
An Integrated Approach to Logical Design
of Relational Database Schemes

CATRIEL BEERI
The Hebrew University of Jerusalem
and
MICHAEL KIFER
SUNY at Stony Brook

We propose a new approach to the design of relational database schemes. The main features of the
approach are the following:

(a) A combination of the traditional decomposition and synthesis approaches, thus allowing the use
of both functional and multivalued dependencies.

lb) Separation of structural dependencies relevant for the design process from integrity constraints,
that is, constraints that do not bear any structural information about the data and which should
therefore be discarded at the design stage. This separation is supported hy a simple syntactic test
filtering out nonstructural dependencies.

(cl Automatic correction of schemes which lack certain desirable properties.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design-normal forms,
sehmo and subschema

General Terms: Design, Theory

Additional Key Words and Phrases: Acyclic schemes, conflict-free sets of dependencies, decomposi-
tion, functional dependencies, logical design, multivalued dependencies, schema extension, synthesis

1. INTRODUCTION

We use the general framework and the concepts as developed by the classic
design theory during the last decade [4, 11, 15, 16, 19, 22, 25, 271. A universal
database scheme is a collection of attributes (a uniuerse) and a collection of data
dependencies. The problem addressed by the theory is how one can derive a
database scheme with certain desirable properties from a given universal scheme.
A database scheme is a collection of subschemes of the universe that contains all
the attributes. Among the properties considered in the literature are those of
preservation of dependencies; normal forms such as 3NF, BCNF, and 4NF (261;

A preliminary report on this research appears in the Proceedings of the 10th Conference on Very
Large Data Bases (Singapore, Aug. 19&t), 196-207.
Most of this work was done while M. Kifer was at the Hebrew University of Jerusalem.
Authors’ addresses: C. Beeri, Institute of Mathematics and Computer Science, the Hebrew University
of Jerusalem, Israel; M. Kifer, Department of Computer Science, SUNY at Stony Brook, Stony
Brook, LI, NY 11794.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1966 ACM 0362.5915/66,lO600-0134 $00.75

An Integrated Approach to Logical Design * 135

schema independence [22]; acyclicity [16], and so on. Unfortunately, of this variety
of goals 3NF is the only goal always achievable within the classic framework
[ll, 15, 23, 241.

The common characteristic of all the classical approaches to database design
is that the initially given attributes and dependencies are left intact during the
design process. Further, all the specified dependencies are assumed to have equal
rights to guide the design procedure. Such an approach suffers from several
drawbacks. The first concerns the method for deriving the database scheme. For
that purpose two different methods have been proposed. One of them is scheme
synthesis 1111; the other, known as scheme decomposition, was proposed by Codd
and generalized by Fagin [15]. Scheme synthesis works well in the context of
functional dependencies (FDs), while scheme decomposition is suited for multi-
valued dependencies (MVDs). So far, the two approaches are considered to be
incompatible.

The success of a design theory depends on its ability to supply satisfactory
answers to the situations that inherently need different types of dependencies.
Different researchers tried to cope with the case where MVDs and FDs are
brought together. Lien (191 adheres to the decomposition approach, considering
the FDs as MVDs, and neglects the different semantics of FDs and MVDs.
Melkanoff and Zaniolo 1271 also tried to cope with the problem, giving first
priority to the notion of faithful representation of dependencies. However, both
methods are unsatisfactory. First, they fail when the MVD-set is not conflict-free
[19]. Second, neither approach explains the roles of different types of depend-
encies and how they influence the design process.

The second drawback is the assumption of a fixed environment; that is, the
assumption that the set of attributes and the set of dependencies are fixed.
Typically, in practical database design, the initial specifications are not preserved,
and new attributes and dependencies are added or deleted by the designer in the
course of the design process. Such an activity can be viewed as tuning the initially
obtained specifications to better reflect the designer’s intention. The tuning is
necessary because it is common that the initial specifications may miss some
important information; also, they may contain some details irrelevant to the
structuring of data. The third issue is that the classical theory neglects to
distinguish between dependencies that reflect structural properties of the data
and those that are merely integrity constraints.

In this paper we restrict the class of data dependencies to FDs and MVDs. It
is widely understood that this is far from being enough to specify a reasonably
sophisticated database. Nevertheless, the design problem turned out to be difficult
even for such a restricted class of dependencies. In the past ten years this problem
has been attacked many times [4, 15, 19, 271, yet no solution agreeable to a
majority of researchers has been found. We believe that the method described in
this paper provides such a solution. Our approach takes into consideration the
different roles of FDs and MVDs, and works well if both types are given. It
incorporates both the synthesis and decomposition approaches and employs ideas
about scheme corrections [7, 171.

Although we consider only a restricted class of dependencies, our belief is that
the general ideas of the approach are pertinent to the design problem as a whole,
and can serve as a framework for future research in this area.

136 * C. Beeri and M. Kifer

The paper is organized as follows. In Section 2 we introduce some basic notions
and notation used in the paper. In Section 3 we discuss the semantic role of
dependencies in the design process. Section 4 presents the ideas behind our
approach and the design algorithm. In Section 5 we compare our method with
other methods and give the examples. Section 6 concludes the paper.

2. PRELIMINARIES

We assume that the reader is familiar with the theory of FDs, MVDs, and join
dependencies (JDs), and with the notions of third (3NF) and fourth (4NF)
normal forms on the level of [26]. We also assume that the reader is familiar
with acyclic database schemes [6, 161.

For the MVD-set (X - Vi)i = 1, n) we shall often write X +-+ S,
where S =] VT) i = 1, , n}. Alternatively, we write X - V,)...)V,instead
of X -u S. As usual, DEPn(X) denotes the dependency basis of X with respect
to (abbr. w.r.t.) the dependency set D, and X5 denotes the closure of X w.r.t. the
FDs implied by D. We omit the dependency set if it is obvious or immaterial. For
future reference we bring Beeri’s algorithm [2] for computing DEPD(X) and X5
when D = M U F consists of MVDs of M and of FDs of F.

DEPM&X) is computed by refining P, a candidate partition for DE&‘(X), as
follows: Start with P = (U - X). Then apply the following rule until no more
changes to P are possible: If Y is in the partition, S - RisinMUF(anyFD
5 -A E F is treated as an MVD S -A), and S Al Y = 0, then replace Y by
Y rl R and Y - R. If P is known to be a candidate partition and S-R changes
P in this way, then we say that S - R refines P. The algorithm terminates
when P cannot be refined any more. This final partition is DEP,&X), [2]. To
get X&w, first compute DEPM~F (Xl and then pick up those singleton elements
(A} E DEP.L,JX) such that (s.t.) S + A is in F. X&or consists of X and all
such singletons [2].

An MVD of the form X ++ DEP(X) is called fuR [6], and a set of MVDs
containing only full MVDs is called a set of full MVDs. If D is a set of FDs or
MVDs, we denote by LHS(D) the set of left-hand sides (LHS) of the members
of D. Without loss of generality (w.1.o.g.) we assume throughout the paper that
all the FDs are of the form X -+ A, where A is an attribute.

If I (resp. t) is a relation (resp. tuple) over a set of attributes U and X C U,
then I[X] (resp. t[X]) will denote the projection (resp. restriction) of I (resp. t)
on X. Finally, we note that it is the usual practice in database theory to write
XY for X U Y, where X and Y are sets of attributes.

3. THE ROLE OF DEPENDENCIES IN DATABASE DESIGN

Consider the MVD X-H V) W. Intuitively, it denotes the fact that there is no
close relationship between the attributes in V and Wand, possibly, there is some
relationship between X and V and between X and W. For instance, the MVD
PtTSOll tf Child) pro&et states that persons and their children are related and
that persons and the projects they work on are related. It also states, though,
that there is no relationship between a child and a project except for the indirect
connection via a person that may be the father of the child and is currently
working for the project.

This explains the drawback to the approaches that consider FDs as just MVDs.
ACM Transactions on Database Systems, Vol. 11, No. 2, June 1986.

An Integrated Approach to Logical Design * 137

In fact, an FD is not a “pure” MVD, for it is not intended to represent the second
aspect (the indirect relationship) of the semantics of an MVD. Let us extend the
above example as follows. Assume the attributes are P(erson), C(hild),
(home)A(ddress), Z(ip), and (pro)J(ect) with the obvious relationships between
them. Let the dependencies be P - C 1 J, P---f A and A + Z. This implies the
MVD P +-+ A 12 1 C (J. This MVD (by itself) seems to state that children,
addresses, and zip-codes are only indirectly related. However, it is obviously not
the case here. On the other hand, we can still be justified in inferring that children
are not directly related to the projects.

Another problem in scheme design is that the dependencies may represent not
the presence or absence of relationships between attributes, but rather constraints
which have little influence on the way the data should be structured. This
distinction is due to [16], from which the following example is taken, slightly
modified.

Example 1. Suppose our attributes are C(ourse), T(eacher), R(oom), H(our),
S(tudent), and G(ro&) with FDs C +T,TH+R,HS+R,HR+C,andCS
+ G and MVD CT - HR) GS. This MVD expresses the fact that a course
may meet more than once a week and that any student attends all the meetings
of the course he takes. Here HS + R expresses the physical fact that students
cannot be in two places at once. From this and HR + Cone can derive HS --) C,
which means that students’ time tables must be feasible, that is, no student is
permitted to take courses whose meeting times clash. However, these restrictions
on what students are permitted to do have nothing to do with the way the data
is structured, they do not represent any new basic relationship between the
attributes, only restrictions on the way the students attend the courses.

The phenomenon illustrated by the above example is explained by the fact
that an FD (as used in the classical design theory) is intended to express both a
basic relationship and an integrity constraint. The “anomalous” FD of Example
1 expresses only the second aspect. So it is better to say that it is a constraint
which syntactically (but not semantically) appears as an FD. In summary, a
dependency may express the following facts:

(i) an integrity constraint,
(ii) a basic relationship,

(iii) an indirect relationship.

Clearly, only (ii) and (iii) are significant in scheme design. We have seen that
FDs always express (i) and sometimes (ii). Hence, an FD that does not express
(ii) must be disregarded in the design process. Similarly, MVDs always express
(i) and sometimes (iii) and (ii). Our contention is that the major semantic
intention of MVDs is to express (iii). That is, in our view, the intention of an
MVD X +-+ V 1 W (used as a means of data structuring) should be a represen-
tation of the fact that there is no close relationship between attributes of V and
W. However, there still may be some connection between X and V and between
X and W. In this case, V and W would be indirectly related through X.

The discussion above shows that syntactic specifications such as data depend-
encies are not quite suitable as a description of structural information about
data. The design process deals with database schemes (i.e., with the intentional

ACM Transae‘ions on Database Systems. Vol. 11, No. 2, June 19.9s.

138 - C. Beeri and M. Kifer

aspect of databases). It normally exploits information about the internal structure
of schemes such as close relationships among the attributes, separation of
attributes (i.e., indirect relationship). Though data dependencies were extensively
used in design theory, their role in structural descriptions was not quite clear.
Usually it was (implicitly) assumed that the role of the data dependencies as
structural descriptors is implied hy their role as integrity constraints. Apparently,
this is not so.

The following observation supports this claim. Data dependencies, in their role
as integrity constraints, are monotonic in the sense that the addition of new
dependencies does not contradict the old ones (i.e., the extended set has a
satisfying database). However, if we look at the structural role of the dependen-
cies, they are no longer monotonic. For instance, the MVD C -A 1 B specifies
a separation of A from B. However, when the FD A + B is added, it specifies the
fact that A and B are closely related, which changes the structure suggested by
the MVD.

In summary, some of the dependencies are both structural descriptors and
integrity constraints. We call them structural dependencks. Other dependencies
are devoid of the structural aspect, and we call them nonstructural dependencies
(or integrity constraints). Integrity constraints should be checked routinely during
the database lifetime, but are irrelevant at the design stage.

To avoid possible confusion we emphasize that in this paper our concern is the
logical database design. There is a related activity, called physical database design,
which deals with the indexing structure, clustering of records and parts thereof
on disk pages, and so on. Dependencies ignored at the logical design level appear
as input specifications to the physical design stage. Thus it is the latter stage
where integrity constraints should be taken care of in order to facilitate their
checking.

In talking about the structural role of data dependencies we should keep in
mind that some of the specified dependencies may be implied by others. As soon
as one learns that a dependency d is an implied one, the feeling is that it is not
as relevant to the design as the dependencies from which d was derived. There is
a wide consensus in the database community that, for the logical design, one only
needs dependencies from some minimal cover. Unfortunately, different covers
may exist for the same dependency set. All classical methods are dependent on a
choice of a particular minimal cover, which is another drawback, since different
covers give rise to different designs. In the next section we provide a partial
solution to this problem.

4. HOW TO DESIGN

4.1 The Decompositional Approach and the Splitting Graph

We start with analysis of the decomposition approach, assuming that only MVDs
are given. The basis of this approach is the separation principle of [4], and its
declared goal is 4NF. We shall see that attaining 4NF does not solve the problems
it is supposed to solve. After showing the drawbacks of 4NF we argue in favor of
a better design goal based on the concept of splitting, introduced in [IS].

Let (U, Ml be a universal scheme with MVD-set M. From now on assume that
M is a set of full MVDs. An MVD X --Y DEP(X) splits a set of attributes
ACM Tmm8Etio”S on Database Systems, “0,. II, No. 2, June ,986.

An Integrated Approach to Logical Design * 139

Y c U if for some distinct V, W E DEP(X) both V n Y # 0 and W Cl Y # 0
hold. Y is split by M if it is split by some MVD of M.

Let X - V) W be an MVD. The idea underlying 4NF is that the set XVW
should not be in one relational scheme, because this introduces redundancies and
potential consistency problems [15]. Thus, in the decomposition approach, this
MVD is used to decompose XVW into XV and XW. It can be used to decompose
any scheme Y, provided that Y contains X. Hence, MVDs can be used to
decompose schemes until 4NF is achieved. However, we note that once another
MVD that splits X is used, then X - V 1 W may not be used in the decompo-
sition process [19]. In such a case X - VI W imposes an interrelational
constraint which may cause consistency problems.

Another problem with the decomposition approach is that it may yield schemes
whose attribute sets are split. Assuming M consists only of structural MVDs (in
the sense of the previous section), then, if a pair of attributes A, B is split, we
can conclude that A and B are not closely related. Putting them into one scheme
violates the separation principle of [4]. Example 2 below shows that this may
cause the same redundancy problems as in the case of the non-4NF schemes.
Hence, in this case, 4NF does not achieve its goal.

Example 2. ([23]) Let U = ATL, where a tuple atl means that A(uthor) a
publishes T(itle) t in L(ocation) 1. Suppose there are the following MVDs:
m,:A - TI Land m,:T -A (L. The first MVD states that authors do not
discriminate among locations, and stick to all of them (i.e. any author publishes
all his papers in all the locations he uses to publish papers). The second MVD
simply says that if a paper is written by more than one author, then the authors
publish that paper in the same locations.

Fagin’s decomposition algorithm may be applied in two ways, resulting in
two different decompositions. If m, is applied first, then we obtain R, = AT,
R2 = AL, and m2 is now inapplicable. If m2 is applied first, then the resulting
schemes are R; = AT and R; = TL, and m, cannot he further applied. In both
cases, R2 and Ricontain a pair of split attributes. Consider the following relation:

!I

A TL

a, t, 1,
01 t2 12
a, t1 12
01 tz 1,

It satisfies hoth dependencies. If we choose the decomposition (AT, TL), then we
have

TL

1 1

A T

r, = r* = t1 h
01 t, t2 12
a, t2 t1 12

12 11

ACM Transactions on Database Systems, “0,. 11, No. 2, June ,s*s.

140 * C. Beeri and M. Kifer

We see that r2 is a Cartesian product of its projections on T and L. If we had
more than one A-value in the original relation, then, for each A-value in the
ATL-relation, the corresponding fragment of the 7%relation would be a Carte-
sian product. Therefore, we have the same sort of redundancy that was supposed
to be prevented by 4NF. Of course, the decomposition [AT, AL] has the same
drawback.

The assumption that attribute sets of schemes should not he split leads directly
to the following concept. Let R = (RI, , R,) be a database scheme over the
universal scheme (U, M). We say that R is in the split-free normal form (SFNF)
if no Ri is split by M.

It is shown in [6] that this property does not depend on the choice of cover for
M, that is, if Mo+ = M+, then R is a SFNF scheme over (U, M) iff it is a SFNF
scheme over (U, MO). From that observation it now easily follows that SFNF
implies 4NF. Indeed, if R is in the SFNF then no MVD implied by M can
decompose any of Ri, or else Ri is split by M.

To obtain a SFNF database scheme we propose to use the splitting graph of
[6] as the guide of the design process. The splitting graph SG(M, U) has U as a
node set. Two nodes of SG(M, U) are connected by an edge iff the corresponding
pair of attributes is not split by M. It is easily seen that the coarsest SFNF
database scheme over (U, Ml is the scheme consisting of the maximal cliques of
SG(M, U). (A set of nodes K of graph G is a clique if any pair of nodes of K is
connected by an edge.) Thus, one might be tempted to use this scheme as an
SFNF database scheme.

Unfortunately, maximal cliques cannot always be used without loss of rep-
resentation power of the scheme. In Example 2 the maximal cliques are
R = {AT, L]. But the relation

q A TL

t 1
,4 t’ 1’

cannot he stored into R without disconnecting the L-values from the values of
the other attributes. Stated a little differently, this relation does not satisfy the
JD associated with R, hence it is not equal to the join of its projections on the
schemes of R. Such a loss of information does not occur if M is equivalent to a
single join dependency [6]. If this is the case, then this JD is acyclic 16, 161, and
the maximal cliques of SG(M, U) are precisely the constituents of this JD.

Having shown the disadvantages of 4NF, we have introduced a stronger normal
form and shown that it can be achieved when the given universal scheme has a
conflict-free set of MVDs. However, schemes are not always acyclic, so we may
have once more introduced a nicer normal form that is not always achievable.
One of our goals in this paper is to provide evidence to support the claim that
this normal form can be achieved in the databases that occur in practice.

Let us then consider the situation when M is not equivalent to an acyclic JD.
We say that M has a split-lhs anomaly [19] if at least one X E LHS(M1 is split
by M. Otherwise, M is called a split-free set of (full) MVDs. M has an intersection
ACM Transactions on Database systems. “0,. 11, No. 2, June ,986.

An Integrated Approach to Logical Design - 141

anomaly [7] if there are X, YE LHS(M) s.t. (X n Y) +-+ (DEP(X) fl DEP(Y))
B: M’ (DEP (. ,)) is a set of subsets of U, so the intersection on the right-hand
side is the set of common elements of DEE’(X) and DEP(Y).

It turns out [19] that M is equivalent to a single JD iff it has neither split-
LHS nor intersection anomalies. After Lien 1191, we call such schemes conflict-
free.

In Section 3 we argued that only structural dependencies should be used in
database design. The question is, however, how structural dependencies can be
recognized syntactically. In the rest of this section we give a partial answer to
this question (which is sufficient for our further considerations).

We conjecture that in real-world situations LHSs of structural MVDs are not
split (i.e., the split-LHS anomaly does not occur). A similar assumption was
advanced in [23]. Of course, we refer only to the MVDs in a minimal cover. As a
motivation, consider some structural MVD X -t) VI W. It expresses the fact
that V and Ware indirectly related via X. It is unlikely that the intermediary X
itself contains indirectly related attributes, for such a fact does not seem to be
basic.

This conjecture deserves further attention and study. As we show later, a
scheme that satisfies this assumption can be converted to a conflict-free scheme,
which supports our claim that SFNF can be achieved in practice. However, it is
not a trivial observation about reality. Let us consider the following example
where this does not seem to be the case.

Example 3. Let the attributes be B(uyer), V(endor), P(roduct), and
C(wrency). Assume the following MVDs:

BV+-bPIC
PC-B1 V

The first MVD expresses the fact that buyers and vendors have agreements
on sets of products and currencies s.t. a buyer can pay to vendor in any currency
agreeable to themselves. The second MVD says that no one boycotts anyone.
That is, if a buyer has an agreement about a product and a currency with some
vendor and another vendor sells that product in that currency (to anybody else),
then the buyer must have an agreement with the latter vendor also (and vice
versa). We see that the LHSs of both MVDs are split.

One possible explanation is that in the example the second MVD is a restriction
on the trading policy of that community of buyers and vendors and is not
structural. On the other hand, the first dependency seems more basic, as it
represents such fundamental things as contracts between buyers and vendors on
products and currencies. Thus, only the first MVD should be considered during
database design. To a certain extent the choice to treat the second dependency
as a constraint is mostly a matter of taste. However, our point is not the particular
choice we made, but the fact that splitting of LHSs indicates that the given
schema specifications are semantically problematic.

Another way to look at the situation of this example was proposed by Sciore
[23], who argues that very likely the designer’s specifications did not match his
probable intention. A designer’s plausible intention might be that buyers are

ACM Tlanseetions on Database Systems, “cd. 11, No. 2, June ,sss.

142 * C. Beeri and M. Kifer

interested in certain products and can pay in several currencies. Symmetrically,
vendors hold lists of products they sell and accept several currencies. Therefore,
the following JD must hold: BP * PV* VC * CB. It is this JD that is the structural
dependency that needs to be used for the design. Both of the above MVDs are
implied by this JD, hence they are not basic facts and need not be used in the
design process. Thus, assuming the second explanation, FDs and MVDs do not
constitute an adequate set of schema specifications for that particular database,
which puts this scheme beyond the scope of our method.

Summing up, we postulate the following assumption:

Assumption 1. If an MVD X --Y DEP(X) is structural, then X is not split
by other structural MVDs.

This assumption is not a syntactic definition of structuralness. A rough
approximation of that concept should involve the notion of objects [16,25], and
is beyond the scope of this paper. One cannot even use this assumption to find
out whether a dependency is structural or not, since LHSs of such dependencies
may be split by nonstructural ones. Nevertheless, this assumption can be used
to detect a semantic problem with the dependency set as a whole. The correct
set of structural dependencies can then be extracted using heuristics and a
designer’s assistance. Detailed treatment of these questions is beyond the scope
of this paper.

4.2 Incorporating Functional Dependencies

In this section we extend our model to support FDs as well. Let (U, M U F) be a
scheme where F is an FD-set and M is a set of full MVDs. The previous discussion
of the role of FDs and MVDs in the structuring of data shows that it is natural
to use MVDs to separate clusters of attributes from each other. Unlike MVDs,
the role of FDs is to express close relationships between the attributes. How does
the incorporation of FDs affect the clusters? Suppose that A, V E DEP(X) and
X + A hold, but X + V does not. In this case we cannot rule out a possible
relationship between A and V. Indeed, if X + A denotes a close relationship,
then the indirect relationship of A and V via X may be actually rather close (as
in the example about persons, children, addresses, etc. of Section 3). Moreover,
we cannot rule out a relationship between A and V even if, say, A transitively
depends on X (again as in the example of Section 3, where Zip transitively
depends on Person). From this discussion, the need for a separation of the use
of FDs and MVDs in the design process becomes evident. Indeed, as we pointed
out in the introduction, FDs are customarily associated with synthesis while
MVDs are associated with decomposition. How to combine the methods is the
subject of this section.

Let us consider another problem that has not been treated satisfactorily in the
literature. It is widely acknowledged that the design process begins by finding a
minimal cover of a dependency set. When only FDs are given, there is, in a sense,
a unique miminal cover [ll]. This is intuitively pleasing, since it implies the
existence of a unique minimal set of basic facts. Unfortunately, MVDs do not
enjoy this uniqueness property. It is interesting to note that if the set of MVDs
satisfies Assumption 1, then uniqueness of a minimal cover is guaranteed [6].
ACM Transactions on Database Systems, Vol. 11, No. 2, June ,986.

An Integrated Approach to Logical Design * 143

This is yet another hint of the significance of this assumption. The lack of
uniqueness of minimal covers for sets of MVDs is aggravated by the presence of
FDs. We show below that a proper separation of FDs and MVDs eliminates this
problem, again, when the MVDs satisfy Assumption 1.

The solution we propose can be briefly described as follows. Since FDs
represent close relationships, we should try to put attributes that are closely
related to each other together. MVDs should be used to separate attributes that
are only indirectly related. Thus the MVDs should he used to create clusters of
attributes such that FDs are embedded in these clusters. This implies that we
should use MVD-based decomposition to first create these clusters. At the second
stage the FDs will be used to refine the clusters. Of course, to implement this
approach, we have to show how to make sure that the FDs are indeed embedded
in the clusters. This is dealt with in this section. In the next section we consider
collections of clusters and their properties.

To achieve the goal described above, we propose the following procedure [7]:
For each X - DEP(X) E A4, replace X by X& and add the FD X + X,&
to F. The resulting MVD-set will thus consist of all the MVDs X- DEP(x),
where X = X& X E LHS(M). This transformation yields an equivalent
scheme whose MVD-set has closed LHSs. We call such schemes LHS-closed. In
the following, we state and prove properties of such schemes. In particular, we
show that under suitable assumptions the FD and MVD sets in such schemes
are separated from each other, so each can be used in a design method appropriate
to it, without fear of side effects caused by the existence of the other set.

The next proposition assures that nonsplitting is preserved by the above
transformation:

PROPOSITION 1. (171) If the LHSs ofM are not split, then the mrne holds for
their closures.

LEMMA 1. Let X be (M U F)-closed and V E DEP(X). Then, for TUJ A E V,
X+Ai.simpliedbyMUF.

PROOF. Trivial. 0

So if a structural MVD X - VI IV holds and X is closed, then for any
AO E V and B. E W, neither X + A0 nor X + BO holds. The situation here is
different from that of the MVD P --t-) A 1 C of the example in Section 3. We
could not rule out the relationship between A-values and C-values there because
of the FD P + A. On the other hand, the situation here is similar to that of the
MVD P - C I J (in the same example), where C and J are not directly related.
Thus, for the MVD X --H VI W above, we can conjecture that no direct
relationship exists between attributes of V and W.

THEOREM 1. ([7]1 Let (U, M U F) be LHS-closed and X 5 U be (M u F)-
closed. Then, LJEPmF(X) = DEP&X), that iz, the dependency basis of X w.r.t.
MU F can be computed using M alone.

THEOREM 2. Under the ammptions of Theorem 1, the maximal cliqm of
SG(M, U) are (MU F)-closed.

ACM Transactions on Database Systems, Vol. 11, No. 2, June 1986.

144 * C. Beeri and M. Kifer

PROOF. Let K be a maximal clique and f:K --f A be implied by M U F.
IfA4K,thensomeMVDsplitsKA,LetitbeX-++V]WEMandVnK+
0, A E W. Since K is not split, K E VX. But then K ---t A implies X + A
by an FD-MVD derivation rule.’ Since A 4 X, this contradicts the closedness
OfX. 0

Let X + A be a structural FD. It expresses a close relationship between the
attributes of XA. According to the structural role ascribed to FDs and MVDs,
XA should not be split by M. By Theorem 2, this is equivalent to the nosplitting
of X. We thus argue the following assumption:

Assumption 2. If X -+ A is structural, then X is not split.

Our next theorem shows that if the LHSs of the FDs of Fare not split by M
(which, by the assumption, holds if they are structural), then we achieve an even
stronger separation of FDs and MVDs.

THEOREM 3. Let (U, M u F) be LHS-closed and suppose the elements of
LHS(F) are not split by M. Then, X + A E (M U F)+ iff X -f A E F+. Thus
MVDs are not needed to establish FDs.

PROOF. The “if” direction is trivial. For the “only if” part assume w.1.o.g. that
X ---f A E (M U F)+ and A B X. The proof is by induction on the number of
attributes in U - X. Let U - X = (A]. By Beeri’s algorithm, since X ++ A E
(M U F)+, there should be an FD Z +AEFs.t.AEZ.SinceX=U-]A}by
assumption, it follows that Z & X. Hence X + A is implied by F alone. For the
inductive step, suppose that for any X s.t. #(U - X) 5 R, X -* A E (M U F)+
implies X + A E F+.

Suppose that #(lJ - X) = n + 1. To derive X + A, we must first compute
DEPM&X) by refining the candidate partition for DEPDI&X) by FDs and
MVDs of M U F. Since the order of applications of dependencies is immaterial,
we apply M first, after which the candidate partition will become DEPDI(X). At
that time only the FDs of F can possibly be applied to refine the partition.*
Suppose Y-f B E F refines some V E DEPM(X). Then, by Beeri’s algorithm,
B E V and Y n V = 0. Since Y is not split by M, it is inside some maximal
clique K. By Theorem 2, B E K also. By [S], SG(M, U) = SG(M+, U), hence
YB must not be split by M+, particularly by X ++ DEPM(X). Thus YB G XV.
Since we have assumed that Y n V = 0, it follows that Y c X. If B = A, then
we are done. Otherwise, consider X’ = XB. Clearly, X’ + A E (M U F)+ and
#(U - X’) = n. By the inductive assumption, X’ + A E F+. It remains to note
that, since Y c X c XB = X’, the pair of FDs Y q B and X’ + A (both of
which are in F+) imply X -+ A E F+. 0

Let FO be such that (M U FO)+ = (A4 U F)+. We call FO an M-couer of F.

‘This rule says (cf. [S, rule FD-MVD2; 21, rule CZ]): from X - W, K - A, A E W, and
Kn W=OinferX+A.
‘When the first FD refines the candidate partition, the MVDs may again he activated to refine the
partition even further. So we do not claim that DEPm,(X) can he computed by first applying MVDs
alone and then FDs alone.

ACM Transactions on Database Systems, Vol. 11, No. 2. June ,986.

An Integrated Approach to Logical Design - 145

THEOREM 4. Let (U, M U F) be LHS-closed. An M-cover FO (of F) is embedded
into the maximnl cliques of SG(M, U) ifj the elements of LHS(F,) are not split
(by M).

PROOF. The “only if” part is trivial. For the “if” part, let X + A E FO. Since
X is not split, it is inside some maximal clique K. By Theorem 2, maximal cliques
are closed, hence A E K. Cl

In summary, assume that the LHSs of all given dependencies are not split. We
have shown that the MVDs and FDs can be separated so that the FDs are
essentially useless for deriving new MVDs, and vice versa. This was done by
closing the LHSs of the initially given MVDs. The LHSs of the new dependency
set also are not split. Hence there exists a cmique minimal cover, MO, consisting
of full MVDs IS]. By Theorem 4, F is an embedded MO-cover. We propose to
view the dependency set MO U F as a natural candidate cover to start with. Thus
the problem of the nonuniqueness of minimal covers for MVDs and FDs is
reduced to the similar problem for the FDs only.

After this preliminary step we still have the problem of possible inadequacy of
the decomposition into the maximal cliques of SG(Mo, V). This issue is addressed
in the next section.

4.3 How to Cope with Cyclic Schemes
From now on, we posit Assumptions 1 and 2. Thus, we remove from the given
scheme the dependencies whose LHSs are split, on the grounds that they are not
structural dependencies. This still does not guarantee that decomposition will
produce the maximal cliques of the splitting graph. Indeed, we have seen that
nonsplitting is but one of two properties needed for that guarantee. We present
here results to the effect that it is possible to wend the given scheme by adding
new attributes and dependencies, so that the extended scheme satisfies both
properties. Extension is used here in a strong sense-the projection of specifi-
cations of the new scheme on the attributes of the old scheme is precisely the set
of old scheme specifications. Thus, intuitively, we can interpret this as meaning
that some of the relevant specifications may be missing from the old scheme.
Fortunately, however, the scheme contains implicit information about what is
missing, so we can make it explicit automatically.

Let (Lr, M U F) be LHS-closed and let M contain only structural MVDs. By
Assumption 1, the LHSs of M are not split. Thus, by Lien’s result [1.9], M fails
to be equivalent to a single JD only if it has intersection anomalies. The problem
of removing intersection anomalies was studied in 17, 81 and [17]. In the rest of
this section we present an informal description of the method and its properties.
The basic idea and the motivation for the method first appeared in [23].

Consider an intersection anomaly between a pair of MVDs mx:X +-+
V,l] V.lX,l . . .]X,andmy: Y~V,I...IV,IY,(...IYa.Toremoveit,
we would like to add something like X fl Y - V,]] V, to our MVD-set.
Unfortunately, a straightforward addition of this MVD will change the initial
semantics of the scheme too drastically. A safer way is to assume that all the
dependencies for the given set ofattributes were specified correctly, but that some

ACM Transactions on Database Systems, Vol. 11, No. 2, June ,986.

146 . C. Beeri and M. Kifer

other specifications were missing. The formal notion corresponding to this
approach is called schema extension. First, we need the following definition
from [I].

The projection of an FD X + V or an MVD X -u V on a set of attributes S
is defined to be X + (V n S) or X - (V rl S) if X C S; it is undefined if
X g S (w.l.o.g., we can take projection in the latter case to be any trivial
dependency, e.g., S---f S or S - S). For a dependency d, its projection on S is
denoted by d[S]. For a set D of FDs and MVDs, the projection of D on S, denoted
D[S], is {d[S] 1 d E D].

It was proved in [l] that projection of FDs and MVDs according to the
definition above is a sound and complete inference rule. That is, if I is a relation
over U, then Z[S] satisfies all and only the FDs and MVDs that are projections
of dependencies that hold in I. It follows that for a scheme (U, M U F), an FD
or MVD d is satisfied in the projection on S C U of all relations over U that
satisfy M U F iff d is obtained by projection from a dependency in (M u F)+.

A scheme (U, D) is called an extension of another scheme (U, D) if U C 0, - -
D’ [U] = D+ and SAT((U, D))[U] = SAT((U, D)), where SAT((U, D)) is the
set of all relation instances over U satisfying D and SAT((U, D))[U] stands for
{r[U] I f~ SAT((U, D))]. Thus, by extending a scheme, we do not change the
original semantics since the new scheme being restricted to the old set of
attributes represents exactly the same information as that represented by the old
scheme. However, (u, D) extends the scope of (U, D), and may introduce new
relationships between the old attributes and the added ones.

With this intention in mind and following Sciore’s original proposal, we enrich
the scheme with a new attribute P J,,~ and replace the problematic MVDs above
by the following three dependencies:

mi: XPX,Y - v,I~~~Iv”Ix1I~~~Ix”,
Ill;: ~~X.Y~~,l~~~lV”IY~I”~IY”,

mP,,,: x f-l YPX,Y - V~I”.lV”.
In this way the anomaly caused by mx and my will be removed. To ensure that
the resulting scheme extends the original one, we add a pair of FDs, X --f Px,u
and Y + Px,u. It is now obvious that, within the old set of attributes, all and
only the old dependencies will hold, namely, mx and my. Nevertheless, several
problems still exist. First, it has to be shown how PX,Y can be incorporated into
the rest of the dependencies when nx and my are not the only dependencies
specified in the scheme. Second, if there are intersection anomalies caused by
other MVDs, it has to be shown that iterative use of the above basic step will
eventually terminate and remove all the anomalies. The third problem concerns
the semantic meaning of the new added attributes. The last issue is the uniqueness
of the scheme resulting from the above process. All of these problems are resolved
in [7, 8, 171.

Before we describe the basic step of the transformation, we propose one more
preliminary step-the removal of redundant MVDs from M (m E M is redundant
if m E CM -]m])+; M is nonredundant if it has no redundant MVDs). It is
known that if a set of full MVDs M is split-free, then it has a unique minimal
couer (see [7]). A scheme whose MVD-set is LHS-closed and nonredundant is
ACM Transsctions on Database Systems, “0,. 11, No. 2. June 1986.

An Integrated Approach to Logical Design * 147

called P-reduced. We can now explain how an anomaly formed by a pair of
MVDs can he removed.

Transformation P

Input: A P-reduced scheme (I,‘, MU F) and a pair of LHSs X, YE LHS(M).
Output: A scheme (U’, M’ U F’) extending (U, MU F) in which Xjb.ur and Y&F. do

not form intersection anomalies.
1. Construct the new universe: U’ + U U (Px,,.J, where P,,, is a new attribute.
2. Start with empty MVD-set M’ for the new scheme. Add an MVD which is supposed

to remwe the anomaly between XP,,, and YP X,Y to the new scheme (as suggested in
the above discussion):

M’ + (m,,,:P,,(X il Y) --tt DEP(X) I-I DEP(Y)J.

3. Introduce another FD expressing the fact that Px.,. “represents” X n Y:
F’tFU (Px.y-txn Y).

4. Incorporate Px,v into the rest of the MVDs.
for each full MVD Z - V,I...IV.EMdcY

(i) If either Z 1 X or Z a Y or there are distinct V, and V, in DEP(Z) et. X n V,
#OandYnVj#O,thenput

M’+M’UIZP~~VVV.I...IV.I
F’ +F’U(Z+Px,y).

(ii) Otherwise, there exists V; E DEP(Z) s.t. K n Xf 0 and V, n Y # 0. Then,
M’+M’U(Z- v, I ” I V,Px,,l “’ I V.I.

end
5. make the MVDs in M’ full.
6. make M’ nonredundant,
7. output((U’, M’ U F’)).

Let (U, M U F) be a P-reduced scheme and X, Y he a pair of LHSs that
form an intersection anomaly. We denote the result of applying P to this pair by
P((U, MU F); X, Y).

We see that each application of P adds a new attribute Px.Y, a new MVD
m,,,,, and some FDs. In addition, the old MVDs are transformed into the MVDs
of the resulting scheme as described in step 4 of the algorithm. We say that these
transformed MVDs are inherited from the original scheme (U, M U F). The new
MVD, wx,a may make some of the inherited MVDs redundant. Redundant
MVDs are removed in step 6. The importance of P stems from the following
facts proved in [7]:

(1) P((U, M U F); X, Y) is an extension of (U, M U F).
(2) If Z E LHS(M), then if Z is as in (i) of step 4 of the algorithm above, then

Z,&V = ZP,Y and DEPw~F(ZP~,~) = DEPM,~(Z); if Z is as in (ii) of
step 4, then Z&QF. = Z and DEPwuF.(Z) is as described in (ii) of step 4.

From the second fact it follows that DEP .MW (X&T) n DE&W W%,U) is
a subset of DEP~w+npx,r), hence XP,, and YP,,, do not form an intersection
anomaly.

'Note that the MVDs m.G and m+, mentioned earlier, will he added at that step (in (i)) when 2 = X
or Y.

148 * C. Beeri and M. Kifer

Example 4. Let U = ABDFG and let the MVDs be

m,:A+-+FIGIBD
m2:B-t-tFIGIAD
ms:D++FIABG

For future references, denote this scheme by %. Application of P to the first
two MVDs introduces a new attribute P, adds the FDs A -S P and B --f P, and
transforms the original MVD-set to the following:

m::AP++FJGIBD
m;: BP-U FIGlAD
m;: D + FIABGP
mp: P *FlGIABD

Now the first pair of MVDs does not form an intersection anomaly (moreover,
m; and m; are redundant, and hence will be removed in step 6). However, the
last pair of MVDs still forms an anomaly.

This example shows that a single application of P may not suffice. In order to
remove all the anomalies, we have to apply P as long as there remain pairs of
(nonredundant) LHSs which form intersection anomalies. We denote such an
iterative application of P by P*. Of course, P* depends on the choice of particular
pairs of LHSs used in each application of P. We omit these particular pairs of
LHSs from our denotations because they will always be either clear from the
context or unimportant.

Example 4. (Continued) Further applying P to m; and mP, we end up with
the MVD-set:

m,:Qe F 1 ABDGP
m;: PQ ---tf FlGlABD

and the FD-set A + P, B ---f P, D + Q, P + Q. The MVD inherited from mj is
redundant and therefore removed. Let us denote this scheme by R,

It can easily be verified that RI is conflict-free and that it extends &. An
astute reader may have already noticed that P can be applied to the scheme of
Example 4 in different ways. We show this in the next example.

Example 4. (Continued) If instead of applying P to ml and m2 in R,,, we used
m2 and m3, the resulting scheme would have the following MVDs:

m:: A -FIGIBDQI
m;: BQ, -FIGlAD

mQ,: QI - FIABDG

and the FD-set would be B + Q1, D - Q1.

The last application of P was not as efficient as before when we applied P to
ml and m2. We are still left with two anomalies (between m; and rn; and between
m; and m,,), compared to only one anomaly in Example 4. Thus, not all possible
ways of applying P to a scheme advance us equally well towards the goal of
ACM Transactions on Database systeu1s. Vol. 11, No. 2, June 1986.

An Integrated Approach to Logical Design * 149

removing all intersection anomalies. In fact, applying P to certain schemes may
cause even more anomalies than it had originally [7]. All this gives rise to a
question about the termination of the process affecting I’*. It is proved in [7]
that

P’ terminates regardless of the choice of pairs of LHSs used for the intermediate
P-transformations. Furthermore, for any scheme R (with nonsplit LHSs), P*(R) is a
conflict-free extension of R.

Example 4. (Continued) Now let P be applied to m; and rni in the last
example. This results in introduction of another new attribute P’ and of the FDs
A + P’, BQ, + P’. The MVD-set now looks as follows:

my: P’ ++FlGlABDQl
mg,: Q, --t-f FIABDGP’

The remaining intersection anomaly can be removed by successive applications
of P. We then end up with a pair of MVDs:

m&: P’Q’ --Y FlGfABDQ,
ma: Q’ --Y F 1 ABDGP’Q,

and with FDs A + P’, BQ, + P’, B + Q,, D + Q1, P’ + Q’, and Q1 -t Q’.
Note that mBI is now implied by rnw, and therefore removed from the MVD-set.
For future reference, we denote the resulting scheme by R2.

We demonstrated that different orders of applications of P may result in
different schemes. Thus the scheme R2 of the last example has one more attribute
then the scheme R1 obtained earlier in the example. The FDs are also slightly
different.

Though such a nonuniqueness is an unpleasant property, we can show that
schemes obtained from the same original scheme by different series of P-
transformations can be naturally reduced to a single canonical scheme. This
canonical scheme is also a conflict-free extension of the initial scheme. To see
how it can be done, let us have another look at schemes R, and R2 obtained
above.

Observe that both schemes have the same number of (nonredundant) MVDs.
If we rename Q’ to Q and P’ to P in R2, then the MVDs of RP will differ from
those of R1 in one new attribute (namely, Q1) that was introduced into Rx by an
intermediate P-transformation. This attribute is somewhat different than Q’
and P’, since its associated MVD rn,~~ is redundant in R2. If we drop Q1 from the
MVDs of RP, then they will look exactly like the MVDs of R, Furthermore, let
F2 and US denote, respectively, the FD-set and the set of attributes of R2. It is
straightforward to verify that FI[U2 - {Q, I] is equivalent to the FD-set of R1
(provided that Q’ and P’ are renamed to Q and P as assumed above). It is now
obvious that R2 is a conflict-free extension of R, which in its turn is a conflict-
free extension of the initial scheme of Example 4. In summary, we reduced RZ to
a canonical scheme R, essentially by dropping attribute Q, and renaming the
rest of the new attributes of RB. This situation is an instance of the general
paradigm described next.

ACM Trsnssetions 0” Database Systems. Vol. 11, No. 2, June ,986.

150 * C. Beeri and M. Kifel

Recall that each application of P introduces a new attribute Px,r along with
an associated MVD mP,,. At the moment it is introduced, mPx,Y is nonredundant
171. However, it may become redundant at later stages, after additional new
MVDs (and attributes) are added. Thus, in Example 4, mB1 becomes redundant
in R2.

LetR=(U,MUF)anddenoteP*(R)byR’=(U’,M’UF’).Wesaythata
newly added attribute Q (i.e., s.t. Q E II’ - U) is weak if its associated MVD mg
becomes redundant at scnne stage. Weak attributes can be removed from R’ as
described above. More formally, the result of removing all weak attributes is the
scheme l? = (u, &f U F), where u is U’ with all the weak attributes removed; i@
is obtained from M’ by dropping all the weak attributes from wherever they
appear in the MVDs of M’. Finally, F is taken to be a set of FDs equivalent to
(F’)+[U].

Let @ be the transformation that results from applying P* first (using some
series of pairs of LHSs) and then deleting all the weak attributes. It is shown in
[8] that * is independent of the choice of a particular series of LHSs used in P*.
Of course, this independence should be understood mod& renaming of the
(nonweak) new attributes. For instance, in Example 4 we had to rename P’ and
Q’ to P and Q, respectively, in order to make schemes equivalent.

An efficient algorithm for * can be found in (81. This alogrithm requires a
deep knowledge of the structure of intersection anomalies and will not be
presented here. It is also shown in [S] that, for any R, -S(R) is a conflict-free
extension of R. Furthermore, it is, in a well-defined sense, the most natural
solution to the problem of elimination of intersection anomalies from R [17].

In short, we can define a structure of algebraic category [ZO] on the collection
of all schemes with nonsplit LHSs in which @ is an algebraic functor to a
subcategory of conflict-free schemes. It is argued that any natural solution to our
problem should have certain functorial properties (which b has too). It turns out
then that any functor with these properties is equivalent to a. The interested
reader is referred to [1’71 for details.

While the above argues for the naturalness of the proposed transformation,
the next remarkable property from [‘I] shows that + fits well into our design
philosophy:

for any X C U, X is split by M iff it is split by iii. Thus SG(M, U) = SG(M u) n CJ
and * preserves both close and indirect relationships among the attributes.

Since &f is conflict-free, it is equivalent to a single JD J whose constituents
are the maximal cliques of SG(M, 0) (and therefore are in the split-free normal
form). Thus, SFNF is achievable.

The only problem may be with the FDs. If no i&over for F is embedded into
the maximal cliques of SC(i@, o), then the FDs impose interclique constraints.
However, since in scheme design we are dealing with structural FDs only, it
follows from Assumption 2 and Theorem 4 that there is an embedded M-cover
for F. In such case Q assures that F also has an embedded M-cover 171. We
summarize the discussion in the following theorem:

THEOREM 5. ([7]) Suppose that the elements ofLHS(M U F) are not split, and
let (U, Al u F) = +((LI, M u F)). Then the elements of LHS(&? u F) are not
split. Particularly, F is embedded into the maximal cliques of SG(M, U).
ACM Transactions on Database Systems, vol. 11. No. 2, June 19%.

An Integrated Approach to Logical Design - 151

4.4 The Design Algorithm

Theorems 4 and 5 ensure that the following design procedure works well: First,
find an FD-cover embedded in the maximal cliques of SG(M, U). Then extend
the scheme to an acyclic one. Decompose the scheme using only MVDs (or,
equivalently, using the single JD). At the last stage, locally refine the resulting
schemes using, say, the synthesis algorithm of [12].

Note that we still have to ensure that if V and Wars two clusters obtained at
the decomposition phase, the results of the synthesis inside V and W agree on V
n W. To illustrate this point, consider the following example:

Example 5. Consider the following dependencies:

m:AECDEF++KIL
f,: K-+A
fz: L+A
fa: CA u AF
fd: BA c-) AE
fb: AEF -+ D
fs: ABC + D

Note that the FD-sets, F, = 1 f3, f,, f6) and F2 = { f3, 14, f6), are equivalent.
Decomposition by m yields the following two clusters: ABCDEFK and

ABCDEFL. If we use G, = F, U [fi) in Bernstein’s synthesis process for the first
cluster and G2 = F2 U (fz) for the second one, then their common part ABCDEF
will be represented by different sets of schemes.

This problem is readily rectified by first finding some global embedded
M-cover F and then synthesizing inside each cluster using only the FDs of F
embedded in that cluster.

Before presenting our design algorithm we have to decide on a policy in the
case when (nonstructural) integrity constraints and structural dependencies are
intermingled in the original specifications (i.e., when a split-LHS anomaly is
detected). In such case, we, at least, are able to point to the semantic problems
with scheme specifications supplied by the designer. Depending upon the policy
pursued, the design process either stops signaling the detected problem or
proceeds trying to eliminate the dependencies with split LHSs. Regardless of the
chosen policy, the designer must be informed by the algorithm about the semantic
inconsistency in his specifications.

The Design Algorithm

Input: (U, M U F)
Preliminary Stage
1. Make the MVDs full and close their LHSs.
The Nonmnuenttinal Stage
1. Filter out nonstructural dependencies. This stage results in a scheme (U’, M’ U F’),

where the elements of LHS(M’ U F’) are not split by M’.
2. Apply @. Let (0, il;r U F) denote 9((U’, M’ U F’)) and let J he the JD equivalent

to Iv.
ACM Transactions on Database Systems. Vol. 11, No. 2. June ISSS.

152 . C. Eeeri and M. Kifer

The Conuentiod Stage
1. Find an ~-cover embedded in J. Note that by Theorems 4 and 5, and since the LHSs

in LHS(M’ U F’) are not split, F is such a cover.
2. Decompose according to il? (or, equivalently, according to J).
3. For each constituent W of J do

Apply the synthesis algorithm of [12] to W, using only those FDs of F that are
embedded in W.

end
By [12], this operation losslessly decomposes each component of J. Let R denote
the resultinn set of schemes and let F stand for the FD-set moduced bv the
synthesis algorithm [121 (Ii is embedded in R).

Output: (R, F).

THEOREM 6. Let b = j U p,-where j is a JD whose components ore the schemes
of R. Then b is equiuaht to M U F.

PROOF. As noted earlier, &’ U F is equivalent to f U i? Since the synthesis
algorithm of [12] preserves FDs, P’ = F’. Clearly, j implies f [lo]. Thus b
implies &f U F. The claim will follow if we prove that J U F implies 3. This, in
turn, follows from the fact that the synthesis algorithm losslessly decomposes
each constituent of J [12]. 0

The nonconventional design stage of the algorithm can be accomplished in
polynomial (in size of the schema) time, as shown in [a]. The complexity of the
conventional stage is also polynomial. An efficient decomposition algorithm for
conflict-free sets of MVDs is given in [19]. The complexity of the synthesis
algorithm is discussed in 131.

The synthesis algorithm of [U] yields 3NF database schemes, which is nice. It
is known, however, that locally consistent databases over 3NF schemes may be
globally inconsistent 1221. Sagiv shows that scheme independence [22] is a much
better goal (than 3NF) and is free from the above deficiency. To make R
independent w.r.t. j u fl, it suffices to ensure scheme independence within every
constituent of Jw.r.t. the embedded FDs [181. Unfortunately, independence wzt.
FDs is unachievable within the classical setting. We believe that the solution can
be found within the framework delineated in this paper and in [17].’

5. COMPARISON TO OTHER METHODS

The only algorithm we know about that reasonably tries to benefit from both
FDs and MVDs is due to Zaniolo and Melkanoff [27]. However, they act within
the classical setting, which explains why their algorithm fails to design even
simple schemes like the one presented in Example 6 (below). Besides, their
approach is conceptually complicated. We demonstrate our method on a scheme
of Example 7 (below), and achieve the same result by a far simpler (both
conceptually and computationally) method than in [27].

’ In this connection we would like to cite a recent improvement of the Bernstein’s synthesis algorithm
due to Biskup and Meyer (131. This algorithm is quite different from that of Ill]. Its moat important
characteristic is that synthesis is guided by the semantics pertaining the FDs. However, it is still a
traditional design algorithm which does not change original schema specifications. Particularly,
schema independence cannot he achieved in this way.

An Integrated Approach to Logical Design * 153

Example 6. ([27]) Consider the following dictionary database. The attributes
are F(rench), G(erman) and E(nglr3). The MVDs E --t-) F] G, F --f--) E 1 G,
and G - E] F denote the fact that any term in any language has (possibly
more than one) translation into any other language.

The execution of our algorithm skips over the preliminary stage and the first
part of the nonconventional stage. It is easy to see that a single application of P
suffices to extend the original scheme to a conflict-free one. The resulting
scheme has the universe U’ = FGEC, where C is the new attribute, and the
MVD C ++ F] G] E. The FDs are F+ C, G -+ C, and E -+ C. At the conventional
stage we obtain the following database scheme: (EC), @C), and @C!)(keys are
underlined).

By instant inspection of the dependencies we conclude that semantically the
new attribute, C, stands for Concept(s) represented by terms in different lan-
guages. Interestingly, Zaniolo and Melkanoff arrived at the same results as we
did, by using intuitive arguments. Their algorithm, however, is unable to design
such a scheme.

Example 7. Consider the following enterprise borrowed from [27]:

LIC
MAKE
MODEL
YEAR
VALUE
0 WNER
DRVL
VIOL
DATE

licence number of motor vehicles,
manufacturer of motor vehicles,
model of vehicle,
year in which the vehicle was manufactured,
current value of vehicle,
unique identifier of a person,
driver’s licence number,
code number for traffic violation
date of violation.

The dependencies (as specified in 1271) are as follows:

LIC --f MAKE YEAR MODEL VALUE OWNER DRVL
WC -u (VIOL DATE]
(MAKE YEAR MODEL1 -f VALUE
[MAKE YEAR MODEL] - {LIC OWNER DRVL VIOL DATE)
0 WNER -+ DR VL
DRVL -t OWNER
OWNER - (LIC MAKE YEAR MODEL VALUE) ((VIOL DATE)
DRVL - (LIC MAKE YEAR MODEL VALUE] ({VIOL DATE]

Our algorithm closes LHSs and finds a minimal cover at the preliminary stage
yielding the following dependencies:

(DRVL OWNER) - {LX MAKE YEAR MODEL VALUE) I (VIOL DATE!
OWNER-t DRVL
DRVL -t OWNER
LIC --t MAKE YEAR MODEL VALUE OWNER
(MAKE YEAR MODEL! + VALUE

We arrive at a scheme with a single MVD and a collection of FDs with nonsplit
LHSs. Hence there is no need for the nonconventional stage. Decomposition now
yields two big clusters: {VIOL DATE DRVL OWNER] and (DRVL OWNER
LIC MAKE YEAR MODEL VALUE]. Synthesizing separately inside each

ACM Transactions on Database Systems, “0,. II. No. 2. June KM.

154 * C. Beeri and M. Kifer

component, we obtain the following final scheme, where different keys are
underlined differently:

(m OWNER)
(OWNER VIOL DATE)
(a MAKE YEAR MODEL OWNER)
(MAKE YEAR MODEL VALUE)

This result is identical to that of 1271, hut is obtained in a far simpler way.

Observe that in the example the second and the fourth MVDs are implied by
the first and the third FDs, respectively, and thus are not used in our design
process. However, the method of [27] requires these implied MVDs to be explicitly
specified (as they are in Example 7), which makes it difficult to catch the
essential part of the scheme specifications. In comparison, from the point of view
of our method, the essential specifications of the above scheme are extremely
simple: there are two SFNF-clusters with embedded FDs.

Note also that the nonconventional stage in the example is empty. This is the
reason why the conventional approach of 12’71 succeeds here.

We conclude with a more sophisticated example in which more than one
application of the P-transformation is required at the nonconventional stage.

Example 8. Let the attributes be E(mploye-e), L(aboratory), C(omputer), and
(pro)J(ect). The meaning of a tuple (e, 1, c, j) is that employee e has an access
to laboratory 1, has an account on computer e, and is working for project j.

Suppose that from the employee’s point of view all the laboratories and
computers he is permitted to use are the same, that is, he can log in on any
computer (to which he has an access) using terminals of any laboratory he is
permitted to work in. An employee can work for any of his projects in any
laboratory and on any computer he has an access to. These conditions are
expressed by the following MVD:

Suppose furthermore that employees working for the same project have similar
working conditions, that is, they can access the same laboratories and computers.
This is expressed by the following MVD:

J+-PLJCIE

Finally, assume that for any computer all the users have the same rights in
using the laboratories, that is, for any particular computer all its users are
permitted to work in any laboratory from which they can access that computer.
This is expressed as follows:

C-WLIEJ

Summarizing, we have the following dependencies:

An Integrated Approach to Logical Design * 155

Application of P to the first pair of MVDs results in the following scheme,
where W is a new attribute:

W++LICIJE
C-wLlEJW
E-W, J-W

The last scheme still has an intersection anomaly which can be removed by a
subsequent application of P. This application introduces another new attribute
A, and results in the following scheme:

A-++LlCEJW
WA-HLICIJE

C-A, W-A, E-W, J+W

Without going deeply into the formal semantics that can be ascribed to the
new attributes (which can be found in [7] and [S]), we describe this semantics
with informal arguments only.

Let r be a relation satisfying the dependencies of the final scheme. Any value
w of W defines the set V, = (u~=~~)[LC], where gwEuI denotes selection on
attribute Wand the square brackets stand for projection on LC.

From the FD E + W, it follows that every employee has only one associated
W-value. Let w be associated with an employee e. Then, Vu represents all
pairs (1, c) s.t. e can log in on c from a terminal in laboratory 1. The set of these
pairs corresponds to what we called earlier employee’s working conditions. Thus,
W-values represent working conditions of different employees. The FD J + W
states that employees working for the same project have the same working
conditions, which complies with our original motivation for introducing the MVD
J++LICIE.

Similarly, any A-value c defines the set V. = (o,+.r)[L]. It is easily verified
that the FDs J + A, E + A, and C + A hold in our scheme. Let e be an employee
associated with a and let j and c be a project and a computer associated with o.
Then, V. represents the set of laboratories where e is permitted to work.
Alternatively, we can look at V. as the set of laboratories in which project j can
be carried out or from which computer c can be accessed. Thus, A describes
laboratory assignments to employees, projects, and computers.

At that point the nonconventional stage of design has been completed. The
decompositional phase of the conventional stage produces the following clusters
of attributes:

AL AWC AWJE

The first cluster is in the 3NF. The second cluster will be decomposed by the
synthesis algorithm of [lZ] into (A _W), (_C A), and (WC). The third cluster has
the following embedded FDs: J + W, E -+ W, and W + A. Thus, after the
synthesis, we have (J W), (E W), @‘A), and (JE). In summary, we arrive at
the following collect&r of schemes: (a), (c A), (_W A), (a), (J W), @ W),
and (8).

ACM Transactions on Datdxse Systems, Vol. ,I, No. 2, June 1986.

156 * C. Beeri and M. Kifer

The price we pay for the luxury of nonconventional design is that we now have
to provide values for the entities represented by the new attributes. Fortunately,
their values can be provided automatically [7, S]. Since the new attributes can
be ascribed clear semantic meaning, it will also be easy for a user to provide
appropriate values when adding new tuples.

On the positive side, we achieve significant simplification in schema structure
and in the exposition of connections between schema attributes. This pays off at
database maintenance and querying time. For instance, any attempt to design
the scheme of Example 8 within the old scope of attributes will necesarily obscure
some of the connections represented by the schema MVDs (see the discussion in
Section 4.1). This in its turn will cause computational problems in preserving
database consistency. More seriously, shading in some of the schema intercon-
nections may expose database users to errors in formulating their queries, that
is, an obscure schema semantics may cause users to join data along lossy join
paths (i.e., along the so-called connection traps [14]).

6. SUMMARY AND CONCLUSIONS

Our approach reveals some interesting properties of the structure of real-world
databases. It shows that there is a macrostructure delineated by the global JD
(whose components are the SFNF-clusters obtained at the decomposition stage).
The infrastructure is defined at the synthesis stage by refining the macrostruc-
ture. This sheds a new light upon the celebrated question whether the real world
is cyclic or acyclic: in the case where specifications are given by MVDs and FDs,
the world has an acyclic macrostructure (a JD equivalent to a set of MVDs is
acyclic [IS]), but the infrastructure is most probably cyclic. In the situations
where FDs and MVDs are not the only data dependencies, even the macrostruc-
ture is likely to be cyclic.

The two-level structure of the real-world databases can be exploited in the
query evaluation process. Namely, a query can be split into subqueries posed
about local databases obtained by restricting the database to the components of
the JD. Each such subquery is evaluated over the corresponding local database
independently of other subqueries (and other parts of the database). The local
results are then joined to obtain the answer to the global query. This issue is
discussed elsewhere [la].

In summary, we present a consistent approach to the problem of scheme
design, based on new principles. We argue that database design methods should
have a preliminary stage (which we call “nonconventional” in order to contrast
it to the approaches which have prevailed so far in the literature). This new stage
is intended to deal with various “bad things” that plagued most of the previous
approaches. Here we have spotted two kinds of such “bad things.” Nonstructural
additives to schema specifications, which do not really belong to the design
process, are one kind of such “bad things.” The second one occurs when the
database designer overlooks some relevant specifications. To deal with these
issues a comprehensive design system should combine syntactic tests to spot the
problems (such as Assumptions 1 and 2 in Sections 4.1 and 4.2) with theoretically
well-founded schema improvement methods (such as @ in Section 4.3), along
with various heuristics and the designer’s assistance. We then applied these ideas
ACM Transactions on Database Systems, “0,. 1 I, No. 2, June ,986.

An Integrated Approach to Logical Design * 157

to the classic problem of schema design for FDs and MVDs and came up with a
new method that extends all the known approaches and leads to a successful
design for a wide variety of situations for which FDs and MVDs constitute an
adequate class of schema specifications.

However, in many real cases it is not enough to specify FDs and MVDs alone.
Unfortunately, we have no solution for other types of dependencies. The most
important ones are embedded join dependencies and inclusion dependencies.
Another problem, already mentioned, is that Bernstein’s synthesis algorithm
only provides a partial solution to the design problem for FDs. Its drawback is
that the resulting schemes may not be independent [ZZ]. Therefore, there are
interrelational constraints which are hard to enforce. It is known that no
synthesis algorithm can design independent databases. A plausible solution is to
find a suitable scheme correction [17, 241. We believe that the general ideas
described in this paper can serve as a framework for the further study of these
issues.

ACKNOWLEDGMENTS

The authors are grateful to Yehoshua Sagiv for his helpful comments. We also
appreciate the contributions made by Joachim Biskup and two other anonymous
referees, whose remarks helped to improve the exposition. Many thanks to Philip
Bernstein who kindly agreed to read this manuscript and pointed out some errors.

REFERENCES
1. AHO, A. V., BEERI, C.. AND ULLMAN, J. D. The theory of joins in relational databases. ACM

Trans. Databose Syst. 4, 3 (Sept. 19791, 297-314.
2. BEERI, C. On the membership problem for functional and multivalued dependencies in relational

databases.ACM Tnz~. Databose Syst. $3 (Sept. 19801.241-259.
3. BEERI, C., AND BERNSTEIN, P. A. Computational problems related to the design of normal form

relational schemes. ACM Tram. Dalobase Sysf. 4, 1 (Mar. 1979), X-59.
4. BEERI, C., BERNSTEIN, P. A., AND GOODMAN, N. A sophisticate’s introduction to database

normalization theory. In Proceedings of the Internotio~l Conference on Very Large Data Bases
(West Berlin, 1978), 113-124.

5. BEER!, C., FAGIN, R., AND HOWARD, J. H. A complete axiomatization for functional and
multivalued dependencies in database relations. In Proceedings of ACM-SIGMOD International
Conference on Manogemenl of Data (19X’), ACM, New York, 4741.

6. BEERI, C., FAGIN, R.. MAIER, D., AND YANNAKAKIS, M. On the desirability of acyclic database
schemes. J. ACM 30 (July 1983), 4X-513.

7. BEERI. C., AND KIFER, M. Elimination of intersection anomalies from databases schemes. J.
ACM (July 1986,, to appear.

8. BEERI. C.. AND KIFER. M. A theory of intersection anomalies in relational database schemes.
J. ACM, to appear.

9. BEERI. C.. AND KIFER. M. A comprehensive wnroach to the design of relational database
schemes. In Proceedings of the 10th internotioM1.Conference on Veryehrge Data Bases (Singa-
pore, Aug. 1984), 196-207.

10. BEERI, C., MENDELSON, A. O., SAGIY, Y., AND ULLMAN, J. D. Equivalenceof relationaldatabase
schemes. SIAM J. Cornput. 10, 2 (May 1981), 352-310.

II. BERNSTEIN, P. A. Synthesizing third normal form relations from functional dependencies. ACM
Tram. Database Syst. 1.4 (Dec. 19X$247-298.

12. BISKUP, J., DAYAL, U., AND BERNSTEIN, P. A. Synthesizing independent database schemes. In
Proceedings of ACM-SIGMOD International Conference on Mmngemnt of Data (1979), ACM,
New York, 143-151.

ACM Transsetions 0” Database Systems, “0,. 11, NO. 2. June ,986.

158 . C. Beeri and M. Kifer

13. BISKUP, J.. AND MEYER, R. Design of relational database schemes by deleting attributes in the
canonical decomposition. Unpublished manuscript, Dortmund Univ.

14. COOO, E. F. A relational model of data for large shared data banks. Commun. ACM 13 (1970),
377-387.

15. FAGIN, R. Multivalued dependencies and a new normal form for relational databases. ACM
Tram. Database Sysf. 2,3 (1977), 262-27.3.

16. FAGIN, R., MENDELSON, A. O., AND ULLMAN, J. D. A simplitied universal assumption and its
properties. ACM Trans. Database Cyst. 7, 3 (Sept. 1982), 343.360.

17. KIPER, M. Nonconventional design theory for relational database schemes. TR 85.07, Dept. of
Computer Science, SUNY at Stony Brook, Feb. 1985.

I& KIFER M., AND SAGW, Y. Computing windows on real-world databases. In preparation.
19. LIEN, Y. E. On the equivalence of database models. J. ACM 29, 2 (Apr. 1982), 333-362.
20. MACLANE, S. Categories for Working Motkemafictins. Springer Verlag, New York, 1971.
21. MAIER, D. The Theory of Relational Dotaixses. Computer Science Press, Potomac, Md., 1983.
22. SAGIV, Y. A characterization of globally consistent databases and their correct access paths.

ACM Trans. Dotobase Syst. 8.2 (June 1983),266-2&i.
23. SCIORE, E. Real-world MVDs. Tech, Rep. 80/014, Dept. of Computer Science, SUNY at Stony

Brook, Nov. 1980.
24. SCIORE, E. Improving database schemes by adding attributes. ACM PODS (1983),379-383.
25. SCIORE, E. The universal instance and database design. Ph.D. dissertation, TR 271, Princeton

Univ., June 1980.
26. ULLMAN, J. D. Principles of Database Systems. Computer Science Press, Potomac Md., 1980.
27. ZANIOLO, C., AND MELKANOFF, M. A. On the design of relational database schemata. ACM

Tnxs. Database Syst. 6, 1 (Mar. 1981). I-47.

Received March 1985; revised September 1985; accepted November 1985

ACM Trsnsaetions on Datsbsse Systems. “0,. 11. NO. 2, June 1986.

