Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies

1. The Relational Model

Stéphane Bressan

January 22, 2015

Introduction	
0000	

Codd's Motivation

The Relational Model

The Universal Relation

Design Anomalies

This lecture is based on material by Professor Ling Tok Wang.

CS 4221: Database Design

The Relational Model

Ling Tek Wang National University of Singapore

OB AND The Relational Mark

https://www.comp.nus.edu.sg/

~lingtw/cs4221/rm.pdf

Introduction	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
0000	000	000000000000000000000000000000000000000	0000000000	0000

Content

- Introduction
- 2 Codd's Motivation
 - Readings
 - Codd's Motivation
- 3 The Relational Model
 - Definitions

The Universal Relation

- Motivation
- Readings
- Definition
- The Universal Relation as a User Interface

5 Design Anomalies

Motivating Example

Introduction 0000 Codd's Motivatior

The Relational Model

The Universal Relation

Design Anomalies

"Future users of large data banks must be protected from having to know how the data is organized in the machine (the internal representation). " *A Relational Model of Data for Large Shared Data banks* [CACM 1970], by Edgar F. Codd

Introduction 000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Introduction				

Example

The database of a manufacturing company contains information about parts and projects. For each part, the part number, part name, part description, quantity-on-hand, and quantity-on-order are recorded. For each project, the project number, project name and project description are recorded. Whenever a project makes use of a certain part, the quantity of that part committed to the given project is also recorded.

Introduction 0●00	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Introduction				

Many different ways of representing in the hierarchical model.

PART
part#
name
description
quantity-on-hand
quantity-on-order
PROJECT
project#
name
description
quantity-committed

PROJECT project# name description PART part# name description quantity-on-hand quantity-on-order quantity-committed PART part# name description quantity-on-hand quantity-on-order

PROJECT project# name description

COMMIT part# project# quantity-committed

Introduction 00●0	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Introduction				

The Relational Design Question

How many tables? What tables? How many columns in each table? What columns?

But Also

What Integrity Constraints?

Integrity Constraints in SQL

- PRIMARY KEY
- UNIQUE
- NOT NULL
- FOREIGN KEY
- CHECK

Introduction 000●	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Introduction				

Part						
Part#	PartName	Desc	QuantityHand	QuantityOrder		
35212	nut	FISH HEAD BOLT	10000	560		
23212	bolt	CAGE NUT	24366	123		
6653	screw	Pan Head Screw	123	5000		

Project					
Project# ProjectName Desc					
101	Bicyle	Build a bicycle with side car			
203	Electric Car	Build an electric car that runs on solar power			
•••					

Commit					
Project#	Part#	Quantity			
35212	203	500			
23212	101	232			
6653	101	65			

Introduction 0000	Codd's Motivation ●○○	The Relational Model	The Universal Relation	Design Anomalies 0000
Readings				

Readings

- Codd, E.F.. "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM 13 (6): 377-387, (1970).
- Fillat A., Kraning L. "Generalized Organization of Large Data-bases; A Set-Theoretic Approach to Relations". MIT-LCS-TR-070 (1970). [OPTIONAL]
- Abiteboul S.,Hull R. and Vianu V. "Foundations of Databases", http://webdam.inria.fr/Alice/pdfs/all.pdf

Introduction	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
0000	000	000000000000000000000000000000000000000	0000000000	0000
Codd's Motivat	ion			

Motivation

Codd motivates the relational model by the inadequacy of hierarchical and network models with respect to:

- the lack of data independence;
- and the poor management of data inconsistencies.

Data Independence

- Ordering dependence;
- Indexing dependence;
- Access Path Dependence.

Data Consistency

- Structural constraint;
- Logical constraint.

Introduction 0000	Codd's Motivation ○○●	The Relational Model	The Universal Relation	Design Anomalies 0000
Codd's Motivat	ion			

Part				
Part#	PartName	Desc	QuantityHand	QuantityOrder
35212	nut	FISH HEAD BOLT	10000	560
23212	bolt	CAGE NUT	24366	123
6653	screw	Pan Head Screw	123	5000

Project		
Project#	ProjectName	Desc
101	Bicyle	Build a bicycle with side car
203	Electric Car	Build an electric car that runs on solar power
•••		

Commit		
Project#	Part#	Quantity
35212	203	500
23212	101	232
6653	101	65

Introduction 0000	Codd's Motivation	The Relational Model •000000000000000000000000000000000000	The Universal Relation	Design Anomalies
Definitions				

Take				
Student#	Course#	S-name	C-desc	Mark
95001	CS1101	Tan CK	Programming	75
95023	CS1101	Lee SL	Programming	58
95023	CS2103	Tan CK	D.S. and Alg.	64
••••				

Introduction 0000	Codd's Motivation	The Relational Model 000000000000000000000000000000000000	The Universal Relation	Design Anomalies 0000
Definitions				

Let us consider

- the countably infinite set \mathcal{R} is a set of relations (relation names),
- the countably infinite set A is a set of attributes (attribute names) such that $\mathcal{R} \cap \mathcal{A} = \emptyset$, and,
- the set \mathcal{D} is the domain (set of atomic values).
- If attributes need different domains the function Dom on A (Dom : A → 2^D) defines the domain of an attribute A ∈ A: Dom(A) ⊂ dom.

$TAKE \in \mathcal{R}$

 $\{\textit{Student\#},\textit{Course\#},\textit{S-name},\textit{C-desc},\textit{Mark}\} \subset \mathcal{A}$

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

The structure of a table is given by the relation name and a finite set of attributes.

We assume that there exists a function from the set of relation names to the set of finite subsets of attribute names.

sort :
$$\mathcal{R} \mapsto 2^{\mathcal{A}}_{finite}$$

sort(R) is the schema of the relation. We write R = sort(R).

sort(*TAKE*) = {*Student*#, *Course*#, S-name, C-desc, *Mark*}

TAKE = {*Student*#, *Course*#, S-name, C-desc, *Mark*}

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

The arity (or degree) of a relation name, R, is the number of its attributes.

arity(R) = | sort(R) |

TAKE is quinary.

arity(TAKE) = 5

degree 0 = nullary, degree 1 = unary, degree 2 = binary, degree 3 = ternary ... Do we have degree 0 relations in SQL?

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Definitions				

Original Definition by Codd

The tabular representation of relations is a convenient (vizualization), practical (implementation) but not essential part (design and query) of the relational model.

- **(**) Each row represents an n-tuple of R.
- Interview of the ordering of rows is immaterial.
- Ill rows are distinct.
- The ordering of columns is significant-it corresponds to the ordering S_1, S_2, \dots, S_n of the domains on which R is defined.
- The significance of each column is partially conveyed by labeling it with the name of the corresponding domain.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Original Definition by Codd

Given the non-necessarily distinct sets of atomic (i.e. non-decomposable) elements S_1, S_2, \dots, S_n , a first normal form (1NF) relation R on these sets if it is a subset of the Cartesian (cross) product of these sets.

$$R \subset S_1 \times S_2 \times \cdots \times S_n$$

Domain

We refer to S_i as the n^{th} domain.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

T-uples

R is a set of (ordered) n-tuples (t-uples)

$$< e_1, e_2, \cdots, e_n > \in S_1 \times S_2 \times \cdots \times S_n$$

T-uples Constructor

R is a set of (ordered) n-tuples (t-uples) < . > is the t-uple constructir symbol.

Introduction 0000	Codd's Motivation	The Relational Model 000000000000000000000000000000000000	The Universal Relation	Design Anomalies 0000
Definitions				

Duplicates

A set does not contain duplicate elements:

$$\{a,a,b\}=\{a,b\}$$

In the definition we gave the relation instances differ from the tables as they do not contain duplicate elements.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Order

A set is not ordered:

$$\{a,b\}=\{b,a\}$$

The order of t-uples in relations and rows in tables is irrelevant.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Order

Components of a t-uple in the unnamed view are ordered.

< And rew, Jackson >

Andrew is the first name and Jackson is the family name.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Codd's Definition: Unnamed View

Under the unnamed view a tuple is is an element of the Cartesian product of the domain(s).

 $t_1 \in \textit{dom} \times \textit{dom} \times \textit{dom} \times \textit{dom} \times \textit{dom}$

 $t_1 = <95001, CS1101, TanCK, Programming, 75 >$

Named View

Under the named view a tuple is a functions mapping an attribute to a value in the domain of the attribute.

 $t_1: R \mapsto dom$

 $t_1(Student #) = 95001$

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Conventional View

Under the conventional view a relation instance of a relation schema R[U] (over the attributes U) is a finite set I(R) of tuples.

Logic Porgramming View

Under the logic programming view a relation instance of a relation schema R[U] (over the attributes U) is a finite set of facts over R.

Introduction 0000	Codd's Motivation	The Relational Model 000000000000000000000000000000000000	The Universal Relation	Design Anomalies 0000
Definitions				

A database.

Ī	R	
	А	В
	а	b
	С	d
	а	а

Introduction 0000	Codd's Motivation	The Relational Model 000000000000000000000000000000000000	The Universal Relation	Design Anomalies
Definitions				

Query

Find the A-value in R such that the corresponding B-value in R is a C-value in S.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Definitions				

Unnamed and Conventional (Codd's View)

$$I(R) = \{ < a, b >, < c, d >, < a, a > \}$$
$$I(S) = \{ < d > \}$$

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Domain Relational Calculus

 $\{\langle X \rangle \mid \exists Y \ (\langle X, Y \rangle \in R \land \langle Y \rangle \in S)\}$

Introduction 0000	Codd's Motivation	The Relational Model 000000000000000000000000000000000000	The Universal Relation	Design Anomalies 0000
Definitions				

Named and Conventional

$$I(R) = \{f_1, f_2, f_3\}$$

$$f_1(A) = a, f_2(A) = c, f_3(A) = a, f_1(B) = b, f_2(B) = d, f_3(B) = a$$

$$I(S) = \{g_1\}$$

$$g_1(C) = d$$

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

SELECT R.A FROM R, S WHERE R.B = S.C

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Domain Relational Calculus

$$\pi_{R.A}(\sigma_{R.B=S.C}(R \times S))$$
$$\pi_{R,A}(R \bowtie_{R,B=S,C} S)$$

SQL

SELECT R.A FROM R, S WHERE R.B = S.C

SELECT R.A FROM R INNER JOIN S ON R.B = S.C

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Named and Logic Programming

$$I = \{I(t_1 \in R) = true, I(t_2 \in R) = true, I(t_3 \in R) = true, \\ I(t_1.A = a) = true, I(t_1.B = b) = true, \\ I(t_2.A = c) = true, I(t_2.B = d) = true, \\ I(t_3.A = a) = true, I(t_3.B = a) = true, \\ I(t_4 \in S) = true, I(t_4.C = d) = true, \cdots^a\}$$

^aThe rest is false.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Domain T-uple Calculus

$$\{T \mid \exists T_1 \exists T_2 (T_1 \in R \land T_2 \in S \land T_1.B = T_2.B \land T.A = T_1.A)\}$$

$$\{\langle T_1.A \rangle \mid \exists T_1 \exists T_2 (T_1 \in R \land T_2 \in S \land T_1.B = T_2.B)\}$$

$$\{ < T_1.A > | \exists T_1 \in R \exists T_2 \in S (T_1.B = T_2.B) \}$$

SQL

SELECT T_1 .A FROM R T_1 , S T_2 WHERE T_1 .B = T_2 .C

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 0000
Definitions				

Unnamed and Logic Programming

$$I = \{I(R(a, b)) = true, I(R(c, d)) = true, I(R(c,$$

$$I(R(a, a)) = true, I(S(d)) = true, \cdots^{a}$$

^aThe rest is false.

Introduction 0000	Codd's Motivation	The Relational Model 000000000000000000000000000000000000	The Universal Relation	Design Anomalies 0000
Definitions				

Domain Relational Calculus

$$\{ < X > | \exists Y (R(X, Y) \land S(Y)) \}$$

Datalog

$$egin{aligned} Q(X) \leftarrow R(X,Y), S(Y). \ \leftarrow Q(X). \end{aligned}$$

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Definitions				

A database schema is a non-empty finite set ${\mathcal R}$ of relation and constraints on these relations.

The Design Question

How many tables? What tables? How many columns in each table? What columns? What Integrity Constraints?

Motivation	
0000	
Introduction	

Codd's Motivation

The Relational Model

The Universal Relation

Design Anomalies

The Universal Relation

Do we need more than one relation?

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Motivation				

The Universal Relation

All the data is kept in a single relation whose scheme consists of all attributes. If necessary, null values are used to pad out t-uples

C	Т	Н	R	S	G
CS101	Deawood	M9	222	Weenie	B+
CS101	Deawood	W9	333	Weenie	B+
CS101	Deawood	F9	222	Weenie	B+
CS101	Deawood	M9	222	Grind	С
CS101	Deawood	W9	333	Grind	С
CS101	Deawood	F9	222	Grind	С

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Readings				

Readings

• Ullman J.," Principles of Database and Knowledge-base Systems". Volume II (Chapter 17), Computer Science Press (1989).

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Definition				

C	Т	Н	R	S	G
CS101	Deawood	M9	222	Weenie	B+
CS101	Deawood	W9	333	Weenie	B+
CS101	Deawood	F9	222	Weenie	B+
CS101	Deawood	M9	222	Grind	С
CS101	Deawood	W9	333	Grind	С
CS101	Deawood	F9	222	Grind	С

Find the rooms in which Prof Deawood is teaching.

In the language of Stanford System/U:

RETRIEVE R WHERE T ='Deadwood'

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Definition				

C	Т	Н	R	S	G
CS101	Deawood	M9	222	Weenie	B+
CS101	Deawood	W9	333	Weenie	B+
CS101	Deawood	F9	222	Weenie	B+
CS101	Deawood	M9	222	Grind	С
CS101	Deawood	W9	333	Grind	С
CS101	Deawood	F9	222	Grind	С

RETRIEVE t1.R WHERE t1.R=t2.R AND t2.C='CS101'

Find the modules using a room used by CS101.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
Definition				

The following database has the following three relations.

Supplier(<u>code</u>, sname)

Part(code, pname, color)

Supply(supplier, part, price)

ntroduction	Codd's	Mo
0000	000	

Definition

The Relational Model

The Universal Relation

Design Anomalies

Universal Relation Assumption: Same Name

Two attributes with the same name correspond to the same attribute in the universal relation, i.e. they are from the same attribute and of the same semantics (same meaning).

Universal Relation Assumption: Different Names

Two attributes with different names from two different relations or from one relation correspond to two different attributes in the universal relation, and have different semantics.

Introduction	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
0000	000	000000000000000000000000000000000000000	00000000000	0000
Definition				

The following database has the following three relations.

Supplier(<u>code</u>, sname)

Part(code, pname, color)

Supply(supplier, part, price)

The database does not satisfy the universal relation assumptions (Why? Bad design of attribute names).

Introduction	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies
0000	000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000

The Universal Relation as a User Interface

C	Т	Н	R	S	G
CS101	Deawood	M9	222	Weenie	B+
CS101	Deawood	W9	333	Weenie	B+
CS101	Deawood	F9	222	Weenie	B+
CS101	Deawood	M9	222	Grind	С
CS101	Deawood	W9	333	Grind	С
CS101	Deawood	F9	222	Grind	C

with the underlying scheme $\{CT, CHR, CSG\}$,

Introduction	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomal
0000	000	000000000000000000000000000000000000000	000000000000	0000

The Universal Relation as a User Interface

Window

The window [X] is a relation with scheme X, where X is the set of attributes mentionned in the query.

Example

The window has schema (R, T).

RETRIEVE R WHERE T ='Deadwood'

Introduction	Codd's Motivation
0000	000

The Relational Model

The Universal Relation

Design Anomalies

The Universal Relation as a User Interface

Window Function

The window function defines the window from the actual database.

Example

The window function is, for example, the natural join of the minimal set of relations whose scheme includes all the attributes.

with the underlying scheme $\{CT, CHR, CSG\}$,

 $[X] = \pi_{R,T}(CT \bowtie CHR)$

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies •000
Motivating Exa	nple			

Design Anomalies

Take					
Student#	Course#	S-name	C-desc	Mark	Text
95001	CS1101	Tan CK	Programming	75	The art of Programming
95023	CS1101	Lee SL	Programming	58	The art of Programming
95023	CS2103	Tan CK	D.S. and Alg.	64	The art of Programming
95001	CS1101	Tan CK	Programming	75	Java
95023	CS1101	Lee SL	Programming	58	Java

0000 Motivating Exa	000	000000000000000000000000000000000000000	0000000000	0000
Introduction	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies

Redundant

Exceeding what is necessary or natural; superfluous.

Lecturers and texts are repeated for each student and course.

Anomaly

An inconsistency.

if a new course is created but no students have taken this course, then we cannot enter the information about this course because the use of null values or undefined values in the primary key could cause problem.

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies 00●0
Motivating Exar	nple			

- Redundant storage
- insertion/deletion anomaly
- update anomaly

What causes the anomalies?

Introduction 0000	Codd's Motivation	The Relational Model	The Universal Relation	Design Anomalies		
Motivating Example						

One process which attempts to remove these undesirable updating anomalies from the relation is called normalization.

R1(<u>STUDENT#</u>, S-NAME) R2(<u>COURSE#</u>, C-DESCRIPTION) R3(<u>STUDENT#</u>, <u>COURSE#</u>, MARK)

R4(<u>COURSE#</u>, Text)

These relations do not have the discussed anomalies.

Underlined attributes indicate a key of the relation. e.g., attributes STUDENT# and COURSE#, together, form a key of the relation R3.