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Abstract

This paper presents a novel approach to top-k ranking
Bayesian optimization (top-k ranking BO) which is a practical
and significant generalization of preferential BO to handle
top-k ranking and tie/indifference observations. We first de-
sign a surrogate model that is not only capable of catering
to the above observations, but is also supported by a classic
random utility model. Another equally important contribution
is the introduction of the first information-theoretic acquisition
function in BO with preferential observation called multino-
mial predictive entropy search (MPES) which is flexible in
handling these observations and optimized for all inputs of
a query jointly. MPES possesses superior performance com-
pared with existing acquisition functions that select the inputs
of a query one at a time greedily. We empirically evaluate
the performance of MPES using several synthetic benchmark
functions, CIFAR-10 dataset, and SUSHI preference dataset.

1 Introduction
Bayesian optimization (BO) is an efficient approach to op-
timize expensive-to-evaluate black-box objective functions
(i.e., possibly noisy, non-convex, and/or with no closed-form
expression/derivative) (Brochu, Cora, and de Freitas 2010).
In practice, direct access to function evaluations may not be
always possible (González et al. 2017). For example, a diner
tasting two different dishes (i.e., inputs) can easily tell which
dish he/she prefers, but it is relatively difficult for the diner to
articulate a rigorous numeric value representing the taste of
each dish (i.e., a function). The difficulty in providing such
a value arises from the need to taste all possible dishes (i.e.,
inputs) and assess the difference in the flavors of these dishes.
On the other hand, specifying the preference between dishes
(i.e., inputs) is so natural that it becomes our daily dining
routine. Also, an inherent property of our preference, which
should be built into the model, is our inability to elucidate the
preference between very similar choices (i.e., indifference
or a tie). For example, it is hardly possible for us to tell the
difference between a cup of coffee with 20% of sugar and
another with 21% of sugar.

To boost the practicality of BO, recent works on preferen-
tial BO (Dewancker, Bauer, and McCourt 2017; González
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et al. 2017) have attempted to replace direct (but noisy) func-
tion evaluations/values with noisy preferences between in-
puts. In particular, given two inputs, the higher the objective
function value at an input is, the more likely it is preferred.
The observation in these works is limited to a preference be-
tween a pair of inputs, i.e., a pairwise preference (Dewancker,
Bauer, and McCourt 2017; González et al. 2017). Further-
more, inputs in the pair are searched one after the other.
Ideally, we would like to search for the input pair jointly as
the function values at these inputs are correlated.

Regarding the model, the work of González et al. (2017)
directly applies a Gaussian process (GP) to model a latent
preference function whose input is a pair of the objective
function’s inputs. This model suffers from 3 disadvantages:
The input dimension of the GP is twice that of the objective
function, the objective function is not modeled directly, and
ties are not modeled. The second drawback leads to the use
of a computationally expensive soft-Copeland score to esti-
mate the maximizer of the objective function. On the other
hand, the work of Dewancker, Bauer, and McCourt (2017)
employs the generalized Bradley-Terry model. Yet, it suffers
from a crude mean field approximation which implies that
the posterior beliefs of the function values at different inputs
are independent from one another. Note that there are several
works with preference-based observations in bandit literature
(Busa-Fekete, Hüllermeier, and Mesaoudi-Paul 2018). The
most relevant work to preferential BO is the work of Sui et al.
(2017) where there is an infinite number of dependent arms
modeled with a GP. However, it does not have a regret anal-
ysis like the other bandit algorithms. Besides, a probability
density is modeled with a GP which allows negative values.

This paper presents an approach that can resolve both ex-
isting issues on the model and the acquisition function. Our
model is inspired from the multinomial logit model and its
generalization to rankings and ties. Combining with a GP,
our model can be interpreted as a GP regression model with
an i.i.d. Gumbel noise. As the GP directly models the un-
derlying objective function, the maximizer of the objective
function can be estimated with the maximizer of the GP pos-
terior mean function like in the conventional BO, which is
less computationally intensive than the soft-Copeland score
in (González et al. 2017). Our model is capable of handling
the observation as a ranking of the top-k inputs in a finite set
of inputs, i.e., top-k rankings (Sec. 2.1), and the possibility



of a tie/indifference in the observation (Sec. 2.2). The former
subsumes the pairwise preference (i.e., a top-1 ranking of 2
inputs) in the existing works (Dewancker, Bauer, and Mc-
Court 2017; González et al. 2017). We call this generalized
problem the top-k ranking Bayesian optimization (top-k BO).
Although our GP model has a non-Gaussian likelihood, it can
be trained with variational inference (Sec. 3).

While information-theoretic acquisition functions (Hennig
and Schuler 2012; Hernández-Lobato, Hoffman, and Ghahra-
mani 2014; Wang and Jegelka 2017) have been investigated
extensively in the conventional BO and demonstrated promis-
ing performance, such a principled acquisition function, to
the best of our knowledge, has not been explored in BO with
preferential observation. Therefore, to efficiently exploit the
posterior belief provided by our model, we derive the first
information-theoretic acquistion function for BO with prefer-
ential observation that is capable of handling different types
of observation introduced in this paper. It maximizes the in-
formation gain on the maximizer of the objective function
through observing the top-k ranking observation, which we
call multinomial predictive entropy search (MPES) (Sec. 4).
Apart from the fact that MPES is rooted in information the-
ory, it can jointly search for all inputs of the query, which
differs from existing acquisition functions for preferential
BO (Dewancker, Bauer, and McCourt 2017; González et al.
2017) that search for inputs of a query one at a time greed-
ily. We empirically evaluate our model and our acquisition
function with different types of observation using several syn-
thetic benchmark functions, CIFAR-10 dataset, and SUSHI
preference dataset (Sec. 5).

2 Multinomial Logit Model and
Top-k Ranking Observations

Let f : X → R be an unknown objective function defined
on a bounded input domain X ⊂ Rd. A function evalua-
tion/value at an input x ∈ X is denoted as fx ∈ R. The
goal is to search for the maximizer argmaxx∈X fx by ob-
serving preferences between different inputs, i.e., observing
the choice between different inputs based on noisy evaluation
of f at these inputs. The noisy evaluation of f can be viewed
as the utility function u decomposed into ux , fx+εx where
εx is a random noise. This noise represents unknown factors
that affect the preference but are not captured in our objective
function fx, which is a practical consideration. Recall our din-
ing example in Sec. 1, the objective function may not capture
the effect of the food temperature or the diner’s hunger on the
preference of the dish. Following the random utility model
(Marschak 1959), an input x is preferred over another input
x′ (i.e., denoted as x � x′) if the difference ux − ux′ in the
unknown utility function values at x and x′ is at least a thresh-
old δ ≥ 0. In other words, p(x � x′) = p(ux − ux′ ≥ δ).
The threshold δ enables the possibility of a tie between 2
inputs, which reflects the real-world scenario where one is in-
different between x and x′ due to their similar utility values,
i.e., ux and ux′ are not sufficiently far apart. It subsumes an
extreme case of δ = 0, i.e., there is no tie in the observation
such as in (González et al. 2017).

To specify the noise εx, a common approach in the litera-

ture of preference learning with GP (Chu and Ghahramani
2005; González et al. 2017) is to assume a Gaussian noise.
However, it is difficult to extend such a model of pairwise
preferences to rankings, as explained in Appendix B. On the
other hand, we present a refreshing approach of modeling
εx as a Gumbel noise such that we can leverage the well-
established multinomial logit model (McFadden 1974) to
enable rankings and ties in BO.

Under the Gumbel noise and given the objective function
values, the probability that an input x is preferred over a finite
set C ⊂ X of inputs (i.e., may or may not include x) has a
closed-form expression, as derived in Appendix A:

p(x � C \ {x}|fC∪{x}; δ) =
efx

efx +
∑

x′∈C\{x} e
fx′+δ

(1)

where p(x � C \ {x}) , p(∀x′ ∈ C \ {x} x � x′)

and fC∪{x} , (fx′′)x′′∈C∪{x} consists of function values
at inputs in C ∪ {x} (Cantillo, Amaya, and Ortúzar 2010).
As a result, when δ = 0, inputs with equal objective func-
tion values have equal probabilities of being preferred while
inputs with higher objective function values are exponen-
tially more likely to be preferred. When there is no tie (i.e.,
δ = 0), the model can be generalized to accept a ranking
(i.e., x1 � x2 � · · · � xm) as an observation following the
Plackett-Luce model (Luce 1959; Plackett 1975):

p(x1 � x2 � · · · � xm|f∪mi=1{xi})

=
∏m−1
i=1 p(xi � ∪mj=i+1{xj}|f∪mj=i{xj}; δ = 0) .

(2)

In the following subsections, we introduce the notations for
2 different types of observation: top-k ranking and top-1
ranking with ties.

Apart from the difference in the noise model, the work of
González et al. (2017), which defines the probability that an
input x is preferred over another input x′ as p(x � x′) =
(1+exp(fx′−fx))−1, can be viewed as a special case of (1).
Therefore, by interpreting the formulation from the multino-
mial logit model with ties, our model is a generalization of
the model in (González et al. 2017).

2.1 Top-k Ranking
When there is no tie (δ = 0), let a top-k ranking (i.e., a
ranking of the top-k inputs in a finite set) over a finite set
C ⊂ X (where 0 < k < |C|) of inputs (i.e., interpreted as
choices) be denoted as okC ,

{
okC(i)

}k
i=1

which is an ordered
set of k inputs in descending order of preference in C, that
is, okC(i) ∈ C and okC(i) � okC(j) for all i < j. For example,
okC(1) is the most preferred input in C, and similarly, okC(i) is
the i-th most preferred input in C. From (2), the probability
of a top-k ranking is expressed as

p(okC |fC) =

k∏
i=1

p(okC(i) � C \ ∪ij=1{okC(j)}|fC ; δ = 0) .

(3)
When |C| = k + 1 = 2, a top-k ranking reduces to a pair-
wise preference (i.e., between a pair of inputs) which is the
observation considered in (González et al. 2017).
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Figure 1: A counter-example based on the transitivity prop-
erty of a tie relation between a pair of inputs.

Note that o
|C|−1
C is a (full) ranking of all inputs in C. Its

probability (i.e., specified in (3) when k = |C| − 1) differs
from that of a batch of pairwise preferences, the latter of
which is the product of probabilities of pairwise preferences
in the batch. This is different from the work of González et al.
(2017) which claims that rankings can be trivially mapped to
pairwise preferences. In fact, simple approaches of mapping
rankings to pairwise preferences can violate a probability
axiom, as shown in Appendix B.

2.2 Top-1 Ranking with Ties
In practice, we are often incapable of stating a strict pref-
erence between inputs with similar utility function values.
One may ignore the observation in this case if the model
can only handle strict preference. However, overlooking this
observation reduces the query efficiency of the BO algorithm.
Therefore, apart from the strict preference between inputs,
tie/indifference should be allowed in the model to capture
this observation.

In this subsection, we investigate one such possibility of
ties (i.e., δ > 0) in the observation when k = 1 (i.e., top-1
ranking with ties). To simplify notation, we denote oC as the
only input in o1

C , i.e., oC is the most preferred input in C. Let
oC = ∅ denote the event where there exists a tie in finding
the most preferred input in C. The probability of a tie can be
expressed as follows:

p(oC = ∅|fC ; δ) = 1−∑oC∈C p(oC |fC ; δ) (4)

s.t. p (oC |fC ; δ) = p(oC � C \ {oC}|fC ; δ) is specified in (1).
Remark 1 When k > 1, the probability of a tie observation
cannot be computed as straightforwardly as (4) because the
tie relation between a pair of inputs (i.e., x ∼ x′) is not
transitive. Fig. 1 shows a counter-example where x0 ∼ x1

(|ux0
− ux1

| < δ) and x1 ∼ x2 (|ux1
− ux2

| < δ) do not
lead to x0 ∼ x2 (|ux0

−ux2
| < δ). This is further elaborated

in Appendix C and therefore left for future work.

3 Variational Inference with
Top-k Ranking Observations

We employ a noiseless Gaussian process (GP) to model
the unknown objective function f . In other words, func-
tion values at every finite subset of X follow a multivari-
ate Gaussian distribution (Rasmussen and Williams 2006)
whose prior distribution is specified by the GP prior mean
and covariance kx,x′ , cov[fx, fx′ ]. As the preference prob-
ability in (1) does not change when f is shifted by a constant
(i.e., shift-invariant), the GP prior mean is set to 0. The co-
variance is defined by the squared exponential kernel, i.e.,

kxx′ , σ2
s exp(−0.5(x−x′)>Λ−2(x−x′)) where the hyper-

parameters consist of the length-scales Λ , diag[l1, . . . , ld]
and the signal variance σ2

s .
Unlike the work of González et al. (2017) that models the

function fx′ − fx (i.e., a function with the input as a pair
[x,x′]), we directly model the objective function fx which
requires only half the dimension of the input of fx′ − fx.
Therefore, while our GP can be intuitively interpreted as
the belief over the unknown objective function, the GP in
(González et al. 2017) cannot. As a result, in our model, the
maximizer of the mean function of the posterior GP belief can
be viewed as an estimate of the maximizer of the objective
function, while the work of González et al. (2017) needs to
introduce the soft-Copeland score to estimate the maximizer
of the objective function. Evaluating the soft-Copeland score
requires the use of Monte-Carlo integration over x ∈ X ,
which is prohibitively expensive for problems with high input
dimension. Another advantage of our model is the ability of
handling ranking observation, which is difficult to extend
from the GP model of pairwise preferences in (González et al.
2017), as explained in Appendix B.

LetD denote the observations (e.g., top-k rankings and top-
1 rankings with ties) in a BO iteration, XD denote the set of
distinct inputs in D, and fXD denote the function values eval-
uated at XD. The likelihood p(D|fXD ) of the observations is
specified in Sec. 2 and is not a Gaussian distribution. Hence,
the GP posterior belief given the observations does not have
a closed-form expression, unlike that of GP regression in
conventional BO. To estimate the posterior belief, we use the
variational inference technique to learn an approximate Gaus-
sian posterior belief q(fXD ) , N (fXD |µXD ,ΣXD ) of fXD
given D by maximizing the evidence lower bound (ELBO):1∫
q(fXD ) log p(D|fXD ) dfXD−

∫
q(fXD ) log

q(fXD )

p(fXD )
dfXD .

(5)
The ELBO can be maximized with a stochastic gradient as-
cent algorithm to obtain µXD , ΣXD , the GP hyperparameters,
and the threshold δ if ties exist, i.e., by drawing a random
mini-batch of fXD from the current variational distribution
q(fXD ) in each iteration to optimize (5).2 Since our GP di-
rectly models the objective function, the length-scales of the
GP can be interpreted as the rate of decay of the spatial cor-
relation of the objective function in terms of the Euclidean
distance between the inputs. Given that the approximate pos-
terior belief q(fXD ) is a multivariate Gaussian distribution
N (µXD ,ΣXD ), the posterior predictive belief of the function
values at any finite subset X ′ ⊂ X givenD (i.e., by marginal-
izing out fXD ) is also a multivariate Gaussian distribution
whose mean and covariance matrix are specified as follows:

µX ′ , KX ′XDK−1XDXDµXD

ΣX ′ , KX ′X ′ −KX ′XDΛKXDX ′
(6)

1Like the definition of fXD , µXD is a vector of posterior mean
values at XD and ΣXD is a covariance matrix whose elements are
the posterior covariance between function values at XD .

2To ensure ΣXD is a positive-definite matrix, we optimize its
square root lower-triangular matrix. A regularizer over the length-
scales can be applied to ensure sufficiently large length-scales.
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Figure 2: An example of top-k BO with 3 pairwise prefer-
ences: Inputs of each pair are represented as the x values
of cross, star, and plus markers. The red markers are the
preferred inputs (i.e., plotted higher).

where KXDXD , (kxx′)x,x′∈XD , KX ′X ′ , (kxx′)x,x′∈X ′ ,
KX ′XD , (kxx′)x∈X ′,x′∈XD , KXDX ′ , K>X ′XD , and
Λ , K−1XDXD (KXDXD − ΣXD )K−1XDXD . Note that sparse
GP models can be used to reduce the time complexity of
O(|XD|3) (i.e., arising from the matrix inversion K−1XDXD )
(Quiñonero-Candela and Rasmussen 2005), but the full GP
model is used in this paper to be comparable with the models
used by other baseline methods.

Fig. 2a shows the GP posterior belief given the observa-
tions consisting of 3 pairwise preferences. Due to noise, there
is an incorrect preference between inputs plotted as stars, i.e.,
the input with the smaller fx is observed as being preferred.
It can be observed that the difference in the function values
at the inputs in the incorrect preference (plotted as stars)
is smaller than that at the inputs in the correct preferences
(crosses and pluses), which aligns with our formulation in (1).
Given the GP posterior belief, one can use the maximizer of
the GP posterior mean function as an estimate of the maxi-
mizer of the objective function. In the next section, we utilize
this GP posterior belief to design an information-theoretic
acquisition function that can efficiently guide the query se-
lection to search for the maximizer of the objective function.

4 Multinomial Predictive Entropy Search
(MPES)

While information-theoretic acquisition functions have been
explored extensively in conventional BO (Hennig and Schuler
2012; Hernández-Lobato, Hoffman, and Ghahramani 2014;
Ru et al. 2018; Shah and Ghahramani 2015; Wang and
Jegelka 2017), they have not been investigated for preferen-
tial BO or our generalized top-k BO. Therefore, we propose
to construct a principled acquisition function based on infor-
mation theory to select the next query (i.e., a set C of inputs),
which we call multinomial predictive entropy search (MPES).

Specifically, the next query is selected such that it maximizes
the information gain on the maximizer x∗ of the objective
function through observing the (top-k ranking) observation at
the query. Let okC denote the observation given a query C. The
observation can be either a top-k ranking or a top-1 ranking
with ties (Sec. 2). The information gain is measured by the
mutual information between x∗ and okC , which is interpreted
as the reduction in the entropy (uncertainty) of the maximizer
x∗ given the observation okC :

I(okC ; x∗|D) , H(p(x∗|D))− Ep(okC|D)[H(p(x∗|D,okC))]

where H(p(x∗|D)) ,
∫
x∗
p(x∗|D) log p(x∗|D) dx∗ de-

notes the entropy of x∗ and Ep(okC|D)[H(p(x∗|D,okC))] de-
notes the conditional entropy of x∗ given okC . However, the
above expression requires a prohibitively expensive evalua-
tion of p(x∗|D,okC) for all possible values of okC . This issue
also exists in several information-theoretic acquisition func-
tions in conventional BO such as in (Hennig and Schuler
2012; Villemonteix, Vazquez, and Walter 2009). Therefore,
we employ the symmetric property of mutual information to
express the acquisition function as

I(okC ; x∗|D) = H(p(okC |D))− Ep(x∗|D)[H(p(okC |D,x∗))]

=
∑
okC

∫
x∗

p(okC ,x∗|D) log
p(okC |D,x∗)
p(okC |D)

dx∗ .

(7)
The next query is selected as argmaxC∈X |C| I(okC ; x∗|D),
which trades off between exploration (i.e., maximiz-
ing H(p(okC |D))) and exploitation (i.e., minimizing
Ep(x∗|D)[H(p(okC |D,x∗))]). To evaluate (7), we approxi-
mate the integration over the maximizer x∗ ∈ X as a summa-
tion over a finite set X∗ ⊂ X of possible maximizers. If X
is discrete and |X | is sufficiently small, we can set X∗ = X .
On the other hand, we can construct X∗ by optimizing func-
tion samples drawn from the GP posterior belief given D
(Hernández-Lobato, Hoffman, and Ghahramani 2014; Wang
and Jegelka 2017; Rahimi and Recht 2008). For high dimen-
sional problems, additive GP can be employed, as explained
in (Wang and Jegelka 2017). Given the finite set X∗ of possi-
ble maximizers, (7) can be expressed as follows:

I(okC ; x∗|D)

≈
∑

x∗∈X∗

p(x∗|D)
∑
okC

p(okC |D,x∗) log
p(okC |D,x∗)
p(okC |D)

(8)

where the probabilities are estimated with sampling in the
following procedure:

1. Draw n samples fC∪X∗ ∼ p(fC∪X∗ |D) of function val-
ues at X∗ and C where p(fC∪X∗ |D) is the density of the
multivariate Gaussian distribution specified in (6).

2. Estimate the posterior probability of x∗ given D as
p(x∗|D) = n−1

∑
fX∗

Ix∗=argmax fX∗
where the summa-

tion is taken over function samples at X∗ in step 1.

3. Estimate the joint posterior probability of okC and x∗ given
D as p(okC ,x∗|D) = n−1

∑
fC∪X∗

Ix∗=argmax fX∗
p(okC |fC)



where the summation is taken over function samples at
C ∪ X∗ obtained in step 1 and the likelihood p(okC |fC) is
described in Sec. 2.

4. Estimate the posterior probability of the observation okC
given D as p(okC |D) =

∑
x∗∈X∗ p(o

k
C ,x∗|D) where

p(okC ,x∗|D) is obtained in step 3.
5. Estimate the posterior probability of the observation

okC given D and the maximizer x∗ as p(okC |D,x∗) =
p(okC ,x∗|D)/p(x∗|D) where p(okC ,x∗|D) and p(x∗|D)
are obtained in steps 3 and 2, respectively.

Note that the number of possible top-1 rankings o1
C only

grows linearly w.r.t. |C|. So, the evaluation of MPES can
scale well to large |C| for k = 1. When k > 1, the number
of possible okC grows exponentially w.r.t. |C|. So, the cost of
evaluating MPES is dominated by the sum over |C|!/(|C|−k)!
possible observations. Therefore, we mainly focus on a small
|C| or k = 1 such as |C| = 4 in our experiments where
we enumerate all possible okC to compute MPES. In this
case, we search for argmaxC∈X |C| I(okC ; x∗|D) by randomly
selecting a number of subsets of |C| inputs in X , which is
empirically shown to significantly outperform EI and DTS
in our experiments (Sec. 5). Alternatively, DIRECT (Jones,
Perttunen, and Stuckman 1993) may be used to optimize
MPES. Nonetheless, searching over a high dimensional space
is a challenging problem. A potential direction to evaluate
MPES for large |C| and k > 1 is to express (8) as

I(okC ; x∗|D)

≈
∑

x∗∈X∗

p(x∗|D)Ep(okC|D,x∗)
[
log p(okC |D,x∗)/p(okC |D)

]
where the expectation Ep(okC|D,x∗) is approximated by
stochastic sampling, i.e., drawing a number of okC follow-
ing p(okC |D,x∗). It is performed by sampling okC from
p(okC |D,x∗, fC∪X?) = p(okC |fC∪X?) (i.e., the likelihood func-
tion in Sec. 2) where fC∪X? are samples in the above step 1
s.t. x∗ = argmax fX∗ . The rationale is to estimate the ex-
pectation with samples okC of high probabilities p(okC |D,x∗)
instead of with all of the possible okC for large |C| and k > 1.

While joint optimization over the query requires searching
over a large space (i.e., X |C|) as compared to optimizing the
inputs of a query one a time greedily (i.e., X ) in (Brochu,
Cora, and de Freitas 2010; Dewancker, Bauer, and McCourt
2017; González et al. 2017), the latter ignores the correlation
between function values evaluated at different inputs of the
query when selecting the first input. This leads to inferior per-
formance, as shown empirically in our experiments (Sec. 5).
Since the primary goal of BO is to reduce the cost of obtain-
ing the query observation, the BO performance should not be
sacrificed for the cost of optimizing the acquisition function.
This is the motivation for us to develop a BO algorithm that
is capable of jointly optimizing over the query to improve the
quality of the queries.
Example 1 (Exploitation vs. exploration) Fig. 2c shows
the MPES values for pairs of inputs in the domain X given
the GP posterior belief in Fig. 2a. The MPES values are sym-
metric about the line x0 = x1, which is expected as the role

of x0 and x1 are interchangeable. There are two regions with
high MPES values, which are annotated as exploitation and
exploration. The exploitation region is the region where the
posterior means of both inputs in the pair are large. These
inputs also have high probabilities of being the maximizer
in Fig. 2b. The exploration region is the region where the
posterior mean of one input in the pair is large (i.e., its proba-
bility of being the maximizer is high in Fig. 2b) and the other
input is far away from all inputs in the observed pairwise
preferences (i.e., its probability of being the maximizer is not
high in Fig. 2b). Thus, MPES is able to balance exploration
and exploitation naturally without any explicit modification.

The joint optimization over the query and the exploration-
exploitation trade-off of MPES contrast with existing ap-
proaches: expected improvement (EI) (Brochu, Cora, and de
Freitas 2010; Dewancker, Bauer, and McCourt 2017) and
dueling-Thompson sampling (DTS) (González et al. 2017).
In EI, the two inputs of the query (i.e., a pair of inputs) are
selected independently: an input maximizing EI and the other
input maximizing µx. Note that EI potentially leads to exces-
sive exploitation (González et al. 2017). On the other hand,
DTS selects inputs of a query one at a time: the first input
maximizing the soft-Copeland score and the second input
maximizing the variance of the preference given the first
input. Furthermore, exploration is explicitly introduced by
selecting the first input based on only 1 sample from the GP
belief using continuous Thompson sampling.

5 Experiments and Discussion
In this section, we empirically demonstrate (a) the perfor-
mance of our MPES in comparison with existing methods:
expected improvement (EI) (Mockus, Tiešis, and Žilinskas
1978) and dueling-Thompson sampling (DTS) (González
et al. 2017) using pairwise preferences in Sec. 5.1, (b) the
performance of MPES and the model of ties in Sec. 5.2, and
(c) the performance of MPES with top-k ranking in Sec. 5.3.
For the experimental results of MPES, we label MPES with
the values of k, |C|, and δ: For example, MPES with k = 1,
|C| = 3, and δ = 0 (i.e., top-1 ranking of a set of 3 inputs
without ties) is labeled as top-1 of 3 δ = 0. When δ > 0
(i.e., ties exist), δ is unknown to our model and is obtained
by optimizing (5). To evaluate MPES, we set |X∗| to 20
and the number of samples is n = 1000. The code is avail-
able at https://github.com/sebtsh/Top-k-Ranking-Bayesian-
Optimization.

Following the work of Hernández-Lobato, Hoffman, and
Ghahramani (2014), we compute the immediate regret in
each BO iteration as the performance metric. For synthetic
functions, it is the difference between the global maximum
value maxx∈X fx of the objective function and the function
value at an estimate of the maximizer from the GP belief.
This estimate of the maximizer is the maximizer of the GP
posterior mean function (i.e., argmaxx∈X µx) for MPES and
EI, while it is the maximizer of the soft-Copeland score for
DTS. A smaller immediate regret is preferred and indicates
higher query efficiency. We repeat each experiment 10 times
to plot the average and standard error of the immediate regret.

These acquisition functions are evaluated on 3 synthetic



benchmark functions with varying levels of difficulty and
number of dimensions: (a) the simple 1-D Forrester function
(Forrester, Sobester, and Keane 2008), (b) the 2-D six-hump
camel (SHC) function (6 local minima) with the input do-
main restricted to [−1.5, 1.5] in each dimension (Molga and
Smutnicki 2005), and (c) the 3-D Hartmann function.3 These
functions are originally modeled for finding the global mini-
mum. However, since throughout this work, we have framed
the problem as one of finding the global maximum, we take
the negative values of these functions instead. The numbers
of initial observations provided to the BO algorithms are 5,
6, and 12 for experiments with the Forrester, SHC, and Hart-
mann functions, respectively. We also perform experiments
on the following 2 real-world datasets:

CIFAR-10 dataset The input domain consists of 50000
training images of the CIFAR-10 dataset (Krizhevsky 2009)
which includes 32 × 32 colour images in 10 classes.
We use the following ground truth ranking of prefer-
ence between classes: 7 (horse) ≺ 6 (frog) ≺ 5 (dog) ≺
4 (deer) ≺ 3 (cat) ≺ 2 (bird) ≺ 9 (truck) ≺ 8 (ship) ≺
1 (automobile) ≺ 0 (airplane). The objective is to identify the
most preferred class through observing preferences/rankings
between different images. Given the GP posterior belief, the
most preferred class is defined as the class where the average
of the posterior mean of all images in the class is the maxi-
mum. The immediate regret is defined as the distance from
the most preferred class given the GP posterior belief to class
0 (i.e., airplane) in the ground truth ranking. For example,
the immediate regret is 3 if the most preferred class given
the GP posterior belief is class 9 (i.e., truck). So, the imme-
diate regret is an integer in the range [0, 9]. We reduce the
dimensionality of CIFAR-10 dataset to an embedding space
of 2 dimensions with a combination of transfer learning from
a CNN and a UMAP reduction (McInnes et al. 2018). The
embedding is visualized by plotting a smooth function of the
ground truth ranking with the embeddings of images as the
inputs in Fig. 3. We observe that this embedding separates the
10 classes of CIFAR-10 into different clusters while preserv-
ing the relative distance between images such that visually
similar images are close in the embedding, and vice versa.
For example, classes 3 (i.e., cat) and 5 (i.e., dog) are close to
each other due to cats and dogs being visually similar. The
objective function maps the 2-D embedding of an image to
the order of its class in the ground truth ranking subtracted by
5 (e.g., the function value of a horse image is 1− 5 = −4).
Six initial observations are provided to the BO algorithms.

SUSHI preference dataset Inspired from our dining ex-
ample in Sec. 1, this experiment is about learning the most
preferred type of sushi through ranking observations. The
objective function is generated from the real-world SUSHI
preference dataset (Kamishima 2003), which is widely used
for the evaluation of preference and ranking methods (Khetan
and Oh 2016; Vitelli et al. 2018). It consists of data for 100
kinds of sushi and 5000 user ratings of subsets of sushi. The
input x consists of 6 features of the sushi. The objective func-

3Available at http://www-optima.amp.i.kyoto-u.ac.jp/member/
student/hedar/Hedar files/TestGO files/Page1488.htm.

Figure 3: Plot of a smooth function of the ground truth rank-
ing with the 2-D embeddings of a subset of the CIFAR-10
dataset. Tuples in each cluster indicate the class number,
followed by the order of the class in the ground truth ranking.

tion is obtained by scaling and shifting the average rating
scores of users (which represents their average opinion) to
the range [−4, 5] that is similar to the CIFAR-10 experiment.
The immediate regret is calculated as the distance between
the BO algorithm’s best guess of the most preferred sushi
and the actual most preferred sushi in the ground truth rank-
ing (based on the average rating scores). For example, if
salmon sushi has rank 10 in the ground truth ranking and the
BO algorithm’s best guess of the most preferred sushi at a
timestep is salmon sushi, the algorithm’s immediate regret
at that timestep would be 9 because salmon sushi is 9 places
away from the top. In these experiments, there are 10 initial
observations provided to the BO algorithms.

5.1 BO with Pairwise Preferences
Since the existing EI and DTS approaches are only able to
handle pairwise preferences, we compare the performance of
our MPES with EI and DTS using pairwise preferences here.
The immediate regrets for the Forrester, SHC, Hartmann,
CIFAR-10, and SUSHI are shown in Fig. 4. It can be observed
that MPES consistently outperforms both EI and DTS in these
experiments. DTS outperforms EI in optimizing the Forrester
function with 1-D inputs (Fig. 4a). However, as the input
dimension increases to 3 in the optimization of the Hartmann
function (Fig. 4c) and to 6 in the optimization problem with
the SUSHI dataset (Fig. 4e), DTS is outperformed by EI.
This is due to the disadvantage of the model used by DTS
whose input dimension is doubled with respect to the original
dimension of the problem, as discussed in Sec. 3.

5.2 BO with Ties
In this subsection, we empirically show the competitive per-
formance of MPES with tie observations by comparing with
the existing DTS and EI using pairwise preferences. On top
of that, we let DTS and EI have an unfair advantage over
MPES by having access to strict preferences (i.e., no tie)
regardless of how close the utility values of the input pair are,
while MPES can only receive a tie observation (i.e., there is
no information about the preferred input in the pair) if the
difference in the utility values of the input pair is less than
δ. Even so, MPES with the model of ties is able to outper-
form DTS and EI both in optimizing synthetic benchmark
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Figure 4: Plots of immediate regrets for experiments with
pairwise preferences.

functions and on the real-world datasets in Figs. 5a-e. This
empirically shows the performance of both the model of ties
in the likelihood (Sec. 2.2) and the performance of MPES.

5.3 BO with Rankings
In this subsection, we empirically illustrate the advantage of
ranking observations over pairwise preferences. In particular,
as the rankings give more information about the GP posterior
belief of the objective function, BO with ranking observa-
tion is expected to outperform BO with pairwise preferential
observation given the same number of queries. This is illus-
trated in Figs. 5f-j where BO with |C| > 2 outperforms BO
with |C| = 2 (i.e., pairwise preferences). Furthermore, as |C|
increases, the performance of our algorithm improves.

6 Conclusion
This paper describes a principled approach to top-k BO in
both modeling the posterior belief of the objective function
and formulating the acquisition function. Inspired by the
classic multinomial logit model, our model is capable of
handling real-world observations including top-k rankings
of inputs and the existence of ties. Furthermore, based on
an information-theoretic measure, we design the acquisition
function of MPES that is capable of guiding the query se-
lection through jointly optimizing all inputs of a query and
balancing the exploration-exploitation trade-off. Our new
model and MPES are empirically demonstrated to have supe-
rior performance compared with existing approaches in sev-
eral synthetic benchmark functions, CIFAR-10 dataset, and

1 5 9 13 17 20

Iteration

0

1

2

3

4

Im
m

ed
ia

te
R

eg
re

t top-1 of 2 δ = 1

EI

DTS

1 8 15 22 29 35

Iteration

1

2

3

Im
m

ed
ia

te
R

eg
re

t top-1 of 2 δ = 0.4

EI

DTS

(a) Forrester function (b) SHC function

1 9 17 25 33 40

Iteration

0.5

1.0

1.5

2.0

2.5

Im
m

ed
ia

te
R

eg
re

t top-1 of 2 δ = 1

EI

DTS

1 8 15 22 29 35

Iteration

0

1

2

3

4

Im
m

ed
ia

te
R

eg
re

t top-1 of 2 δ = 1

EI

DTS

(c) Hartmann function (d) CIFAR-10 dataset

1 8 15 22 29 35

Iteration

5

10

15

20

25

Im
m

ed
ia

te
R

eg
re

t top-1 of 2 δ = 1

EI

DTS

1 5 9 13 17 20

Iteration

0

1

2

3

Im
m

ed
ia

te
R

eg
re

t top-3 of 4 δ = 0

top-2 of 3 δ = 0

top-1 of 2 δ = 0

(e) SUSHI dataset (f) Forrester function

1 8 15 22 29 35

Iteration

0.5

1.0

1.5

2.0

Im
m

ed
ia

te
R

eg
re

t top-3 of 4 δ = 0

top-2 of 3 δ = 0

top-1 of 2 δ = 0

1 9 17 25 33 40

Iteration

0.5

1.0

1.5

2.0

2.5

Im
m

ed
ia

te
R

eg
re

t top-3 of 4 δ = 0

top-2 of 3 δ = 0

top-1 of 2 δ = 0

(g) SHC function (h) Hartmann function

1 6 11 16 21 25

Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Im
m

ed
ia

te
R

eg
re

t top-3 of 4 δ = 0

top-2 of 3 δ = 0

top-1 of 2 δ = 0

1 8 15 22 29 35

Iteration

5

10

15

20
Im

m
ed

ia
te

R
eg

re
t top-3 of 4 δ = 0

top-2 of 3 δ = 0

top-1 of 2 δ = 0

(i) CIFAR-10 dataset (j) SUSHI dataset

Figure 5: Plots of immediate regrets for experiments with
(a-e) pairwise preferences and (f-j) rankings. The observation
of MPES can include ties while that of EI and DTS only
include strict preferences (i.e., no tie). The threshold δ is
learned from observation.

SUSHI preference dataset. For future work, we plan to gener-
alize MPES to nonmyopic BO (Kharkovskii, Ling, and Low
2020; Ling, Low, and Jaillet 2016), batch BO (Daxberger and
Low 2017), high-dimensional BO (Hoang, Hoang, and Low
2018), private outsourced BO (Kharkovskii, Dai, and Low
2020), and multi-fidelity BO (Zhang et al. 2017; Zhang, Dai,
and Low 2019) settings and incorporating early stopping (Dai
et al. 2019) and recursive reasoning (Dai et al. 2020).



Broader Impact
There are many real-world applications (e.g., food/movie/
music preference, art aesthetics, interior design, and place of
interests (tourism)) where the objective function cannot be
directly evaluated. In these applications, top-k ranking BO is
a promising optimization method (e.g., finding the best food
recipe, the most pleasing design, and the most attractive place
for tourists) with a limited budget of queries/trials. Further-
more, the possibility of different types of observation in our
models provides more options to design the data collection
process, which potentially improves the user experience.

There are also several considerations in applying our
model. The negative impacts of our method can happen due
to the poor performance when the underlying assumptions of
our model (e.g., the Gumbel noise and the independence of
irrelevant alternatives (inherent in the logit model)) are vio-
lated. Therefore, an application is required to examine if these
assumptions are satisfied. In case they do not hold, further
investigation into alternative models is necessary. For appli-
cations with constraints (e.g., a combination of ingredients
can cause food poisoning or be unsafe during pregnancy), we
need to extend the current work to incorporate the constraints
into the optimization process.

In brief, we believe our work is beneficial to the society
when the above issues are taken into consideration. It is a
step forward to extend the use of BO to daily applications.
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A Derivation of the Probability of Preference with Ties
In this section, we derive the probability of preference with ties (1). Recall that ux = fx + εx where εx follows a Gumbel
distribution with parameters: µ = 0 and β = 1. Hence, the noise p.d.f., denoted as p(εx), and c.d.f., denoted as F (εx), are

p(εx) = e−εxe−e
−εx

and

F (εx) = e−e
−εx

,

respectively. Then, we can compute the probability that x is preferred over C \ {x} given fC∪{x} as follows:

p(x � C \ {x}|fC∪{x}; δ)
= p(∀x′ ∈ C \ {x} ux ≥ ux′ + δ | fC∪{x})
= p(∀x′ ∈ C \ {x} fx + εx ≥ fx′ + εx′ + δ | fC∪{x})
= p(∀x′ ∈ C \ {x} εx′ ≤ εx + fx − fx′ − δ | fC∪{x})

=

∫ ∞
−∞

p(εx) p(∀x′ ∈ C \ {x} εx′ ≤ εx + fx − fx′ − δ | fC∪{x}, εx) dεx

=

∫ ∞
−∞

p(εx)
∏

x′∈C\{x}

p(εx′ ≤ εx + fx − fx′ − δ | fC∪{x}, εx) dεx

=

∫ ∞
−∞

e−εxe−e
−εx ∏

x′∈C\{x}

e−e
−(εx+fx−fx′−δ) dεx

=

∫ ∞
−∞

e−εxe−e
−εx

e−
∑

x′∈C\{x} e
−(εx+fx−fx′−δ) dεx

=

∫ ∞
−∞

e−εxe−e
−εx
(
e−e

−εx
)∑

x′∈C\{x} e
−(fx−fx′−δ)

dεx .

Let tx = e−e
−εx , then dtx = e−εxe−e

−εx dεx, and

tx =

{
0 if εx = −∞ ,

1 if εx =∞ .

Therefore, by change of variable εx to tx,

p(x � C \ {x} | fC∪{x}; δ) =

∫ 1

0

t
∑

x′∈C\{x} e
−(fx−fx′−δ)

x dtx

=
t
1+

∑
x′∈C\{x} e

−(fx−fx′−δ)

x

1 +
∑

x′∈C\{x} e
−(fx−fx′−δ)

∣∣∣∣∣
1

0

=
1

1 +
∑

x′∈C\{x} e
−(fx−fx′−δ)

=
efx

efx +
∑

x′∈C\{x} e
fx′+δ

.

B Ranking and Pairwise Preference
In this section, we show that it is not trivial to map the probability of a ranking to probabilities of pairwise preferences. Hence,
the work of González et al. (2017) is not easily generalizable to rankings. For simplicity, we do not consider ties in this section.
We show that the following two trivial mappings violate an axiom of probability. Let us consider the probability of a ranking of
3 inputs x0, x1, and x2. If we only use pairwise preferences to express the probability of ranking among these inputs, then a
straightforward approach is to express it as a product of the probabilities of all pairwise preferences in the ranking, e.g.,

p(x0 � x1 � x2) = p(x0 � x1) p(x1 � x2) p(x0 � x2) .

Using this expression, we can compute the probability of x0 � x1 by marginalizing over all possible rankings:

p(x0 � x1) = p(x0 � x1 � x2) + p(x0 � x2 � x1) + p(x2 � x0 � x1) (9)
= p(x0 � x1) p(x1 � x2) p(x0 � x2) + p(x0 � x2) p(x2 � x1) p(x0 � x1)

+ p(x2 � x0) p(x0 � x1) p(x2 � x1)

= p(x0 � x1) {p(x0 � x2) [p(x1 � x2) + p(x2 � x1)] + p(x2 � x0) p(x2 � x1)}
= p(x0 � x1) {p(x0 � x2) + p(x2 � x0) p(x2 � x1)}
= p(x0 � x1) {1− p(x2 � x0) + p(x2 � x0) p(x2 � x1)}
= p(x0 � x1) {1 + p(x2 � x0) [p(x2 � x1)− 1]} .



Hence,
p(x0 � x1) p(x2 � x0) [p(x2 � x1)− 1] = 0 .

Therefore, if p(x0 � x1) > 0, p(x2 � x0) > 0, and p(x2 � x1) < 1, then (9) does not hold. In other words, the σ-additivity
axiom of probability is violated.

On the other hand, one can reason that x0 � x1 and x1 � x2 may imply x0 � x2. So, the probability of a ranking can be
expressed as a product of the probabilities of consecutive pairs in the ranking, e.g.,

p(x0 � x1 � x2) = p(x0 � x1) p(x1 � x2) .

Let a, b, and c denote p(x0 � x1), p(x1 � x2), and p(x2 � x0), respectively (i.e., a, b, c ∈ [0, 1]). The σ-additivity axiom of
probability leads to the following expression:

p(x0 � x1) = p(x0 � x1 � x2) + p(x0 � x2 � x1) + p(x2 � x0 � x1) (10)
a = ab+ (1− c)(1− b) + ca

a = ab+ bc+ ca− b− c+ 1

a+ b− ac− bc+ c− 1 = ab

(a+ b− 1)(1− c) = ab . (11)

Hence, if ab > 0 and a+ b < 1 (e.g., a = 0.1 and b = 0.2), then there is no value of c ∈ [0, 1] satisfying (11) (which requires
c > 1). Thus, if a = 0.1 and b = 0.2, then (10) does not hold. In other words, the σ-additivity axiom of probability is violated.

C Complication When Ties Exist for k > 1
To illustrate the complication in dealing with tie observation for k > 1 due to the partial order of preference, we consider the
preference among 3 different inputs: x0, x1, and x2. Let us denote x ∼ x′ as a tie preference between x and x′. The observation
x0 ∼ x1 ∼ x2 (i.e., x0 ∼ x1 and x1 ∼ x2) can lead to 3 different preferences between x0 and x2, as shown in Fig. 6. The
difficulty is due to the fact that transitivity does not hold for ties, i.e., x0 ∼ x1 and x1 ∼ x2 do not imply x0 ∼ x2 (Fig. 6a).
The interpretation of the observation becomes more complicated when we would like to fully describe the preference (with tie)
among |C| > 3 inputs. For example, it is possible that x0 ∼ x1 ∼ x2 ∼ x3 ∼ x4 and x0 ∼ x4, but x0 ≺ x2 � x4 (Fig. 7).
Thus, the probability of an observation involving ties cannot be computed as straightforwardly as (4). We decide to leave this
scenario for future investigation and focus on k = 1 when tie exists so that it does not unnecessarily complicate our exposition of
the BO model and the acquisition function.

D Additional BO Experiments with Ties
To highlight the importance of modeling ties in Sec. 2.2, we consider BO problems with tie observations and compare the
performance of MPES with 2 models: (model A) the model is capable of handling ties (as specified in Sec. 2.2) and (model B)
the model cannot handle ties. In other words, while model A accepts both strict pairwise preferences and ties, model B only
accepts strict preferences, i.e., δ = 0. Therefore, in order to train model B with ties in the observation of the BO problems, we
convert ties to random strict preferences. For example, if the observation is a tie x ∼ x′, we randomly convert this tie to either
x � x′ or x ≺ x′ with equal probabilities. The rationale behind this conversion is that when we are indifferent about a number
of inputs in a set C (a tie) and yet, we are forced to choose an input as the most preferred (since the model cannot handle ties), we
choose a random input in C because the preferences of all inputs in C are the same to us.

These BO problems are about optimizing synthetic benchmark functions: Forrester, six-hump camel (SHC), and 3-D Hartmann
functions. The threshold δ to generate observations (including ties) is set to 2. We set k = 1 and |C| = 2, i.e., the possible
observations are strict pairwise preferences and ties between 2 inputs. The threshold δ is unknown and is learned from the
observation for model A, while δ = 0 for model B as it represents a model that cannot handle ties. We repeat each experiment 5
times to plot the average and the standard error of the immediate regret in Fig. 8. It can be observed that by modeling ties, the
BO performance of MPES with model A is improved as compared to that with model B which can only handle strict preferences.
This is because randomly assigning the strict preference due to ties/indifference can lead to an inaccurate update of the posterior
belief of the objective function. As a result, it is important to model the real-world tie observation such as in Sec. 2.2 to achieve a
competitive BO performance.
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Figure 6: Different preferences between x0 and x2 given x0 ∼ x1 and x1 ∼ x2. The graphs on the right column show
the corresponding preference order relationship where arrows show the direction of preference and no connection means
indifference/tie.
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Figure 7: An example of a (partial) ranking of 5 inputs. The graph in (b) shows the preference order relationship where arrows
show the direction of preference and no connection means indifference/tie.
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Figure 8: Plots of immediate regrets for experiments with pairwise preferences and ties. MPES is used with model A that handles
ties and model B that cannot handle ties; the tie observation is converted to a random strict pairwise preference for model B.


