F is such a cover. 
2. Decompose according to il? (or, equivalently, according to J). 
3. For each constituent W of J do 

Apply the synthesis algorithm of [12] to W, using only those FDs of F that are 
embedded in W. 

end 
By [12], this operation losslessly decomposes each component of J. Let R denote 
the resultinn set of schemes and let F stand for the FD-set moduced bv the 
synthesis algorithm [ 121 (Ii is embedded in R). 

Output: (R, F). 

THEOREM 6. Let b = j U p,-where j is a JD whose components ore the schemes 
of R. Then b is equiuaht to M U F. 

PROOF. As noted earlier, &’ U F is equivalent to f U i? Since the synthesis 
algorithm of [12] preserves FDs, P’ = F’. Clearly, j implies f [lo]. Thus b 
implies &f U F. The claim will follow if we prove that J U F implies 3. This, in 
turn, follows from the fact that the synthesis algorithm losslessly decomposes 
each constituent of J [12]. 0 

The nonconventional design stage of the algorithm can be accomplished in 
polynomial (in size of the schema) time, as shown in [a]. The complexity of the 
conventional stage is also polynomial. An efficient decomposition algorithm for 
conflict-free sets of MVDs is given in [19]. The complexity of the synthesis 
algorithm is discussed in 131. 

The synthesis algorithm of [U] yields 3NF database schemes, which is nice. It 
is known, however, that locally consistent databases over 3NF schemes may be 
globally inconsistent 1221. Sagiv shows that scheme independence [22] is a much 
better goal (than 3NF) and is free from the above deficiency. To make R 
independent w.r.t. j u fl, it suffices to ensure scheme independence within every 
constituent of Jw.r.t. the embedded FDs [ 181. Unfortunately, independence wzt. 
FDs is unachievable within the classical setting. We believe that the solution can 
be found within the framework delineated in this paper and in [17].’ 

5. COMPARISON TO OTHER METHODS 

The only algorithm we know about that reasonably tries to benefit from both 
FDs and MVDs is due to Zaniolo and Melkanoff [27]. However, they act within 
the classical setting, which explains why their algorithm fails to design even 
simple schemes like the one presented in Example 6 (below). Besides, their 
approach is conceptually complicated. We demonstrate our method on a scheme 
of Example 7 (below), and achieve the same result by a far simpler (both 
conceptually and computationally) method than in [27]. 

’ In this connection we would like to cite a recent improvement of the Bernstein’s synthesis algorithm 
due to Biskup and Meyer (131. This algorithm is quite different from that of Ill]. Its moat important 
characteristic is that synthesis is guided by the semantics pertaining the FDs. However, it is still a 
traditional design algorithm which does not change original schema specifications. Particularly, 
schema independence cannot he achieved in this way. 
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Example 6. ([27]) Consider the following dictionary database. The attributes 
are F(rench), G(erman) and E(nglr3). The MVDs E --t-) F] G, F --f--) E 1 G, 
and G - E ] F denote the fact that any term in any language has (possibly 
more than one) translation into any other language. 

The execution of our algorithm skips over the preliminary stage and the first 
part of the nonconventional stage. It is easy to see that a single application of P 
suffices to extend the original scheme to a conflict-free one. The resulting 
scheme has the universe U’ = FGEC, where C is the new attribute, and the 
MVD C ++ F ] G ] E. The FDs are F+ C, G -+ C, and E -+ C. At the conventional 
stage we obtain the following database scheme: (EC), @C), and @C!)(keys are 
underlined). 

By instant inspection of the dependencies we conclude that semantically the 
new attribute, C, stands for Concept(s) represented by terms in different lan- 
guages. Interestingly, Zaniolo and Melkanoff arrived at the same results as we 
did, by using intuitive arguments. Their algorithm, however, is unable to design 
such a scheme. 

Example 7. Consider the following enterprise borrowed from [27]: 

LIC 
MAKE 
MODEL 
YEAR 
VALUE 
0 WNER 
DRVL 
VIOL 
DATE 

licence number of motor vehicles, 
manufacturer of motor vehicles, 
model of vehicle, 
year in which the vehicle was manufactured, 
current value of vehicle, 
unique identifier of a person, 
driver’s licence number, 
code number for traffic violation 
date of violation. 

The dependencies (as specified in 1271) are as follows: 

LIC --f MAKE YEAR MODEL VALUE OWNER DRVL 
WC -u (VIOL DATE] 
(MAKE YEAR MODEL1 -f VALUE 
[MAKE YEAR MODEL] - {LIC OWNER DRVL VIOL DATE) 
0 WNER -+ DR VL 
DRVL -t OWNER 
OWNER - (LIC MAKE YEAR MODEL VALUE) ( (VIOL DATE) 
DRVL - (LIC MAKE YEAR MODEL VALUE] ( {VIOL DATE] 

Our algorithm closes LHSs and finds a minimal cover at the preliminary stage 
yielding the following dependencies: 

(DRVL OWNER) - {LX MAKE YEAR MODEL VALUE) I (VIOL DATE! 
OWNER-t DRVL 
DRVL -t OWNER 
LIC --t MAKE YEAR MODEL VALUE OWNER 
(MAKE YEAR MODEL! + VALUE 

We arrive at a scheme with a single MVD and a collection of FDs with nonsplit 
LHSs. Hence there is no need for the nonconventional stage. Decomposition now 
yields two big clusters: {VIOL DATE DRVL OWNER] and (DRVL OWNER 
LIC MAKE YEAR MODEL VALUE]. Synthesizing separately inside each 
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component, we obtain the following final scheme, where different keys are 
underlined differently: 

(m OWNER) 
(OWNER VIOL DATE) 
(a MAKE YEAR MODEL OWNER) 
(MAKE YEAR MODEL VALUE) 

This result is identical to that of 1271, hut is obtained in a far simpler way. 

Observe that in the example the second and the fourth MVDs are implied by 
the first and the third FDs, respectively, and thus are not used in our design 
process. However, the method of [27] requires these implied MVDs to be explicitly 
specified (as they are in Example 7), which makes it difficult to catch the 
essential part of the scheme specifications. In comparison, from the point of view 
of our method, the essential specifications of the above scheme are extremely 
simple: there are two SFNF-clusters with embedded FDs. 

Note also that the nonconventional stage in the example is empty. This is the 
reason why the conventional approach of 12’71 succeeds here. 

We conclude with a more sophisticated example in which more than one 
application of the P-transformation is required at the nonconventional stage. 

Example 8. Let the attributes be E(mploye-e), L(aboratory), C(omputer), and 
(pro)J(ect). The meaning of a tuple (e, 1, c, j) is that employee e has an access 
to laboratory 1, has an account on computer e, and is working for project j. 

Suppose that from the employee’s point of view all the laboratories and 
computers he is permitted to use are the same, that is, he can log in on any 
computer (to which he has an access) using terminals of any laboratory he is 
permitted to work in. An employee can work for any of his projects in any 
laboratory and on any computer he has an access to. These conditions are 
expressed by the following MVD: 

Suppose furthermore that employees working for the same project have similar 
working conditions, that is, they can access the same laboratories and computers. 
This is expressed by the following MVD: 

J+-PLJCIE 

Finally, assume that for any computer all the users have the same rights in 
using the laboratories, that is, for any particular computer all its users are 
permitted to work in any laboratory from which they can access that computer. 
This is expressed as follows: 

C-WLIEJ 

Summarizing, we have the following dependencies: 
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Application of P to the first pair of MVDs results in the following scheme, 
where W is a new attribute: 

W++LICIJE 
C-wLlEJW 
E-W, J-W 

The last scheme still has an intersection anomaly which can be removed by a 
subsequent application of P. This application introduces another new attribute 
A, and results in the following scheme: 

A-++LlCEJW 
WA-HLICIJE 

C-A, W-A, E-W, J+W 

Without going deeply into the formal semantics that can be ascribed to the 
new attributes (which can be found in [7] and [S]), we describe this semantics 
with informal arguments only. 

Let r be a relation satisfying the dependencies of the final scheme. Any value 
w of W defines the set V, = (u~=~~)[LC], where gwEuI denotes selection on 
attribute Wand the square brackets stand for projection on LC. 

From the FD E + W, it follows that every employee has only one associated 
W-value. Let w be associated with an employee e. Then, Vu represents all 
pairs (1, c) s.t. e can log in on c from a terminal in laboratory 1. The set of these 
pairs corresponds to what we called earlier employee’s working conditions. Thus, 
W-values represent working conditions of different employees. The FD J + W 
states that employees working for the same project have the same working 
conditions, which complies with our original motivation for introducing the MVD 
J++LICIE. 

Similarly, any A-value c defines the set V. = (o,+.r)[L]. It is easily verified 
that the FDs J + A, E + A, and C + A hold in our scheme. Let e be an employee 
associated with a and let j and c be a project and a computer associated with o. 
Then, V. represents the set of laboratories where e is permitted to work. 
Alternatively, we can look at V. as the set of laboratories in which project j can 
be carried out or from which computer c can be accessed. Thus, A describes 
laboratory assignments to employees, projects, and computers. 

At that point the nonconventional stage of design has been completed. The 
decompositional phase of the conventional stage produces the following clusters 
of attributes: 

AL AWC AWJE 

The first cluster is in the 3NF. The second cluster will be decomposed by the 
synthesis algorithm of [lZ] into (A _W), (_C A), and (WC). The third cluster has 
the following embedded FDs: J + W, E -+ W, and W + A. Thus, after the 
synthesis, we have (J W), (E W), @‘A), and (JE). In summary, we arrive at 
the following collect&r of schemes: (a), (c A), (_W A), (a), (J W), @ W), 
and (8). 
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The price we pay for the luxury of nonconventional design is that we now have 
to provide values for the entities represented by the new attributes. Fortunately, 
their values can be provided automatically [7, S]. Since the new attributes can 
be ascribed clear semantic meaning, it will also be easy for a user to provide 
appropriate values when adding new tuples. 

On the positive side, we achieve significant simplification in schema structure 
and in the exposition of connections between schema attributes. This pays off at 
database maintenance and querying time. For instance, any attempt to design 
the scheme of Example 8 within the old scope of attributes will necesarily obscure 
some of the connections represented by the schema MVDs (see the discussion in 
Section 4.1). This in its turn will cause computational problems in preserving 
database consistency. More seriously, shading in some of the schema intercon- 
nections may expose database users to errors in formulating their queries, that 
is, an obscure schema semantics may cause users to join data along lossy join 
paths (i.e., along the so-called connection traps [14]). 

6. SUMMARY AND CONCLUSIONS 

Our approach reveals some interesting properties of the structure of real-world 
databases. It shows that there is a macrostructure delineated by the global JD 
(whose components are the SFNF-clusters obtained at the decomposition stage). 
The infrastructure is defined at the synthesis stage by refining the macrostruc- 
ture. This sheds a new light upon the celebrated question whether the real world 
is cyclic or acyclic: in the case where specifications are given by MVDs and FDs, 
the world has an acyclic macrostructure (a JD equivalent to a set of MVDs is 
acyclic [IS]), but the infrastructure is most probably cyclic. In the situations 
where FDs and MVDs are not the only data dependencies, even the macrostruc- 
ture is likely to be cyclic. 

The two-level structure of the real-world databases can be exploited in the 
query evaluation process. Namely, a query can be split into subqueries posed 
about local databases obtained by restricting the database to the components of 
the JD. Each such subquery is evaluated over the corresponding local database 
independently of other subqueries (and other parts of the database). The local 
results are then joined to obtain the answer to the global query. This issue is 
discussed elsewhere [la]. 

In summary, we present a consistent approach to the problem of scheme 
design, based on new principles. We argue that database design methods should 
have a preliminary stage (which we call “nonconventional” in order to contrast 
it to the approaches which have prevailed so far in the literature). This new stage 
is intended to deal with various “bad things” that plagued most of the previous 
approaches. Here we have spotted two kinds of such “bad things.” Nonstructural 
additives to schema specifications, which do not really belong to the design 
process, are one kind of such “bad things.” The second one occurs when the 
database designer overlooks some relevant specifications. To deal with these 
issues a comprehensive design system should combine syntactic tests to spot the 
problems (such as Assumptions 1 and 2 in Sections 4.1 and 4.2) with theoretically 
well-founded schema improvement methods (such as @ in Section 4.3), along 
with various heuristics and the designer’s assistance. We then applied these ideas 
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to the classic problem of schema design for FDs and MVDs and came up with a 
new method that extends all the known approaches and leads to a successful 
design for a wide variety of situations for which FDs and MVDs constitute an 
adequate class of schema specifications. 

However, in many real cases it is not enough to specify FDs and MVDs alone. 
Unfortunately, we have no solution for other types of dependencies. The most 
important ones are embedded join dependencies and inclusion dependencies. 
Another problem, already mentioned, is that Bernstein’s synthesis algorithm 
only provides a partial solution to the design problem for FDs. Its drawback is 
that the resulting schemes may not be independent [ZZ]. Therefore, there are 
interrelational constraints which are hard to enforce. It is known that no 
synthesis algorithm can design independent databases. A plausible solution is to 
find a suitable scheme correction [17, 241. We believe that the general ideas 
described in this paper can serve as a framework for the further study of these 
issues. 
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