
Group-by and Aggregate Functions in XML Keyword
Search

Thuy Ngoc Le1, Zhifeng Bao2, Tok Wang Ling1, and Gillian Dobbie3

1National University of Singapore,
2University of Tasmania & HITLab Australia, 3University of Auckland

{ltngoc,lingtw}@comp.nus.edu.sg;
zhifeng.bao@utas.edu.au, gill@cs.auckland.ac.nz

Abstract. In this paper, we study how to support group-by and aggregate func-
tions in XML keyword search. It goes beyond the simple keyword query, and
raises several challenges including: (1) how to address the keyword ambiguity
problem when interpreting a keyword query; (2) how to identify duplicated ob-
jects and relationships in order to guarantee the correctness of the results of ag-
gregation functions; and (3) how to compute a keyword query with group-by and
aggregate functions. We propose an approach to address the above challenges. As
a result, our approach enables users to explore the data as much as possible with
simple keyword queries. The experimental results on real datasets demonstrate
that our approach can support keyword queries with group-by and aggregate func-
tions which are not addressed by the LCA-based approaches while achieving a
similar response time to that of LCA-based approaches.

1 Introduction

Like keyword search in Information Retrieval, its counterpart over XML data has grown
from finding the matching semantics and retrieving basic matching results in the last
decade [3, 14, 6, 8, 18, 11, 17], and now it is enabling many more opportunities for users
to explore the data while keeping the query in the form of keywords with additional
requirements, such as visualization, aggregation, query suggestion, etc. In this paper,
we study how to support group-by and aggregate functions beyond the simple XML
keyword search, which to our best knowledge, no such effort has been done yet. In
this way, it alleviates users from learning complex structured query languages and the
schema of the data. For example, consider the XML document in Figure 1, in which
there exist two many-to-many relationship types between Lecturer and Course,
and between Course and Student. Suppose a user wishes to know the number of
students registered for course Cloud, ideally she can just pose a keyword query like
{Cloud, count student}. It is even better if keyword queries can express group-
by functions. For example, finding the number of registered students for each course can
be expressed as {group-by course, count student}.

This motivates us to propose an approach for XML search which can support key-
word queries with group-by and aggregate functions including max, min, sum, avg,
count (referred to as expressive keyword query) by just using a keyword based inter-
face. As a result, our approach is able to provide a powerful and easy way to use a query

Course
1.1.1

Student
1.1.1.1

Lecturer
1.1

Student
1.1.1.2

SNo

S2

Name

Anna

Course
1.1.2

SNo

S1

Code

CS1

Name

Bill

Student
1.1.2.1

SNo

S2

Name

Bill

Code

CS2

SName

Albert

StaffID

L1

grade

A

grade

B

grade

A

Student
1.1.2.2

SNo

S3

Name

Anna

grade

A

Title

Cloud

Title

XML

Root
1

Course

Student

Lecturer

Title

StaffID

Code

SNo

SCHEMA

SName

Name grade

Course
1.2.1

Student
1.2.1.1

Lecturer
1.2

Student
1.2.1.2

SNo

S2

Name

Anna

SNo

S1

Code

CS1

Name

Bill

SName

Anna

StaffID

L2

grade

A

grade

B

Title

Cloud

…..

m:n

m:n

Course
1.2.2

Student
1.2.2.1

Name

Anna

SNo

S1

Code

CS3

Title

DB

grade

A

Figure 1: An XML database

interface that fulfills a need not addressed by existing systems. Group-by and aggregate
functions are studied in XML structured queries such as [12, 2] and in keyword search
over relational database (RDB) such as [10, 13]. However, to the best of our knowledge,
there was no such work in XML keyword search.

Our approach has three challenges compared to the simple LCA-based approaches
for XML keyword search (i.e., approaches based on the LCA (Lowest Common An-
cestor) semantics) such as [3, 14, 6, 8, 18, 11, 17], which do not support group-by and
aggregate functions. Firstly, query keywords are usually ambiguous with different in-
terpretations. Thereby, a query usually has different interpretations. In simple XML
keyword search, an answer can be found without considering which query interpreta-
tion it belongs to. On the contrary, in our approach, if all answers from different inter-
pretations are mixed altogether, the results for group-by and aggregate functions will
be incorrect. Secondly, an object and a relationship can be duplicated in an XML doc-
ument because it can appear multiple times due to many-to-many relationships. Such
duplication causes duplicated answers. Duplicated answers may overwhelm users but
at least the answers are still correct for simple XML keyword search. In contrast, dupli-
cated answers cause the wrong results for aggregate functions count, sum, avg. Thirdly,
unlike simple XML keyword search where all query keywords are considered equally
and answers can be returned independently, in our approach, query keywords are treated
differently and the answers need to be returned in a way that the group-by and aggre-
gate functions can be applied efficiently. Therefore, processing a keyword query with
group-by and aggregate functions is another challenge.

To overcome these challenges, we exploit the ORA-semantics (Object-Relationship-
Attribute-Semantics) introduced in our previous work [7, 5, 4]. The ORA-semantics in-
cludes the identification of nodes in XML data and schema. Once nodes in an XML
document are defined with the ORA-semantics, we can identify interpretations of a
keyword query. The ORA-semantics also helps determine many-to-many relationships
to detect duplication.
Contributions. In brief, we propose an approach for XML keyword search which can
support group-by and aggregate functions with the following contributions.

– Designing the syntax for an XML keyword query with group-by and aggregate
functions (Section 2).

– Differentiating query interpretations due to keyword ambiguity in order not to mix
together the results of all query interpretations (Section 3).

– Detecting duplication of objects and relationships to calculate aggregate functions
correctly (Section 4).

– Processing XML keyword queries with group-by and aggregate functions including
max, min, sum, avg, count efficiently (Section 5).

– Creating XPower, a system prototype for our approach. Experimental results on
real datasets show that we can support most queries with group-by and aggregate
functions which the existing LCA-based approaches cannot while achieving a sim-
ilar response time to that of LCA-based approaches (Section 6).

2 Preliminary

2.1 Object-Relationship-Attribute (ORA)-semantics

We defined the ORA-semantics as the identifications of nodes in XML data and schema.
In XML schema, an internal node can be classified as object class, explicit relationship
type, composite attribute and grouping node; and a leaf node can be classified as object
identifier (OID), object attribute and relationship attribute. In XML data, a node can
be object node or non-object node. Readers can find more information about the ORA-
semantics in our previous works [7, 5, 4].

For example, the ORA-semantics of the XML schema and data in Figure 1 includes:
– Lecturer, Course and Student are object classes.
– StaffID, Code and SNo are OIDs of the above object classes.
– StaffID, SName, etc are attributes of object class Lecturer.
– There are two many-to-many relationship types between object classes: between
Lecturer and Course, and between Course and Student.

– Grade is an attribute of the relationship type between Course and Student.
– Lecturer(1.1) is an object node; StaffID, L1, SName and Albert are

non-object nodes of Lecturer(1.1).
Discovering ORA-semantics involves determining the identification of nodes in

XML data and schema. If different matching nodes of a keyword have different iden-
tifications, then that keyword corresponds to different concepts of the ORA-semantics.
In our previous work [7], the accuracy of discovery of the ORA-semantics in XML
data and schema is high (e.g., greater than 99%, 93% and 95% for discovering object
classes, OID and the overall process, respectively). Thus, for this paper, we assume the
task of discovering the ORA-semantics has been done.

2.2 Expressive keyword query

This section describes the syntax of an expressive keyword query with group-by and
aggregate functions including max, min, count, sum, avg supported by our approach.
Intuitively, a group-by function is based on an object class or attribute. For example,
{group-by course}, {group-by grade}. Thus, group-by must associate with
an object class, or an attribute. On the other hand, aggregate functions max, min, sum,

avg must associate with an attribute such as max grade, but not with an object class
or a value because these functions are performed on the set of values of attributes. How-
ever, the aggregate function count can associate with all types of keyword: object class,
attribute, and value because they all can be counted. For example, {count course},
{count StaffID}, {count A}. Based on these constraints, we define the syntax
of an expressive keyword query in BackusNaur Form (BNF) as follows.
〈query〉 ::= (〈keyword〉[“, ”])∗(〈function〉[“, ”])∗
〈function〉 ::= 〈group by fn〉 | 〈aggregate fn〉
〈group by fn〉 ::= “group by”(〈object class〉 | 〈attribute〉)
〈aggregate fn〉 ::= 〈agg 1〉 | 〈agg 2〉
〈agg 1〉 ::= (“max” | “min” | “sum” | “avg”)(〈attribute〉|〈aggregate fn〉)
〈agg 2〉 ::= “count”(〈keyword〉|〈aggregate fn〉)
〈keyword〉 ::= 〈object class〉 | 〈attribute〉 | 〈value〉

Since the parameters of aggregate function “count” are different from those of the
other aggregate functions “max”, “min”, “sum”, “avg”, we use 〈agg 1〉 and 〈agg 2〉 to
define them separately. With the above BNF, group-by and aggregate functions can be
combined such as {group-by lecturer, group-by course, max grade,
min grade} or nested such as {group-by lecturer, max count student}.
Terms related to an expressive keyword query. For ease of presentation, we use the
following terms in this paper.

– Group-by parameters are query keywords following the term “group-by”.
– Aggregate functions are the terms “max”, “min”, “sum”, “avg” and “count”.
– Aggregate function parameters are keywords following the aggregate functions.
– Content keywords are all query keywords except reserved words (i.e., the term

“group-by” and the aggregate functions). Content keywords can be values, attributes,
or object classes in the query.

– Free keywords are content keywords not as group-by parameter and not as aggregate
function parameters.

3 Query interpretation

The first challenge of our approach is that keywords are usually ambiguous with differ-
ent interpretations as illustrated in Figure 2. Therefore, a query is also ambiguous with
different interpretations, each of which corresponds to a way we choose the interpreta-
tion of keywords as described in the following concept.

Concept 1 (Query interpretation) Given an expressive keyword query Q = {k1, . . . , kn},
an interpretation of query Q is IQ = {i1, . . . , in}, where ii is an interpretation of ki.

Keyword

Reservered word

Content
keyword

Tags

Values

Different kinds of tags (e.g., different object classes, attributes)

Different matching objects/ relationships

Figure 2: Different possible interpretations of a keyword

Query contains reserved words

Existing keyword(s) are both reserved words
and content keywords

Classify all content keywords

query

When all keywords are
interpreted as

content keywords

Group-by
parameters

Free
keywords

When some keyword(s)
are interpreted as

reserved keywords

Cross product of the
interpretations of

reserved keywords

A

Interpretations are
matching objects,
relationships, tags

Interpretations are
identifications of tags

Aggregate
parameters

Interpretations are
identifications of tags

Y N

Classify all query keywords
Y

N

Cross product of interpretation
lists of all keywords

(A)

A simple query
interpretation

A simple query
interpretation

Query interpretations

Figure 3: Generating query interpretations

3.1 Impact of query ambiguity on the correctness of the results

In simple XML keyword search approaches such as [3, 14, 6, 8, 18, 11, 17], which do
not support group-by and aggregate functions, an ambiguous keyword corresponds to
a set of matching nodes, whose identifications are not considered. In these approaches,
an answer can be found without considering which query interpretation it belongs to.
In contrast, not differentiating query interpretations affects the correctness of group-by
and aggregate functions as illustrated below.

Example 1 Consider query {Anna, count A} issued to the XML data in Figure 1,
in which one lecturer and two students have the same name Anna. They are object
<Lecturer:L2> (w.r.t. object node Lecturer (1.2)), object <Student:S1>
(w.r.t. object nodes Student (1.1.1.1), Student (1.2.1.1), and Student
(1.2.2.1)), and object <Student:S3> (w.r.t. object node Student (1.1.2.2)).
Both keywords count and A have only one interpretation in the XML data. Specifically,
count is an aggregate function and A is a value of attribute grade of the relationship
type between student and course.

Intuitively, the query has three interpretations: (1) finding the number of grade A of
students taking courses taught by Lecturer Anna, (2) finding the number of grade
A of Student Anna whose SNo is S1, and (3) similar to the second interpretation
but for student Student Anna whose SNo is S3. If the query interpretations are not
considered, the numbers of grade A corresponding to three interpretations are mixed
and counted altogether instead of being counted separately. This makes the results of
aggregate function Count A incorrect.

Therefore, to calculate group-by and aggregate functions correctly, we need to pro-
cess each query interpretation separately. To speed up the processing, we have an opti-
mized technique, in which we do not process each query interpretation at the beginning,
instead we process them together with group-by functions (discussed in Section 5.2).

3.2 Generating query interpretations

Generating all interpretations of a query contains three tasks: (1) identifying all interpre-
tations of each keyword; (2) once the interpretation lists of all keywords are available,
query interpretations are generated by computing the cross product of these lists; (3)
filtering out invalid query interpretations based on the syntax in Section 2.2. Instead of
doing the three tasks separately, in the first task, we proactively identify the interpreta-
tions of a keyword such that they do not form invalid query interpretations.

Algorithm 1: Generating all valid interpretations of a query
Input: Query keywords k1, . . . , kn

The ORA-semantics
The keyword-node lists and the node-object list

Output: List of valid interpretations qInt
1 Variable: List of query keywords as reserved words Lres

2 A simple query interpretation Iq
s without reserved words

3 //Task 1: identifying all interpretations of each keyword
4 for each query keyword k do
5 if k is a reserved word then
6 Add k to Lres

7 //Query does not contain reserved words
8 if Lres is empty then
9 // It is a simple query without group-by or aggregate functions

10 Add all keywords to Iq
s // All are content keywords

11 return Iq
s // We do not care about interpretations for this case

12 //Query contains reserved words

13 Variable: The list of interpretations of a keyword k: Li
k

14 The list of free keywords Lfr

15 The list of group-by parameters Lg

16 The list of aggregate functions and parameters La,f

17 for each query keyword k in Lres do
18 Li

k← content interpretation and reserved word interpretation
19 k.tags← retrieve all identifications of ki (ki as tags) from ORA-semantics
20 k.nodes← retrieve all matching object nodes of ki (ki as values) from the keyword-node lists

21 temp← all cross product of the interpretation lists of keywords in Lres

22 for each interpretation qI in temp do
23 // All keywords are content keywords
24 if All interpretations in qI are content interpretations then
25 Add all query keywords to Iq

s
26 Add Iq

s to qInt // a simple query interpretation

27 else
28 Lfr , Lg and La,f ← parse all keywords based on Lres

29 for each keyword k in Lfr do
30 k.objects← get objects of nodes for k.nodes based on the node-object list
31 Add all k.tags and k.objects to Li

k

32 for each keyword k in Lg do
33 Add all k.tags to Li

k

34 for each keyword k in La,f do
35 if the aggregate function is “count” then
36 k.tags← get tags of nodes for k.nodes based on the ORA-semantics

37 Add all k.tags to Li
k

38 //Task 2: generating all query interpretations

39 qInt← add all cross product of the interpretation lists Li
k’s of all keywords

Identifying all interpretations of a keyword is not straightforward. Firstly, unlike a
simple keyword query where interpretations of a keyword do not depend on those of
the others, in our approach, to avoid invalid query interpretations, the interpretations of

Object

<Course:CS1>

<Student:S1>

<Student:S2>

{Course (1.1.1), Student (1.1.1.1)},
{Course (1.2.1), Student (1.2.1.1)}

{Course (1.1.1), Student (1.1.1.2)},
{Course (1.2.1), Student (1.2.1.2)}

{<Course:CS1>, <Student:S1>}

{<Course:CS1>, <Student:S2>}

Relationship

Course (1.1.1), Course(1.2.1)

Student (1.1.1.1), Student (1.2.1.1), Student (1.2.2.1)

Student (1.1.1.2), Student (1.2.2.1), Student (1.2.1.2)

Duplication

Duplication
Course

CS1
1.1.1

Student
S1

1.1.1.1

Lecturer
L1
1.1

Student
S2

1.1.1.2

Course
CS2
1.1.2

Student
S2

1.1.2.1

Student
S3

1.1.2.2

Root
1

Lecturer
L2
1.2

Course
CS1
1.2.1

Student
S1

1.2.1.1

Student
S2

1.2.1.2

Course
CS3
1.2.2

Student
S1

1.2.2.1

Figure 4: Duplication of objects and relationships in the XML data in Figure 1

content keywords need to depend on those of the reserved words. Secondly, unlike sim-
ple keyword query where all keywords are treated equally, in our approach, different
types of query keywords are treated differently and can provide different interpreta-
tions. Particularly, keywords as group-by and aggregate function parameters can only
be interpreted as different tags, while keywords as free keywords can be interpreted as
different matching objects1, different matching relationships2, or different tags as well.

Generating all valid query interpretations is illustrated in Figure 3 and is described
in Algorithm 1. Since the reserved words may impact the interpretations of other key-
words, we first need to identify whether a keyword is a reserved word, or a content key-
word, or both. After that, the interpretations of content keywords depend on whether
they are free keywords, group-by parameters or aggregate function parameters.

4 Duplication

Duplication of objects and relationships is another challenge of our approach. This sec-
tion will discuss the impact of such duplication on the correctness of the results of
aggregate functions and how to overcome it. For illustration, we use the XML data in
Figure 1, in which duplicated objects and relationships are summarized in Figure 4,
where we only show object nodes of the data for simplicity.

4.1 Duplicated objects and relationships

The duplication of objects is due to many-to-many (m : n) or many-to-one (m : 1) rela-
tionships because in such relationship, the child object is duplicated each time it occurs
in the relationship. For example, in the XML data in Figure 1, since the relationship
between lecturer and course is m : n, a course can be taught by many lecturers such as
<Course:CS1> are taught by <Lecturer:L1> and <Lecturer:L2>. Thus, the
child object (<Course: CS1>) is shown as two object nodes Course (1.1.1)
and Course(1.2.1).

m : n and m : 1 relationships cause not only duplicated objects, but also duplicated
relationships. For example, as discussed above, in the XML data in Figure 1, because of

1 An object matches keyword k when any of its object node matches k.
2 A relationship matches keyword k when any of its involved objects matches k.

the m : n relationship between lecturer and course, the child object (<Course:CS1>)
is shown as two object nodes Course (1.1.1) and Course(1.2.1). Therefore,
everything below these two object nodes is the same (duplicated), including the rela-
tionships between object (<Course:CS1>) and students such as the relationships be-
tween <Course:CS1> and <Student:S1> (the big dotted lines in Figure 4), and
between <Course:CS1> and <Student:S2> (the big lines in Figure 4).

4.2 Impact of duplication on aggregate functions

We show the impact of duplicated objects and relationships in the following examples.

Example 2 (Impacts of duplicated objects) To count the number of students taught
by lecturer Albert, a user can issue a query {Albert, count student} against
the XML data in Figure 1. Without considering duplicated objects, the number of stu-
dents is four. However, object node Student (1.1.1.2) and object node Student
(1.1.2.1) refer to the same object <Student:S2>. Hence, only three students are
taught by lecturer Albert.

Example 3 (Impacts of duplicated relationships) Recall query {Anna, count A}
discussed in Example 1. We use the second interpretation, i.e., finding the number of
grade A of Student Anna whose SNo is S1, to illustrate the impacts of duplicated
relationships. In the XML data in Figure 1, the relationship between <Student:S1>
and <Course:CS1> is duplicated twice (the big dotted lines in Figure 4). This makes
attribute grade of this relationship duplicated. Without considering duplicated rela-
tionships, the number of grade A is three. In contrast, by keeping only one instance for
each relationship, the answer is only two.

Therefore, to perform aggregate functions sum, avg and count correctly, we must
detect duplicated objects and relationships and keep only one instance for each of them.
Duplication does not impact on the correctness of aggregate functions max and min.

4.3 Detecting duplication

If there exists a m : n or m : 1 relationship type between object classes A and B,
then for all object classes (or relationship types) appearing as B or the descendants of
B, the objects of those classes (or the relationships of those relationship types) may
have duplication. Otherwise, with no m : n or m : 1 relationship type, duplication
does not happen. Therefore, to detect duplication, we first identify the possibility of
duplication by checking m : n and m : 1 relationship types. If there is no m : n and
no m : 1 relationship type, we can determine quickly the objects (or relationships)
which are not duplicated. Identifying the possibility of duplication can be done with the
ORA-semantics and is shown in Algorithm 2.

Once we determine that an object (or a relationship) is possibly duplicated, we de-
termine whether two objects (of the same object class) are really duplicated by checking
whether they have the same OID. A relationship is represented by a list of involved ob-
jects. Thus, two relationships (of the same relationship type) are duplicates if the two
sets of objects involved by the two relationships are the same.

Algorithm 2: Detecting the possibility of duplication
Input: The aggregate function parameter p

The ORA-semantics
1 p.class← get the object class of p (based on the ORA-semantics)
2 p.ancestor← get all ancestor object classes and itself of p.class (based on the ORA-semantics)
3 p.RelType← get all relationship types with p.ancestor involved in (based on the ORA-semantics)
4 p.card← get the cardinality of each relationship type in p.RelType (based on the ORA-semantics)
5 if existing m : n or m : 1 relationship type in p.RelType (determined in p.card) then
6 p.possibility← TRUE

Detecting real duplication is integrated with calculating aggregate functions and
will be described in Section 5.2. For each aggregate function parameter, if it is pos-
sibly duplicated, before applying an aggregate function on an object or a relationship
instance, we check whether duplication occurs.

5 Indexing and processing

Figure 5 describes the architecture of our approach,
which consists of three indexes (presented in Sec-
tion 5.1) and five processing components (discussed
in Section 5.2). Like LCA-based approaches such as
[3, 14, 6, 8, 18, 11, 17], our approach works on data-
centric XML documents with no IDREFs and as-
sumes updating does not frequently happen. Other-
wise, adding or deleting one node can lead to change
Dewey labels of all nodes in an XML document in
those approaches.

Aggregate
Calculator

Group-by
Classifier

Query

Results

Keyword-
node lists

Interpretation
Generator

Answer
Finder

Node-
value list

Node-
object list

ORA-
semantics

Duplication
Detector

Figure 5: The architecture

5.1 Labeling and indexing

Labeling. Unlike conventional labeling schemes, where each node has a distinct label,
we assign a Dewey label for only object nodes while non-object nodes use the same
label with the object node they belong to as in Figure 1.

Indexing
A. Keyword-node lists. Each document keyword k has a list of matching object nodes.
B. Node-value list. We maintain a list of pairs of 〈object node, values〉 to retrieve
values of an object node to operate group-by or aggregate functions.
C. Node-object list. We maintain a list of pairs of 〈object node, object〉 for two pur-
poses. Firstly, it is used together with the keyword-node lists to find matching objects
in order to generate query interpretations. Secondly, it is used to detect duplication.

(Answer 1) (Answer 3)(Answer 2)

Group 1:
Objects w.r.t. group-by para:
<Course:CS1>
Objects w.r.t. free keywords:
<Student:S1>

count (A) = 1 count (A) = 1

Group-by
Classifier

Answer Finder

Aggregate
Calculator

Q = {Anna, group-by course, count A}

Group-by parameters = {course} Free keywords = {Anna}Aggregate functions = {count} Aggregate parameters = {A}

Course
CS1
1.1.1

Student
S1

1.1.1.1

Course
CS2
1.1.2

Student
S3

1.1.2.1

Course
CS1
1.2.1

Student
S1

1.2.1.1

Course
CS3
1.2.2

Student
S1

1.2.2.1

Lecturer
L2
1.2

Course
CS1
1.2.1

Student
S1

1.2.1.1

Course
CS3
1.2.2

Student
S1

1.2.2.1

Lecturer
L2
1.2

(Answer 5) (Answer 6)(Answer 4)

Group 2:
Objects w.r.t. group-by para:
<Course:CS2>
Objects w.r.t. free keywords:
<Student:S3>

Group 3:
Objects w.r.t. group-by para:
<Course:CS3>
Objects w.r.t. free keywords:
<Student:S3>

Group 4:
Objects w.r.t. group-by para:
<Course:CS1>
Objects w.r.t. free keywords:
<Student:S1>

count (A) = 1 count (A) = 2

Answer 3 is duplicated with Answer 1
Duplication

Detector

A

1.1.1.1 1.2.2.11.1.2.2 1.2.1.11.1.2.1

1.1.1 1.2.21.1.2 1.2.11.1.2

1.1.1.1 1.2.2.11.1.2.2 1.2.1.1No answer 1.2 1.2

Object node w.r.t
aggregate parameter

Object node w.r.t
group-by parameter

Object node w.r.t
free keyword

Look up
objects

classify

A

Course

Anna

Object w.r.t.
group-by

parameters

Object
w.r.t. free
keywords

Figure 6: Processing query Q = {Anna,group-by course,count A}

5.2 Processing

The processing of our approach can briefly be described as follows. As discussed in
Section 3, we process each query interpretation separately in order not to mix together
results of different query interpretations. Interpretation Generator is responsible for
generating all valid interpretations of the input query. For each query interpretation,
Answer Finder finds intermediate answers, each of which will be used as an operand
of the aggregate function. Group-by Classifier classifies intermediate answers based on
group-by parameters. Aggregate Calculator applies aggregate functions on intermedi-
ate answers. During the aggregate calculation, Duplication Detector detects duplicated
objects and relationships in order to perform aggregate calculation correctly.

The above discussion is at conceptual level. At the lower level, we have an opti-
mized technique for the process. We are aware that different query interpretations may
produce the same sets of object nodes for group-by and aggregate function parame-
ters. Therefore, instead of finding intermediate answers for each interpretation, we find
all possible intermediate answers first, then classify them into suitable interpretations.
Thereby, we can save costs of repeating the same thing. The optimized process is de-
scribed in Algorithm 33.

3 A query interpretation corresponds to a set of interpretations of free keywords, group-by parameters and aggregate func-
tion parameters. The input of Algorithm 3 is a query interpretation w.r.t. interpretations of group-by and aggregate func-
tion parameters, interpretations of free keywords will be handled after finding intermediate answers.

Interpretation Generator and Duplication Detection correspond to the discussion in
Section 3 and Section 4 respectively. The following are details of the remaining three
components. We use query {Anna, group-by course, count A} applied to
the XML data in Figure 1 as a running example. Figure 6 shows the results produced
by each component for the query.

Answer Finder. An intermediate answer contains a set of matching object nodes of
content keywords which are aggregate function parameters, group-by parameters, and
free keywords. We first find object nodes of aggregate function parameters (line 3 in
Algorithm 3), then those of group-by parameters (line 6), and finally those of free
keywords (line 11). This is because an intermediate answer corresponds to only one
matching object node of an aggregate function parameter because it is used as only one
operand in an aggregate function.

An object node of a group-by parameter must have an ancestor-descendant rela-
tionship with that of the aggregate function parameter because group-by functions are
based on the relationship among objects. In XML, these relationships are represented
through ancestor-descendant relationships (edges).

All nodes in an intermediate answer must be meaningfully related. For this purpose,
we agree with the argument in [15] that the object class of the LCA (Lowest Common
Ancestor) of nodes in an answer must belong to the LCA of the object classes of these
nodes. We use this property to find object nodes of free keywords in an answer.

In the running example (in Figure 6), the aggregate function parameter A has five
matching nodes. For each of them, we find the corresponding object nodes of the group-
by parameter course. For each pair of object nodes of the aggregate function param-
eter and the group-by parameter, we find the corresponding object nodes of the free
keyword Anna.

Scope. Like LCA-based approaches, our approach does not consider the cases where
two objects are connected through several relationships which do not form an ancestor-
descendant chain. This constraint is to find group-by parameter.

Group-by Classifier. We classify an intermediate answer into a group based on ob-
jects w.r.t. the group-by parameters and the free keywords. Thus, we first retrieve the
corresponding objects from the set of nodes of an answer. Then, we compare that set of
objects of an answer with that of groups (lines 14-19). In the running example, for the
first answer, <Course:CS1> and <Student:S1> are objects corresponding to the
group-by parameter and the free keyword respectively. So, it is classified into Group 1
which has the same set of objects.

Aggregate Calculator. Aggregate Calculator calculates aggregate functions on objects
and relationships (or their attributes and values) of the aggregate function parameters
in each group. During the calculation, we check the duplication of objects and relation-
ships. We first check the possibility of duplication based on schema (line 25, referred
to Algorithm 2). If this possibility is true, we will check whether the considered object
or relationship is duplicated or not (line 26) before processing the aggregate functions
(line 27). In the running example, two answers in Group 1 are duplicated. Thus, the
result of Count A in this group is only one.

Algorithm 3: Processing an expressive keyword query
Input: Free keyword k1, . . . , kn

The group-by parameters g1, . . . , gq
The aggregate function parameters a1, . . . , ap

The aggregate functions f1, . . . , fp
The ORA-semantics
Indexes: the keyword-node lists, the node-value list, the node-object list

1 //Answer Finder
2 for each aggregate function parameter ai do
3 for each matching object node a node ∈matchNode(ai) do
4 //find the corresponding object nodes matching group-by parameters
5 for each group-by parameter gi do
6 Lg

i
node← the list of object nodes u such that u ∈ matchNode(gi) and u is an ancestor or

a descendant of a node

7 for each set of object nodes {g1 node, . . . , gq node}, gi node ∈ Lg
i

node do
8 highest← the highest object node among gi node’s and a node
9 //find the corresponding object nodes matching free keywords

10 for each free keyword ki do
11 Lk

i
node← findObjectNodesFreeKeyword(ki, highest)

12 //Group-by Classifier
13 Lgroup←{group| group←{g1 node, .., gq node, k1 node, .., kn node}, where

ki node ∈ Lk
i

node}
14 for each group ∈ Lgroup do
15 unit←{a node, group}
16 if exist groupi matches group then
17 classify unit into groupi //Classify unit

18 else
19 create new class groupi+1

20 Updated objects w.r.t. group-by parameters and free keywords for groupi+1

21 classify unit into groupi+1 //Classify unit into new class

22 //Aggregate Calculator
23 if ai is a relationship or a relationship attribute (based on the ORA-semantics) then
24 rel(a node)← get the relationship w.r.t. a node

25 else
26 obj(a node)← get the object w.r.t. a node

27 if ai.possibility is TRUE then
28 if DetectDuplication (obj(a node)/rel(a node)) is FALSE then
29 ApplyAggregateFunction (fi, ai, a node)

Complexity. Since the number of aggregate function parameters, group-by parameters
and free keywords are few, the For loops in line 1, line 4 and line 9 do not have much
affect on the complexity. Since all the lists of matching object nodes are sorted by the
pre-order of labels of matching object nodes, the finding of matching object nodes of
group-by parameters and free keywords can be obtained efficiently. Thereby, the com-
plexity of finding all intermediate answers depends on the number of matching object
nodes of aggregate function parameters. Thus, for Answer Finder, for each matching
object of an aggregate function parameter, the costs are log(G) and log(K) for finding
object nodes of a group-by parameter and of a free keyword in an answer respectively,
where G and K are the length of their lists of matching object nodes respectively. In
Group-by Classifier, the cost for classifying in the worst case is log(Gr) where Gr is
the total number of groups (sorted). For Aggregate Calculator, the cost in the worst case
is O × log(O) where O is the maximum number of objects in a group.

name

Team

lastName

Coach

Player

Player_Team
_info

yearfirstNamecoachID

team

Coach_Team
_info

lastNamefirstNameilkID

gp

year

locate

firstNcoachID

team

firstNameilkID

Author*

Paper

Booktitlemdatekey pagetitle year

(Basketball)

(DBLP)

Notes: A paper is represented by <inprocessding> …. </
inprocessding>, we use paper to make it more natural.
Booktitle corresponds to conferences, journals, etc...

Figure 7: A part of schema of DBLP and Basketball used in experiments

Table 1: Queries for tested datasets
DBLP User search intention Query XPower

suports
Ambi-
guity

Dupli-
cation

QD1 Count the papers of Yi Chen Yi Chen, count paper Yes Yes No
QD2 Count the co-authors of Yi Chen Yi Chen, count author No N.A N.A

QD3 How many years Yi Chen have published papers and in
how many conferences Yi Chen, count booktitle, count year Yes Yes Yes

QD4 Count the papers of Yi Chen in each conference for each
year

Yi Chen, group-by year, group-by
booktitle, count paper Yes Yes Yes

QD5 How many conferences has Diamond published papers Diamond, count booktitle Yes Yes Yes
QD6 Find the latest year Diamond published paper in IEEE-TIT Diamond, IEEE-TIT, max year Yes Yes No
QD7 Count the papers of Brown published in each conference Brown, group-by booktitle, count paper Yes Yes No
QD8 Count the conferences Brown has published papers Brown, count booktitle Yes Yes Yes
Basketball
QB1 How many players and coaches in team Celtics Celtics, count player, count coach Yes No Yes
QB2 How many teams Michael have worked for Michael, count team Yes Yes Yes
QB3 How many players Thomas have worked with Thomas, count player No N.A N.A
QB4 How many players Johnson have worked with Johnson, count player Partial Yes Yes
QB5 Find the latest year Edwards has worked for team Hawks Edwards, Hawks, max year Yes Yes No
QB6 When did player Edwards start to work Edwards, min year Yes Yes No
QB7 Count players in each team which Michael has worked for Michael, group-by team, count player Partial Yes No

QB8 How many players and coaches of each team group-by team, count player, count
coach Yes No Yes

6 Experiment

We have implemented a framework, called XPower for evaluation on several aspects:
enhancement, impacts of query interpretation and duplication, and efficiency. We com-
pare XPower with XKSearch [14] because it is one of the most popular XML key-
word search approaches. Like other XML keyword search approaches, XKSearch
does not support group-by and aggregate functions, and does not consider the effects of
duplication and query interpretation on search results. Thus, we compare with XKSearch
on only efficiency. The experiments were performed on an Intel(R) Core(TM)i7 CPU
3.4GHz with 8GB of RAM. We used the subsets of two real datasets: Basketball (45MB)4

and DBLP (570MB)5,6. A part of the schema of each dataset is given in Figure 7.

4 http://www.databasebasketball.com/
5 http://dblp.uni-trier.de/xml/
6 In the updated DBLP dataset, authors of the same name can be distinguished. We make use this in differentiating query

interpretations related to authors.

Table 2: Interpretations of keywords in tested queries

Keyword Interpretations of keyword Keyword Interpretations of
keyword

Yi Chen 6 authors Celtics 1 team
many authors Hawks 1 team
many titles Edwards 4 players
many authors Thomas 15 players
many titles Michael 2 coaches and 13 players

IEEE-TIT one conference Johnson 5 coaches and 14 players
author object class/ attribute team object class
paper object class coach object class
year attribute (in class paper) player object class
booktitle object class/ attribute year relationship attribute
group-by not in DBLP group-by not in document
count in title of paper count not in document
max in title and author max, min not in document

both reserved
words and values

DBLP Basketball

value Match values only
 No

keyword
in

multiple
groups:
value,
tag,

reserved
word

tag
Match both tags
and values of Title
(in class Paper)

reserved
word

Diamon

Brown

6.1 Enhancement evaluation

Table 1 shows eight queries for each dataset used in the experiments and Table 2 pro-
vides interpretations of keywords in those queries. Table 1 also shows whether XPower
was accurate on the tested queries. As can be seen, XPower can return answers for
seven out of eight queries for each Basketball and DBLP dataset. This is because
XPower handles group-by functions based on relationships, which are represented as
edges in XML. However, in QD2, Yi Chen is an author, and it does not have any direct
relationship with another author. In other words, there is no ancestor-descendant rela-
tionship between authors. Therefore, XPower cannot provide any answer for this query.
This is similar to QB3 of Basketball. For QB4 and QB7 in Basketball, Michael and
Johnson can be both players and coaches. If they are interpreted as players, XPower
cannot provide an answer for the same reason as QB3. If they are interpreted as coaches,
XPower can provide answers.

6.2 Impact of query interpretation due to keyword ambiguity

Table 3 shows three different results for each query in Basketball in three different
scenarios: (1) XPower considering both query interpretation and duplication, (2) only
considering query interpretation but not duplication, and (3) only considering duplica-
tion but not differentiating query interpretation. Because of space constraints, we only
showed the results and explanations for Basketball although DBLP has similar results.
We also describe whether duplication and keyword ambiguity impact on the results of
each query in Table 1. As can be seen, keyword ambiguity impacts on the correctness of
the results of all queries in DBLP, and five out of seven queries in Basketball (not con-
sidering queries with no answer). This verifies the importance of differentiating query
interpretations. Otherwise, the results of all query interpretations are mixed together.

6.3 Impact of duplication

As we can see in Table 1, duplication impacts on the correctness of the results for four
out of eight queries in both DBLP and Basketball. This is fewer than those affected by

Table 3: Results of queries of Baketball dataset

XPower results
Results if not filter
duplication

Reasons for duplication
Results if not
differentiate
queryInterpretation

Explain

QB1 count player = 215
count coach = 13

count player = 2795
count coach = 13

Team Celtics has been coached
by 13 coaches, thus its players are
duplicated 13 times. Coaches are
not duplicated.

same results with
XPower

QB2

15 answers for 15 persons (2
coaches, 13 players), each has a
number of teams they have worked
for. Sum of these numbers are 69.

count team = 298

Michael as players: a player can
work with the same team
(duplicated) under different
coaches.

1 answer:
count team = 69

QB4

No answer for Johnson as players.
Johnson as coaches: 5 answers for 5
coaches, each has a number of
players. Total number is 136.

count player = 219

A player can works for more than
1 team (duplicated) in different
years under the same coach
Johnson

1 answer:
count player = 136

QB5
2 answers for 2 players Edwards in
team Hawks, with max year 1997,
2004 resp.

same results with
XPower

duplication does not affect
aggregate function max

1 answer:
max year = 2004

QB6
4 answers w.r.t. min year for 4
players Edwards: 1993, 1995, 1981,
1977 resp.

same results with
XPower

duplication does not affect
aggregate function min

1 answer:
min year = 1977

QB7

6 answers:
Michael as players: No answer.
Michael as coach 1: 3 teams (count
players = 153, 256, 82 resp.)
Michael as coach 2: 3 teams (count

same results with
XPower

Although players are duplicated in
documents, they are not
duplicated under the pair of 1
coach and 1 team

4 answers:
4 teams (count
player = 153, 236,
512, 164 resp.).

QB8 Provide the number of players and
those of coaches for each team

count player: diff
count team: same

If a team is duplicated, all of its
players are duplicated.

same results with
XPower

mix the
results
of all

interpre-
tations

ambiguity but this number is still significant. This agrees our arguments about the im-
portance of detecting duplication. Otherwise, the results of aggregate functions would
not be correct. The number of queries affected by duplication is fewer than that of ambi-
guity because in Basketball, coaches are not duplicated, only teams and players
can be duplicated. In DBLP, papers are not duplicated either. Therefore, there is no
impact on the functions count coach in Basketball and count paper in DBLP.
Moreover, duplication does not affect max and min functions as in QB5 and QB6.

6.4 Efficiency Evaluation

Figure 8 shows the response time of XPower (XP as abbreviation) and XKSearch
(XK as abbreviation) for queries tested except the ones (QB3 and QD2) XPower does
not provide any answer. Since XKSearch does not support group-by and aggregate
functions, we dropped reserved words of tested queries when running XKSearch. Al-
though XPower has the overhead of doing group-by and aggregate functions, the re-
sponse time of queries are similar to those of XKSearch. This is because XPower does
not find all SLCAs because many SLCAs do not correspond to any intermediate answer.
For queries with complicated group-by and aggregate functions (e.g., QB1, QB7, QB8,
QD3, QD4 and QD7), the overhead of processing those functions makes XPower run
slightly slower than XKSearch. The response time of XPower is dominated by that
of Answer Finder. Aggregate Calculator costs more than Group-by Classifier because
it needs to detect duplication.

0

30

60

90

XP XK XP XK XP XK XP XK XP XK XP XK XP XK

Aggregate Calculator
Group-by Clasifier
Answer Finder

Ti
m

e(
m

s)

QB1 QB2 QB4 QB5 QB6 QB7 QB8

(a) Basketball

0

60

120

180

240

300

XP XK XP XK XP XK XP XK XP XK XP XK XP XK

Aggregate Calculator

Group-by Clasifier

Answer Finder

QD1 QD3 QD4 QD5 QD6 QD7 QD8

T
im

e(
m

s)

(b) DBLP

Figure 8: Efficiency comparison of XPower and XKSearch on Basketball and DBLP
(Dropping reversed words of tested queries when running XKSearch)

7 Related work

XML keyword search. Most approaches for XML keyword search are based on the con-
cept of LCA (Lowest Common Ancestor) first proposed in XRANK [3]. Later, many
approaches extend the concept of LCA to filter less relevant answers. XKSearch [14] de-
fines Smallest LCAs (SLCAs) to be the LCAs that do not contain other LCAs. Meaning-
ful LCA (MLCA) [8] incorporates SLCA into XQuery. VLCA [6] and ELCA [18] in-
troduces the concept of valuable/exclusive LCA to improve the effectiveness of SLCA.
XReal [1] proposes an IR-style approach for ranking results. MaxMatch [9] investigates
an axiomatic framework that includes the properties of monotonicity and consistency.
MESSIAH [11] handles the cases of missing values in optional attributes. Although
these works can improve effectiveness of the search, they do not support group-by and
aggregate functions.
Group-by and aggregate functions. Group-by and aggregate functions are studied in
XML structured queries such as [12, 2] and in keyword search over relational database
(RDB) such as [10, 13]. However, there is no such work in XML keyword search. Ar-
guably, XML can be shredded into RDB, and then we can apply the techniques of RDB
for XML. However, [16] proves that the relational approaches are not as efficient as the
native approaches (XML is used directly) in most cases.

8 Conclusion and future work

We proposed an approach to support queries with group-by and aggregate functions
including sum, max, min, avg, count to query a data-centric XML document with a
simple keyword interface. We processed query interpretations separately in order not to
mix together the results of different query interpretations. To perform aggregate func-
tions correctly, we detected duplication of objects and relationships. Otherwise, the re-
sults of aggregate functions may be wrong. Experimental results in real datasets showed

the enhancement of our approach, the importance of detecting duplication and differ-
entiating query interpretations on the correctness of aggregate functions. These results
also showed the optimized techniques enable our approach to be almost as efficient as
LCA-based approaches although it has some overhead. In the future, we will handle the
problem by different techniques, including transferring XML keyword queries to struc-
tured queries such as XQuery queries. Moreover, we will solve the case where object
nodes of group-by and aggregate function parameters do not have ancestor-descendant
relationships.

References

1. Z. Bao, T. W. Ling, B. Chen, and J. Lu. Efficient XML keyword search with relevance
oriented ranking. In ICDE, 2009.

2. C. Gokhale, N. Gupta, P. Kumar, L. V. S. Lakshmanan, R. Ng, and B. A. Prakash. Complex
group-by queries for XML. In ICDE, 2007.

3. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword search
over XML documents. In SIGMOD, 2003.

4. T. N. Le, T. W. Ling, H. V. Jagadish, and J. Lu. Object semantics for XML keyword search.
In DASFAA, 2014.

5. T. N. Le, H. Wu, T. W. Ling, L. Li, and J. Lu. From structure-based to semantics-based:
Effective XML keyword search. In ER, 2013.

6. G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for valuable LCAs over
XML documents. In CIKM, 2007.

7. L. Li, T. N. Le, H. Wu, T. W. Ling, and S. Bressan. Discovering semantics from data-centric
XML. In DEXA, 2013.

8. Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, 2004.
9. Z. Liu and Y. Chen. Reasoning and identifying relevant matches for XML keyword search.

In PVLDB, 2008.
10. S. Tata and G. M. Lohman. SQAK: doing more with keywords. In SIGMOD, 2008.
11. B. Q. Truong, S. S. Bhowmick, C. E. Dyreson, and A. Sun. MESSIAH: missing element-

conscious SLCA nodes search in XML data. In SIGMOD, 2013.
12. H. Wu, T. W. Ling, L. Xu, and Z. Bao. Performing grouping and aggregate functions in XML

queries. In WWW, 2009.
13. P. Wu, Y. Sismanis, and B. Reinwald. Towards keyword-driven analytical processing. In

SIGMOD, 2007.
14. Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML

databases. In SIGMOD, 2005.
15. Y. Zeng, Z. Bao, H. V. Jagadish, T. W. Ling, and G. Li. Breaking out of the mismatch trap.

ICDE, 2014.
16. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On supporting containment

queries in relational database management systems. SIGMOD, 2001.
17. J. Zhou, Z. Bao, W. Wang, T. W. Ling, Z. Chen, X. Lin, and J. Guo. Fast SLCA and ELCA

computation for XML keyword queries based on set intersection. In ICDE, 2012.
18. R. Zhou, C. Liu, and J. Li. Fast ELCA computation for keyword queries on XML data. In

EDBT, 2010.

